Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(4):617–626. doi: 10.1111/j.1750-3639.1999.tb00543.x

Chordoid Glioma of the Third Ventricle: Immunohistochemical and Molecular Genetic Characterization of a Novel Tumor Entity

Guido Reifenberger 1,, Tillmann Weber 2, Ruthild G Weber 2,3, Marietta Wolter 1, Almuth Brandis 4, Klaus Kuchelmeister 5, Peter Pilz 6, Erich Reusche 7, Peter Lichter 2, Otmar D Wiestler 1
PMCID: PMC8098498  PMID: 10517500

Abstract

Chordoid glioma of the third ventricle was recently reported as a novel tumor entity of the central nervous system with characteristic clinical and histopathological features (Brat et al., J Neuropathol Exp Neurol 57: 283–290, 1998). Here, we report on a histopathological, immunohistochemical and molecular genetic analysis of five cases of this rare neoplasm. All tumors were immunohistochemically investigated for the expression of various differentiation antigens, the proliferation marker Ki‐67, and a panel of selected proto‐oncogene and tumor suppressor gene products. These studies revealed a strong expression of GFAP, vimentin, and CD34. In addition, most tumors contained small fractions of neoplastic cells immunoreactive for epithelial membrane antigen, S‐100 protein, or cytokeratins. The percentage of Ki‐67 positive cells was generally low (< 5%). All tumors showed immunoreactivity for the epidermal growth factor receptor and schwan‐nomin/merlin. There was no nuclear accumulation of the p53, p21 (Waf‐1) and Mdm2 proteins. To examine genomic alterations associated with the development of chordoid gliomas, we screened 4 tumors by comparative genomic hybridization (CGH) analysis. No chromosomal imbalances were detected. More focussed molecular genetic analyses revealed neither aberrations of the TP53 and CDKN2A tumor suppressor genes nor amplification of the EGFR, CDK4, and M DM2 proto‐oncogenes. Our data strongly support the hypothesis that chordoid glioma of the third ventricle constitutes a novel tumor entity characterized by distinct morphological and immunohistochemical features, as well as a lack of chromosomal and genetic alterations commonly found in other types of gliomas or in meningiomas.

Full Text

The Full Text of this article is available as a PDF (403.3 KB).

References

  • 1. Abenoza P, Sibley RK (1986) Chordoma: An immunohistologic study. Hum Pathol 17: 744–747. [DOI] [PubMed] [Google Scholar]
  • 2. Bentz M, Plesch A, Stilgenbauer S, Dohner H, Lichter P (1998) Minimal sizes of deletions detected by comparative genomic hybridization. Genes Chromosom Cancer 21: 172–175. [PubMed] [Google Scholar]
  • 3. Blümcke I, Giencke K, Wardelmann E, Beyenburg S, Krai T, Sarioglu N, Pietsch T, Wolf HK, Schramm J, Elger CE, Wiestler OD (1999) The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta Neuropathol 97: 481–490. [DOI] [PubMed] [Google Scholar]
  • 4. Brat DJ, Scheithauer BW, Staugaitis SM, Cortez SC, Brecher K, Burger PC (1998) Third ventricular chordoid glioma: A distinct clinicopathologic entity. J Neuropathol Exp Neurol 57: 283–290. [DOI] [PubMed] [Google Scholar]
  • 5. Carneiro SS, Scheithauer BW, Nascimento AG, Hirose T, Davis DH (1996) Solitary fibrous tumor of the meninges: a lesion distinct from fibrous meningioma. A clinicopathologic and immunohistochemical study. Am J Clin Pathol 106: 217–224. [DOI] [PubMed] [Google Scholar]
  • 6. Cencchi G, Roncaroli F, Cerasoli S, Ficarra G, Giangaspero F (1999) Chordoid neoplasms of the third ventricle. An immunohistochemical and ultrastructural study of three cases. J Neuropathol Exp Neurol 58: 510 (abstract). [Google Scholar]
  • 7. Chaubal A, Pateau A, Zoltick P, Miettinen M (1994) CD34 immunoreactivity in nervous system tumors. Acta Neuropathol 88: 454–458. [DOI] [PubMed] [Google Scholar]
  • 8. Cobbers JM, Wolter M, Reifenberger J, Ring GU, Jessen F, An H‐X, Niederacher D, Schmidt EE, Ichimura K, Floeth F, Kirsch L, Borchard F, Louis DN, Collins VP, Reifenberger G (1998) Frequent inactivation of CDKN2A and rare mutation of TP53 in PCNSL. Brain Pathol 8: 263–276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Coffin CM, Swanson PE, Wick MR, Dehner LP (1993) Chordoma in childhood and adolescence. A clinicopathologic analysis of 12 cases. Arch Pathol Lab Med 117: 927–933. [PubMed] [Google Scholar]
  • 10. Coindre JM, Rivel J, Trojani M, De Mascarel I, De Mascarel A (1986) Immunohistostological study in chordomas. J Pathol 150: 61–63. [DOI] [PubMed] [Google Scholar]
  • 11. Collins VP, James CD (1993) Gene and chromosomal alterations associated with the development of human gliomas. FASEB J 7: 926–930. [DOI] [PubMed] [Google Scholar]
  • 12. Du Manoir S, Speicher MR, Joos S, Schröck E, Popp S, Döhner H, Kovacs G, Robert‐Nicoud M, Lichter P, Cremer T (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90: 590–610. [DOI] [PubMed] [Google Scholar]
  • 13. Du Manoir S, Schröck E, Bentz M, Speicher MR, Joos S, Ried T, Lichter P, Cremer T (1995) Quantitative analysis of comparative genomic hybridization. Cytometry 19: 27–41. [DOI] [PubMed] [Google Scholar]
  • 14. Gibas Z, Miettinen M, Sandberg AA (1992) Chromosomal abnormalities in two chordomas. Cancer Genet Cytogenet 58: 169–173. [DOI] [PubMed] [Google Scholar]
  • 15. Heikinheimo K, Persson S, Kindblom LG, Morgan PR, Virtanen I (1991) Expression of different cytokeratin subclasses in human chordoma. J Pathol 164: 145–150. [DOI] [PubMed] [Google Scholar]
  • 16. Joos S, Scherthan H, Speicher MR, Schlegel J, Cremer T, Lichter P (1993) Detection of amplified DNA sequences by reverse chromosome painting using genomic tumor DNA as probe. Hum Genet 90: 584–589. [DOI] [PubMed] [Google Scholar]
  • 17. Kallioniemi A, Kallioniemi O‐P, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258: 818–821. [DOI] [PubMed] [Google Scholar]
  • 18. Kasantikul V, Shuanghoti S (1989) Positivity to glial fibrillary acidic protein in bone, cartilage, and chordoma. J Surg Oncol 41: 22–26. [DOI] [PubMed] [Google Scholar]
  • 19. Kepes JJ, Chen WY, Connors MH, Vogel FS (1988)“Chordoid” meningeal tumors in young individuals with peritumoral lymphoplasmacellular infiltrates causing systemic manifestations of the Castleman syndrome. A report of seven cases. Cancer 62: 391–406. [DOI] [PubMed] [Google Scholar]
  • 20. Kuchelmeister K, Becker A, Woszczyk A, Schachenmayr W (1998) Chordoid glioma of the third ventricle. Clin Neuropathol 17: 280 (abstract). [Google Scholar]
  • 21. Lichter P, Bentz M, Joos S (1995) Detection of chromosomal aberrations by means of molecular cytogenetics: painting of chromosomes and chromosomal subregions and comparative genomic hybridization. Methods Enzy-mol 254: 334–359. [DOI] [PubMed] [Google Scholar]
  • 22. Lin G, Finger E, Gutierrez‐Ramos JC (1995) Expression of CD34 in endothelial cells, hematopoietic progenitors and nervous cells in fetal and adult mouse tissues. Eur J Immunol 25: 1508–1516. [DOI] [PubMed] [Google Scholar]
  • 23. Macdonal RL, Deck JH (1990) Immunohistochemistry of ecchordosis physaliphora and chordoma. Can J Neurol Sci 17: 420–423. [DOI] [PubMed] [Google Scholar]
  • 24. Maiorano E, Renzulli G, Favia G, Ricco R (1992) Expression of intermediate filaments in chordomas. An immunocytochemical study of five cases. Pathol Res Pract 188: 901–907. [DOI] [PubMed] [Google Scholar]
  • 25. Mertens F, Kreichbergs A, Rydholm A, Willen H, Carlen B, Mitelman F, Mandahl N (1994) Clonal chromosome aberrations in three sacral chordomas. Cancer Genet Cytogenet 73: 147–151. [DOI] [PubMed] [Google Scholar]
  • 26. Miettinen M, Lehto VP, Dahl D, Virtanen I (1983) Differential diagnosis of chordoma, chondroid, and ependymal tumors as aided by anti‐intermediate filament antibodies, Am J Pathol 112: 160–169. [PMC free article] [PubMed] [Google Scholar]
  • 27. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31: 11–24. [DOI] [PubMed] [Google Scholar]
  • 28. Nagane M, Huang HJ, Cavenee WK (1997) Advances in the molecular genetics of gliomas. Curr Opin Oncol 9: 215–222. [DOI] [PubMed] [Google Scholar]
  • 29. Naka T, Iwamoto Y, Shinohara N, Chuman H, Fukui M, Tsuneyoshi M (1997) Cytokeratin subtyping in chordomas and the fetal notochord: an immunohistochemical analysis of aberrant expression. Mod Pathol 10: 545–551. [PubMed] [Google Scholar]
  • 30. O'Hara BJ, Paetau A, Miettinen M (1998) Keratin subsets and monoclonal HBME‐1 in chordoma: immunohistochemical differential diagnosis between tumors simulating chordoma. Hum Pathol 29: 119–126. [DOI] [PubMed] [Google Scholar]
  • 31. Persons DL, Bridge JA, Neff JR (1991) Cytogenetic analysis of two sacral chordomas. Cancer Genet Cytogenet 56: 197–201. [DOI] [PubMed] [Google Scholar]
  • 32. Piper J, Rutovitz D, Sudar D, Kallioniemi A, Kallioniemi O‐P, Waldman FM, Gray JW, Pinkel D (1995) Computer image analysis of comparative genomic hybridization. Cytometry 19: 10–26. [DOI] [PubMed] [Google Scholar]
  • 33. Reifenberger G (1991) Immunhistochemie der Tumoren des Nervensystems. Springer‐Verlag, Berlin , pp. 28–32. [Google Scholar]
  • 34. Reifenberger J, Ring, GU , Gies U, Cobbers JMJL, Oberstraß J, An H‐X, Niederacher D, Wechsler W, Reifenberger G (1996) Analysis of p53 mutation and epidermal growth factor receptor amplification in recurrent gliomas with malignant progression. J Neuropathol Exp Neurol 55: 822–831. [DOI] [PubMed] [Google Scholar]
  • 35. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thoma G, Nordenskjöld M, Collins VP, Dumanski JP, Rouleau GA (1994) Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nature Genet 6: 180–4. [DOI] [PubMed] [Google Scholar]
  • 36. Schmidt EE, Ichimura K, Messerle KR, Goike HM, Collins VP (1997) Infrequent methylation of CDKN2A (MTS1/p16) and rare mutation of both CDKN2A and CDKN2B (MTS2/p15) in primary astrocytic tumours. Br J Cancer 75: 2–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Steen R, Egeland T (1998) CD34 molecule epitope distribution on cells of haematopoietic origin. Leuk Lymphoma 30: 23–30. [DOI] [PubMed] [Google Scholar]
  • 38. Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN (1996) CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56: 150–153. [PubMed] [Google Scholar]
  • 39. Vajtai I, Varga Z, Scheithauer BW, Bodosi M (1999) Chordoid glioma of the third ventricle: confirmatory report of a new entity. Hum Pathol 30: 723–726. [DOI] [PubMed] [Google Scholar]
  • 40. Wanschitz J, Schmidbauer M, Maier H, Rossler K, Vorkapic P, Budka H (1995) Suprasellar meningioma with expression of glial fibrillary acidic protein: A peculiar variant. Acta Neuropathol 90: 539–544. [DOI] [PubMed] [Google Scholar]
  • 41. Wellenreuther R, Kraus JA, Lenartz D, Menon AG, Schramm J, Louis DN, Ramesh V, Gusella JF, Wiestler OD, von Deimling A (1995) Analysis of the neurofibro‐matosis type 2 gene reveals molecular variants of meningioma. Am J Pathol 146: 827–832. [PMC free article] [PubMed] [Google Scholar]
  • 42. Wittschow R, Landas SK (1991) Glial fibrillary acidic protein expression in pleomorphic adenoma, chordoma, and astrocytoma. Arch Pathol Lab Med 115: 1030–1033. [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES