Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2008 Jan 28;7(2):755–764. doi: 10.1111/j.1750-3639.1997.tb01062.x

A Molecular Genetic Model of Astrocytoma Histopathology

David N Louis 1,
PMCID: PMC8098471  PMID: 9161727

Abstract

As the molecular events responsible for astrocytoma formation and progression are being clarified, it is becoming possible to correlate these alterations with the specific histopathological and biological features of astrocytoma, anaplastic astrocytoma and glioblastoma multiforme. In WHO grade II astrocytomas, autocrine stimulation by the platelet‐derived growth factor system coupled with inactiva‐tion of the p53 gene may lead to a growth stimulus in the face of decreased cell death with slow net growth ensuing. Such cells would also have defective responses to DNA damage and impaired DNA repair, setting the stage for future malignant change. Such biological scenarios recapitulate many of the clinicopathological features of WHO grade II astrocytomas. Anaplastic astrocytomas further display release of a critical cell cycle brake that involves the CDKN2/p16, RB and CDK4 genes. This results in mitoses seen histologically; clinically, there is more conspicuous, rapid growth. Finally, glioblastomas may emerge from the microenviron‐mental outgrowth of more malignant clones in a complex vicious cycle that involves necrosis, hypoxia, growth factor release, angiogenesis and clonal selection; growth signals mediated by activation of epidermal growth factor receptors may precipitate glioblastomas. It is clear as well that glioblastoma multiforme can arise via a number of independent genetic pathways, although the clinical significance of these distinctions remains unclear.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

References

  • 1. Alderson LM, Castleberg RL, Harsh GR, Louis DN, Henson JW (1995) Human gliomas with wild‐type p53 express bcl‐2. Cancer Res 55: 999–1001. [PubMed] [Google Scholar]
  • 2. Bogler O., Huang H‐JS, Cavenee WK (1995) Loss of wild‐type p53 bestows a growth advantage on primary cortical astrocytes and facilitates their in vitro transformation. Cancer Res 55: 2746–2751. [PubMed] [Google Scholar]
  • 3. Burger PC, Green SB (1987) Patient age, histologic features, and length of survival in patients with glioblastoma multiforme. Cancer 59: 1617–1625. [DOI] [PubMed] [Google Scholar]
  • 4. Burger PC, Vogel FS, Green SB, Strike TA (1985) Glioblastoma multiforme and anaplastic astrocytoma: pathologic criteria and prognostic implications. Cancer 56: 1106–1111. [DOI] [PubMed] [Google Scholar]
  • 5. Cho Y., Gorina S., Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor‐DNA complex: understanding tumorigenic mutations. Science 265: 346–355. [DOI] [PubMed] [Google Scholar]
  • 6. Chung RY, Whaley J., Kley N., Anderson K., Louis DN, Menon A., Hettlich C., Freiman R., Hediey‐Whyte ET, Martuza R., Jenkins R., Yandell D., Seizinger BR (1991) TP53 mutation and chromosome 17p deletion in human astrocytomas. Genes Chromosom Cancer 3: 323–331. [DOI] [PubMed] [Google Scholar]
  • 7. Debbas M., White E. (1993) Wild‐type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Develop 7: 546–554. [DOI] [PubMed] [Google Scholar]
  • 8. Dreyling MH, Bohlander SK, Adeyanju MO, Olopade OI (1995) Detection of CDKN2 deletions in tumor cell lines and primary glioma by interphase fluorescence in situ hybridization. Cancer Res 55: 984–988. [PubMed] [Google Scholar]
  • 9. Ekstrand AJ, James CD, Cavenee WK, Seliger B., Petterson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor a, and epidermal growth factor and their expression in human gliomas in vivo . Cancer Res 51: 2164–2172. [PubMed] [Google Scholar]
  • 10. Eng C., Li FP, Abramson DH, Ellsworth RM, Wong FL, Goldman MB, Seddon J., Tarbell N., Boice JD (1993) Mortality from second tumors amoung long‐term survivors of retinoblastoma. J Natl Cancer Inst 85: 1121–1128. [DOI] [PubMed] [Google Scholar]
  • 11. Fleming TR Saxena A., Clark WC, Robertson JT, Oldfield EH, Aaronson SA, Ali IU (1992) Amplification and/or over‐expression of platelet‐derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52: 4550–4553. [PubMed] [Google Scholar]
  • 12. Fults D., Pedone C. (1993) Deletion mapping of the long arm of chromosome 10 in glioblastoma multiforme. Genes Chromosom Cancer 7: 173–7. [DOI] [PubMed] [Google Scholar]
  • 13. Fults D., Pedone CA, Thomas GA, White R. (1990) Allelotype of human malignant astrocytoma. Cancer Res 50: 5784–5789. [PubMed] [Google Scholar]
  • 14. Fults D., Petronio J., Noblett BD, Pedone CA (1992) Chromosome 11 p15 deletions in human malignant astrocytomas and primitive neuroactocema tumers. Genomics 14: 799–801. [DOI] [PubMed] [Google Scholar]
  • 15. Giani C., Finocchiaro G. (1994) Mutation rate of the CDKN2 gere in malignant gliomas. Cancer Res 54: 6338–6339. [PubMed] [Google Scholar]
  • 16. Goldman CK, Kim J., Wong WL, King V., Brock T., Gillespie GY (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human mailgnant glioma cells: a model of glioblastoma multiforme pathophysioiogy. Mol Biol Cell 4: 121–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Graeber TG, Osmanian C., Jacks T., Housman DE, Koch CJ, Lowe SW, Giacca AJ (1996) Hypoxia mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88–91. [DOI] [PubMed] [Google Scholar]
  • 18. He J., Olson JJ, James CD (1995) Lack of p16NK4 or retinoblastoma protein (pRb), or amplification‐associated overexpression of CDK4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res 55: 4833–4836. [PubMed] [Google Scholar]
  • 19. Heldin C‐H (1992) Structure and functional studies or platelet‐derived growth factor. EMBO J 11: 4251–4259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Henson JW, Schnitker BL, Corea KM, von Deiming A., Fassbender F., Xu H‐J, Benedict WF, Yandel DW, Louis DN (1994) The retinoblastoma gene is involved in malignant progression of astrocytomas. Ann Neurol 36: 714–721. [DOI] [PubMed] [Google Scholar]
  • 21. Hermanson M., Funa K., Hartnan V., Claesson‐Welsn L., Heldin C‐H, Westermark B., Nister M. (1992) Plateietderived growth factor and its receptors in human gloma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52: 3213–3219. [PubMed] [Google Scholar]
  • 22. Hermanson M., Funa K., Westermark B., Heldin OH, Wiestier OD, Louis DN, von Deimling A., Nister M. (1996) Association of loss of heterozygosity on chromosome 17p with high platelet‐derived growth factor a receptor expression in human malignant gliomas. Cancer Res 56: 164–171. [PubMed] [Google Scholar]
  • 23. Hoang‐Xuan K., Merel P., Vega F., Hugot JP, Cornu P., Delattre JY, Poisson M., Thomas G., Delattre O. (1995) Analysis of the NF2 tumor‐suppressor gene and of chromosome 22 deletions in gliomas. Int J Canc 60: 478–481. [DOI] [PubMed] [Google Scholar]
  • 23a. Hsu SC, Volpert OV, Steck PA, Mikkelson T., Polverini PJ, Rao S., Chou P., Bouck NP (1996) Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrambospondin‐1. Canc Res 56: 5684–5691. [PubMed] [Google Scholar]
  • 24. Ichimura K., Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDKN2 (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065–1072. [PubMed] [Google Scholar]
  • 25. James CD, Carlblom E., Dumansk; JP, Hansen M., Nordenskjold M., Collins VP, Cavenee WK (1988) Clonal genomic alterations in glioma malignancy stages. Cancer Res 48: 5546–5551. [PubMed] [Google Scholar]
  • 26. Jen J., Harper W., Bigner SH, Bigner DD, Papadooojios N., Markowitz S., Willson JKV, Kinzler KW, Vogelstem B. (1994) Deletion of p16 and p15 genes in brain tumors. Cancer Ros 54: 6353–6358. [PubMed] [Google Scholar]
  • 27. Jung J‐M, Bruner JM, Ruan S., Langford LA, Kyritsis AR Kobayashi T., Levin VA, Zhang W. (1995) Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene 11: 2021–2028. [PubMed] [Google Scholar]
  • 28. Kamb A., Gruis NA, Weaver‐Feldhaus J., Liu Q., Harshman K., Tavtigian SV, Stockert E., Day RS, Johnson BE, Skoinick MH (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436–440. [DOI] [PubMed] [Google Scholar]
  • 29. Karlbom AE, James CD, Boethius J., Cavenee WK, Collins VP, Nordenskjold M., Larsson C. (1993) Loss of heterozygosity in malignant gliomas involves at least three distinct regions on chromosome 10. Hum Genet 92: 169–174. [DOI] [PubMed] [Google Scholar]
  • 30. Kinzler KW, Vogelstein B. (1996) Lessons from hereditary colorectal cancer. Cell 87: 159–170. [DOI] [PubMed] [Google Scholar]
  • 31. Kinzler KW, Vogelstein B. (1996) Life (and death) in a malignant tumor. Nature 379: 19–20. [DOI] [PubMed] [Google Scholar]
  • 32. Koh J., Enders GH, Dynlacht BD, Harlow E. (1995) Tumour‐derived p16 alleles encoding proteins defective in cell‐cycle inhibition. Nature 375: 506–510. [DOI] [PubMed] [Google Scholar]
  • 33. Koopman J., Maintz D., Schild S., Schramm J., Louis DN, Wiestler OD, von Deimling A. (1995) Multiple polymorphisms, but no mutations, in the WAF1/CIP1/CDKN1 gene in human brain tumors. Brit J Cancer 72: 1230–1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Leenstra S., Bijlsma EK, Troost D., Oosting J., Westerveld A., Bosch DA, Hulsebos TJM (1994) Allele loss on chromosomes 10 and 17p and epidermal growth factor receptor gene amplification in human malignant astrocytoma related to prognosis. Br J Canc 70: 684–689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53: 11–21. [DOI] [PubMed] [Google Scholar]
  • 36. Louis DN, Cavenee WK (1997) Molecular biology of central nervous system tumors. In: Cancers: Principles and Practice of Oncology, DeVita VT, Hellman S., Rosenberg SA (eds.), Lippincott‐Raven Publishers: Philadephia . [Google Scholar]
  • 37. Louis DN, Gusella JF (1995) A tiger behind many doors: multiple genetic pathways to malignant glioma. Trends Genet 11: 412–415. [DOI] [PubMed] [Google Scholar]
  • 38. Lowe SW, Ruley HE (1993) Stabilization of the p53 tumor suppressor is induced by adenovirus 5 EIA and accompanies apoptosis. Genes Develop 7: 535–545. [DOI] [PubMed] [Google Scholar]
  • 39. Lukas J., Aagaard L., Strauss M., Bartek J. (1995) Oncogenic aberrations of p16INK4/CDKN2 and cyclin D1 cooperate to deregulate G1 control. Cancer Res 55: 4818–4823. [PubMed] [Google Scholar]
  • 40. Lukas J., Parry D., Aagaard L., Mann DJ, Bartkova J., Strauss M., Peters G., Bartek J. (1995) Retinoblastoma‐protein‐dependent cell‐cycle inhibition by the tumour suppressor p16. Nature 375: 503–506. [DOI] [PubMed] [Google Scholar]
  • 41. Mao L, A. M, Bedi G., Shapiro GI, Edwards CD, Rollins BJ, Sidransky D. (1995) A Novel p16INK4A Transcript. Cancer Res 55: 2995–2997. [PubMed] [Google Scholar]
  • 42. Medema RH, Herrera RE, Lam F., Weinberg RA (1995) Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci USA 92: 6289–6293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Merlo A., Herman JG, Mao L., Lee DJ, Gabrielson E., Burger PC, Baylin SB, Sidransky D. (1995) 5'CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1. Nature Med 1 686–692. [DOI] [PubMed] [Google Scholar]
  • 44. Moulton T., Samara G., Chung W., Yuan L., Desai R., Sisti M., Bruce J., Tycko B. (1995) MTS1/p16/CDKN2 lesions in primary glioblastoma multiforme. Am J Pathol 146: 613–619. [PMC free article] [PubMed] [Google Scholar]
  • 45. Nagane M., Coufal F., Lin H., Bogler O., Cavenee WK, Huang H‐JS (1996) A common mutant epidermal growth factor receptor confers enhanced tumcrigenicity on human glioblastoma cells by increasing proliferation and reducing apoptosis. Cancer Res 56: 5079–5086. [PubMed] [Google Scholar]
  • 46. Nobori T., Miura K., Wu DJ, Lois A., Takabayashi K., Carson DA (1994) Deletions of the cyclin‐dependent kinase‐4 inhibitor gene in multiple human cancers. Nature 368: 753–756. [DOI] [PubMed] [Google Scholar]
  • 47. Ono Y., Tamiya T., Ichikawa T., Matsumoto K., Furuta T., Ohmoto T., Akiyama K., Seki S., Ueki K., Louis DN (1997) Accumulation of wild type p53 in astrocytomas is regionally heterogeneous and associated with increased p21 expression. Acta Neuropathol (in press). [DOI] [PubMed]
  • 48. Ono Y., Tamiya T., Ichikawa T., Kunishio K., Mtsumoto K., Furuta T., Ohmoto T., Ueki K., Louis DN (1996) Malignant astrocytomas with homozygous CDKN2/p16 gene deletions have higher Ki‐67 proliferation indices. J Neuropathol Exp Neurol 55: 1026–1031. [PubMed] [Google Scholar]
  • 49. Pilkington GJ (1994) Tumour cell migration in the central nervous system. Brain Pathol 4: 157–166. [DOI] [PubMed] [Google Scholar]
  • 50. Plate KH, Breier G., Risau W. (1994) Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol 4: 207–218. [DOI] [PubMed] [Google Scholar]
  • 51. Quelle DE, Zindy F., Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of cell cycle arrest. Cell 83: 993–1000. [DOI] [PubMed] [Google Scholar]
  • 52. Rasheed BKA, Fuller GN, Friedman AH, Bigner DD, Bigner SH (1992) Loss of heterozygosity for 10q loci in human gliomas. Genes Chromosom Cancer 5: 75–82. [DOI] [PubMed] [Google Scholar]
  • 53. Rasheed BKA, McLendon RE, Friedman HS, Friedman AH, Fuchs HE, Bigner DD, Bigner SH (1995) Chromosome 10 deletion mapping in human gliomas: a common deletion region in 10q25. Oncogene 10: 2243–2246. [PubMed] [Google Scholar]
  • 54. Rasheed BKA, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH (1994) Alterations of the TP53 gene in human gliomas. Cancer Res 54: 1324–1330. [PubMed] [Google Scholar]
  • 55. Reifenberger G., Ichimura K., Reifenberger J., Elkahloun AG, Meltzer PS, Collins VP (1996) Refined mapping of 12q13‐q15 amplicons in malignant gliomas suggests CDK4/S&S and MDM2 as independent amplification targets. Cancer Res 56: 5141–5145. [PubMed] [Google Scholar]
  • 56. Reifenberger G., Liu L., Ichimura K., Schmidt EE, Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739. [PubMed] [Google Scholar]
  • 57. Reifenberger G., Reifenberger J., Ichimura K., Melzter PS, Collins VP (1994) Amplification of multiple genes from chromosomal region 12q13–14 in human malignant gliomas: prelminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54: 4299–4303. [PubMed] [Google Scholar]
  • 58. Reifenberger J., Ring GU, Gies U., Cobbers JMJL, Oberstrab J., An H‐X, Niederacher D., Wechsler W., Reifenberger G. (1996) Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55: 822–831. [DOI] [PubMed] [Google Scholar]
  • 59. Rey JA, Bello MJ, Jimenez‐Lara AM, Vaquero J., Kusak ME, de Campos JM, Sarasa JL, Pestana A. (1992) Loss of heterozygosity for distal markers on 22q in human gliomas. Int J Cancer 51: 703–706. [DOI] [PubMed] [Google Scholar]
  • 60. Rosenberg JE, Lisle DK, Burwick JA, Ueki K., von Deimling A., Mohrenweiser HW, Louis DN (1996) Refined deletion mapping of the chromosome 19q glioma tumor suppressor gene to the D19S412‐STD interval. Oncogene 13: 2483–2485. [PubMed] [Google Scholar]
  • 61. Rubio M‐P, Correa KM, Ramesh V., MacCollin MM, Jacoby LB, von Deimling A., Gusella JF, Louis DN (1994) Analysis of the neurofibromatosis 2 (NF2) gene in human ependymomas and astrocytomas. Cancer Res 54: 45–47. [PubMed] [Google Scholar]
  • 62. Rubio M‐P, Correa KM, Ueki K., Mohrenweiser HW, Gusella JF, von Dealing A., Louis DN (1994) The putative glioma tumor suppressor gene on chromosome 19q maps between APOC2 and HRC. Cancer Res 54: 4760–4763. [PubMed] [Google Scholar]
  • 63. Rubio M‐P, von Deimling A., Yandell DW, Wiestler OD, Gusella JF, Louis DN (1993) Accumulation of wild‐type p53 protein in human astrocytomas. Cancer Res 53: 3465–3467. [PubMed] [Google Scholar]
  • 64. Schmidt EE, Ichimura K., Reifenberger G., Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54: 6321–6324. [PubMed] [Google Scholar]
  • 65. Seizinger BR, Klinger HP, Junien C., Nakamura Y., Le Beau M., Cavenee W., Emanuel B., Ponder B., Naylor S., Mitelman F., Louis DN, Menon A., Newsham I., Decker J., Kaeibing I., Henry I., von Deimling A. (1991) Report of the committee on chromosome and gene loss in human neoplasia. Cytogenet Cell Genet 58: 1080–1096. [Google Scholar]
  • 66. Serrano M., Hannon GJ, Beach D. (1993) A new regulatory motif in cell‐cycle control causing specific inhibition of cyclin D/cdk4. Nature 366: 704–707. [DOI] [PubMed] [Google Scholar]
  • 67. Sidransky D., Mikkelsen T., Schwechheimer K., Rosenblum M., Cavenee W., Vogelstein B. (1992) Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature 355: 846–847. [DOI] [PubMed] [Google Scholar]
  • 68. Sonoda Y., Iizuka M., Yasuda J., Makino R., Ono T., Kayama T., Yoshimoto T., Sekiya T. (1995) Loss of heterozygosity at 11 p15 in malignant glioma. Cancer Res 55: 2166–2168. [PubMed] [Google Scholar]
  • 69. Stone S., Jiang P., Dayananth P., Tavtigian SV, Katcher H., Parry D., Peters G., Kamb A. (1995) Complex Structure and Regulation of the p16 (MTS1) Locus. Cancer Res 55: 2988–2994. [PubMed] [Google Scholar]
  • 70. Ueki K., Oro Y., Henson JW, von Deimilig A., Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56: 150–153. [PubMed] [Google Scholar]
  • 71. Ueki K., Ramaswamy S., Billings SJ, Mohrenweiser HW, Louis DN (1997) ANOVA, a putative astrocytic RNA‐binding protein gene that maps to chromosome 19q13.3. Neurogenetics (in press). [DOI] [PubMed]
  • 72. Ueki K., Rubio M‐P, Ramesh V., Correa KM, Rutter JL, von Deimling A., Buckler AJ, Gusella JF, Louis DN (1994) MTS1/CDKN2 gene mutations are rare in primary human astrocytomas with allelic loss of chromosome 90. Hum Molec Genet 3: 1841–1845. [DOI] [PubMed] [Google Scholar]
  • 73. von Deimling A., Louis DN, von Ammon K., Petersen I., Hoell T., Chung RY, Martuza R., Schoenfeld D. Yasargil MG, Wiestler OD, Seizinger BR (1992) Association of epidermal growth factor receptor gene amplification with loss of chromosome 10 in human glioblastoma multiforme. J Neurosurg 77: 295–301. [DOI] [PubMed] [Google Scholar]
  • 74. von Deimling A., von Ammon K., Schoenfeld D., Wiestler OD, Seizinger BR, Louis DN (1993) Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3: 19–26. [DOI] [PubMed] [Google Scholar]
  • 75. Walker DG, Duan W., Popovic EA, Kaye AH, Tomlinson FH, Lavin M. (1995) Homozygous deletions of the multiple tumor suppressor gene 1 in the progression of human astrocytomas. Cancer Res 55: 20–23. [PubMed] [Google Scholar]
  • 76. Watanabe K., Tachibana O., Sato K., Yonekawa Y., Kleihues P., Ohgaki H. (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6: 217–223. [DOI] [PubMed] [Google Scholar]
  • 77. White E. (1996) Life, death and the pursuit of apoptosis. Genes Oevel 10: 1–15. [DOI] [PubMed] [Google Scholar]
  • 78. Wong AJ, Bigner SH, Bigrer DD, Dinzler KW, Hamilton SR, Vogelstein B. (1987) Increased express on of the epidermal growth factor receptor gene in malignant glomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 84: 6899–6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79. Yaharda AM, Bruner JM, Donehower LA, Morrison RS (1995) Astrocytes derived from p53‐deficient mice provide a multistep in vitro model for development of maliggnant glomas. Molec Cell Biol 15: 4249–4259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Yong WH, Chou D., Ueki K., Harsh GR, von Deimling A., Guselia JF, Mohrenweiser HW, Louis DN (1995) Chromosome 19q deletions in human gliomas overlap telomere to D19S219 and may target a 425 kb region centromeric to D19S112. J Neuropathol Exp Neurol 54: 622–626. [DOI] [PubMed] [Google Scholar]
  • 81. Yong WH, Ueki K., Chou D., Reeves SA, von Deming A., Gusella JF, Mohrenweiser HW, Buckler AJ, Louis DN (1995) Cloning of a highly conserved human protein serine threonine phosphatase gene from the glioma candidate region on chromosome 19q13.3. Genomics 29: 533–536. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES