Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(2):218–230. doi: 10.1111/j.1750-3639.2001.tb00394.x

Sarcolemmopathy: Muscular Dystrophies with Cell Membrane Defects

Eijiro Ozawa 1,, Ichizo Nishino 1, Ikuya Nonaka 1
PMCID: PMC8098542  PMID: 11303797

Abstract

In this article, we review the molecular pathology of muscular dystrophies caused by defects of proteins located within or near cell membranes. These disorders include Bethlem myopathy, merosinopathy, dystrophinopathy, sarcoglycanopathies, integrinopathy, dysferlinopathy and caveolinopathy. We refer to these diseases collectively as sarcolemmopathy. Here, we describe the biological functions of these proteins in the context of muscular contractions and their roles in the infrastructure of muscle; defects of muscle infrastructures cause those diseases.

As an example, in dystrophinopathy, cell membranes have mechanical defects due to the absence of dystrophin. Cracks of the cell membrane induced by muscle contraction may allow the influx and efflux of substances that trigger muscle cell degeneration. However, such cracks may be resealed on relaxation. In addition, dystrophinopathy causes secondary defects of various dystrophin‐associated proteins suggesting that defects in cell signaling participate in the pathologic process. With regard to other sarcolemmopathies, we discuss pathological mechanisms based on available data.

Full Text

The Full Text of this article is available as a PDF (223.0 KB).

References

  • 1. Anderson LV, Davison K, Moss JA, Young C, Cullen MJ, Walsh J, Johnson MA, Bashir R, Britton S, Keers S, Argov Z, Mahjneh I, Fougerousse F, Beckmann JS, Bushby KM (1999) Dysferlin is a plasma membrane protein and is expressed early in human development. (published erratum appears in Hum Mol Genet 1999 Jun;8[6]:1141) Hum Mol Genet 8: 855–861. [DOI] [PubMed] [Google Scholar]
  • 2. Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos‐Bueno MR, Moreira ES, Zatz M, Beckmann JS, Bushby K (1998) A gene related to Caenorhabditis elegans spermatogenesis factor fer‐1 is mutated in limb‐girdle muscular dystrophy type 2B. Nature Genetics 20: 37–42. [DOI] [PubMed] [Google Scholar]
  • 3. Becker PE, Kiener F, (1955) Eine neue x‐chromosomale Muskeldystrophie. Arch Psychiatr Z Neurol 193: 427–448. [DOI] [PubMed] [Google Scholar]
  • 4. Ben Hamida M, Fardeau M, Attia N (1983) Severe childhood muscular dystrophy affecting both sexes and frequent in Tunisia. Muscle Nerve 6: 496–480. [DOI] [PubMed] [Google Scholar]
  • 5. Bethlem J, Wijngaarden GK (1976) Benign myopathy, with autosomal dominant inheritance. A report on three pedigrees. Brain 99: 91–100. [DOI] [PubMed] [Google Scholar]
  • 6. Blake DJ, Nawrotzki R, Peters MF, Froehner SC, Davies KE (1996) Isoform diversity of dystrobrevin, the murine 87‐kDa postsynaptic protein. J Biol Chem 271: 7802–7810. [DOI] [PubMed] [Google Scholar]
  • 7. Bönnemann CG, Modi R, Noguchi S, Mizuno Y, Yoshida M, Gussoni E, McNally EM, Duggan DJ, Angelini C, Hoffman E, Ozawa E, Kunkel LM (1995) Beta‐sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. (published erratum appears in Nature Genetics 1996 Jan;12[1]:110) Nature Genetics 11: 266–273. [DOI] [PubMed] [Google Scholar]
  • 8. Bork P, Sudol M (1994) The WW domain: a signalling site in dystrophin Trends Biochem Sci 19: 531–533. [DOI] [PubMed] [Google Scholar]
  • 9. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD‐95 and alpha1‐syntrophin mediated by PDZ domains. Cell 84: 757–767. [DOI] [PubMed] [Google Scholar]
  • 10. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82: 743–752. [DOI] [PubMed] [Google Scholar]
  • 11. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296: 183–190. [DOI] [PubMed] [Google Scholar]
  • 12. Chan YM, Bönnemann CG, Lidov HGW, Kunkel LM (1998) Molecular organization of sarcoglycan complex in mouse myotubes in culture. J Cell Biol 143: 2033–2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Cross RA, Stewart M, Kendrick‐Jones J (1990) Structural predictions for the central domain of dystrophin. FEBS Lett 262: 87–92. [DOI] [PubMed] [Google Scholar]
  • 14. Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE (1997) Utrophin‐dystrophin‐deficient mice as a model for Duchenne muscular dystrophy. Cell 90: 717–727. [DOI] [PubMed] [Google Scholar]
  • 15. Ebashi S, Endo M (1968) Calcium ion and muscle contraction In: Progress in Biophysics and Molecular Biology, Buttler, JAV , Noble, D (eds.) Chapter 5, pp 123–183, Pergamon Press: Oxford , New York . [DOI] [PubMed] [Google Scholar]
  • 16. Ebashi S, Toyokura Y, Momoi H, Sugita H (1959) High creatine phosphokinase activity of sera of progressive muscular dystrophy. J Biochem (Tokyo) 46: 103–104. [Google Scholar]
  • 17. Florence JM, Fox PT, Planer JG, Brooke MH (1985) Activity, creatine kinase, and myoglobin in Duchenne muscular dystrophy: a clue to etiology Neurology 35: 758–761. [DOI] [PubMed] [Google Scholar]
  • 18. Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M, Bermudez M, Pedemonte J, Weidenheim KM, Pestell RG, Minetti C, Lisanti MP (2000) Transgenic overexpression of caveolin‐3 in skeletal muscle fibers induces a Duchenne‐like muscular dystrophy phenotype. Proc Natl Acad Sci USA 97: 9689–9694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Grady RM, Grange RW, Lau KS, Maimone MM, Nichol MC, Stull JT, Sanes JR (1999) Role for alpha‐dystrobrevin in the pathogenesis of dystrophin‐dependent muscular dystrophies. Nature Cell Biol 1: 215–220. [DOI] [PubMed] [Google Scholar]
  • 20. Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90: 729–738. [DOI] [PubMed] [Google Scholar]
  • 21. Hayashi YK, Chou FL, Engvall E, Ogawa M, Matsuda C, Hirabayashi S, Yokochi K, Ziober BL, Kramer RH, Kaufman SJ, Ozawa E, Goto Y, Nonaka I, Tsukahara T, Wang JZ, Hoffman EP, Arahata K (1998) Mutations in the integrin alpha7 gene cause congenital myopathy. Nature Genetics 19: 94–97. [DOI] [PubMed] [Google Scholar]
  • 22. Hoffman EP, Kenneth KH, Brown RH, Johnson M, Modori R, Loike JD, Harris JB, Waterson R, Brook M, Specht L, Kpsky W, Chamberlain J, Caskey T, Shapiro F, Kunkel LM (1988) Characterization of dystrophin in muscle biopsy specimens from patients with Duchenne muscular dystrophy. N Engl J Med 318: 1363–1368. [DOI] [PubMed] [Google Scholar]
  • 23. Ibraghimov‐Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter JA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin‐associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355: 696–702. [DOI] [PubMed] [Google Scholar]
  • 24. Iwata Y, Nakamura H, Mizuno Y, Yoshida M, Ozawa E, Shigekawa M (1993) Defective association of dystrophin with sarcolemmal glycoproteins in the cardiomyopathic hamster heart. FEBS Lett 329: 227–231. [DOI] [PubMed] [Google Scholar]
  • 25. Kameya S, Miyagoe Y, Nonaka I, Ikemoto T, Endo M, Hanaoka K, Nabeshima Y, Takeda S (1999) Alpha1‐syntrophin gene disruption results in the absence of neuronal‐type nitric‐oxide synthase at the sarcolemma but does not induce muscle degeneration. J Biol Chem 274: 2193–2200. [DOI] [PubMed] [Google Scholar]
  • 26. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50: 509–517. [DOI] [PubMed] [Google Scholar]
  • 27. Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod‐shaped cytoskeletal protein. Cell 53: 219–226. [DOI] [PubMed] [Google Scholar]
  • 28. Lamande SR, Bateman JF, Hutchison W, McKinlay Gardner RJ, Bower SP, Byrne E, Dahl HH (1998) Reduced collagen VI causes Bethlem myopathy: a heterozygous COL6A1 nonsense mutation results in mRNA decay and functional haploinsufficiency. Hum Mol Genet 7: 981–989. [DOI] [PubMed] [Google Scholar]
  • 29. Lim LE, Duclo, F , Broux O, Bourg N, Sunada Y, Allamand V, Meyer J, Richard I, Moomaw C, Slaughter C, Tome F, Fardeau M, Jackson CE, Beckmann J, Campbell KP (1995) Beta‐sarcoglycan: characterization and role in limb‐girdle muscular dystrophy linked to 4q12. Nature Genetics 11: 257–265. [DOI] [PubMed] [Google Scholar]
  • 30. Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega M, Culper EJ, Amato AA, Bossie K, Oeltjen J, Bejaoui K, McKenna‐Yasek D, Hosler BA, Schurr E, Arahata K, De Jong PJ, Brown RH Jr. (1998) Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nature Genetics 20: 31–36. [DOI] [PubMed] [Google Scholar]
  • 31. Love DR, Hill DF, Dickson G, Spurr NK, Byth BC, Marsden RF, Walsh FS, Edwards YH, Davies KE (1989) An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339: 55–58. [DOI] [PubMed] [Google Scholar]
  • 32. Masuda T, Fujimaki N, Ozawa E, Ishikawa H (1992) Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers. J Cell Biol 119: 543–548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Matsuda C, Aoki M, Hayashi YK, Ho MF, Arahata K, Brown RH Jr. (1999) Dysferlin is a surface membrane‐associated protein that is absent in Miyoshi myopathy. Neurology 53: 1119–1122. [DOI] [PubMed] [Google Scholar]
  • 34. Matsuda R, Nishikawa A, Tanaka H (1995) Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin‐deficient muscle. J Biochem (Tokyo) 118: 959–964. [DOI] [PubMed] [Google Scholar]
  • 35. Mayer U, Saher G, Fassler R, Bornemann A, Echtermeyer F, von der Mark H, Miosge N, Poschl E, von der Mark K (1997) Absence of integrin alpha 7 causes a novel form of muscular dystrophy. Nature Genetics 17: 318–323. [DOI] [PubMed] [Google Scholar]
  • 36. Minetti C, Sotgia F, Bruno C, Scartezzini P, Broda P, Bado M, Masetti E, Mazzocco M, Egeo A, Donati MA, Volonte D, Galbiati F, Cordone G, Bricarelli FD, Lisanti MP, Zara F (1998) Mutations in the caveolin‐3 gene cause autosomal dominant limb‐girdle muscular dystrophy. Nature Genetics 18: 365–368. [DOI] [PubMed] [Google Scholar]
  • 37. Miyoshi K, Kawai H, Iwasa M, Kusaka K, Nishino H (1986) Autosomal recessive distal muscular dystrophy as a new type of progressive muscular dystrophy. Brain 109: 31–54. [DOI] [PubMed] [Google Scholar]
  • 38. Mizuno Y, Yoshida M, Nonaka I, Hirai S, Ozawa E (1994) Expression of utrophin (dystrophin‐related protein) and dystrophin‐associated glycoproteins in muscles from patients with Duchenne muscular dystrophy. Muscle Nerve 17: 206–216. [DOI] [PubMed] [Google Scholar]
  • 39. Nigro V, de Sa Moreira E, Piluso G, Vainzof M, Belsito A, Politano L, Puca AA, Passos‐Bueno MR, Zatz M (1996) Autosomal recessive limb‐girdle muscular dystrophy, LGMD2F, is caused by a mutation in the delta‐sarcoglycan gene. Nature Genetics 14: 195–198. [DOI] [PubMed] [Google Scholar]
  • 40. Noguchi S, McNally EM, Ben Othmane K, Hagiwara Y, Mizuno Y, Yoshida M, Yamamoto H, Bönnemann CG, Gussoni E, Denton PH, Kyriakides T, Middleton L, Hentati F, Ben Hamida M, Nonaka I, Vance JM, Kunkel LM, Ozawa E (1995) Mutations in the dystrophin‐associated protein gamma‐sarcoglycan in chromosome 13 muscular dystrophy. Science 270: 819–822. [DOI] [PubMed] [Google Scholar]
  • 41. Noguchi S, Wakabayashi E, Imamura M, Yoshida M, Ozawa E (2000) Formation of sarcoglycan complex with differentiation in cultured myocytes. Eur J Biochem 267: 640–648. [DOI] [PubMed] [Google Scholar]
  • 42. Ozawa E, Hosoi K, Ebashi S (1967) Reversible stimulation of muscle phosphorylase b kinase by low concentration of calcium ions. J Biochem (Tokyo) 61: 531–533. [DOI] [PubMed] [Google Scholar]
  • 43. Ozawa E, Imamura M, Noguchi S, Yoshida M (2000) Dystrophinopathy and sarcoglycanopathy. NeuroScience News 3: 13–19. [Google Scholar]
  • 44. Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M (1998) From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21: 421–438. [DOI] [PubMed] [Google Scholar]
  • 45. Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S (1995) Dystrophin‐associated proteins in muscular dystrophy. Hum Mol Genet 4: 1711–1716. [DOI] [PubMed] [Google Scholar]
  • 46. Pan TC, Zhang RZ, Pericak‐Vance MA, Tandan R, Fries T, Stajich JM, Viles K, Vance JM, Chu ML, Speer MC (1998) Missense mutation in a von Willebrand factor type A domain of the alpha 3(VI) collagen gene (COL6A3) in a family with Bethlem myopathy. Hum Mol Genet 7: 807–812. [DOI] [PubMed] [Google Scholar]
  • 47. Piccolo F, Roberds SL, Jeanpierre M, Leturcq F, Azibi K, Beldjord C, Carrie A, Recan D, Chaouch M, Reghis A, Kerch FE, Sefiani A, Voit T, Merlini L, Collin H, Eymard B, Beckmann J, Romero NB, Tomé F, Fardeau M, Campbell KP, Kaplan J‐C (1995) Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity. (published erratum appears in Nature Genetics 1995 Sep 11[1]:104) Nature Genetics 10: 243–245. [DOI] [PubMed] [Google Scholar]
  • 48. Porter GA, Dmytrenko GM, Winkelmann JC, Bloch RJ (1992) Dystrophin colocalizes with beta‐spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol 117: 997–1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Rafael JA, Tinsley JM, Potter AC, Deconinck AE, Davies KE (1998) Skeletal muscle‐specific expression of a utrophin transgene rescues utrophin‐dystrophin deficient mice. Nature Genetics 19: 79–82. [DOI] [PubMed] [Google Scholar]
  • 50. Roberds SL, Leturcq F, Allamand V, Piccolo F, Jeanpierre M, Anderson RD, Lim LE, Lee JC, Tome FM, Romero MB, Fardeau M, Beckmann J, Kaplan J‐C, Campbell KP (1994) Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78: 625–633. [DOI] [PubMed] [Google Scholar]
  • 51. Roberts RG, Bobrow M, Bentley DR (1992) Point mutations in the dystrophin gene. Proc Natl Acad Sci USA 89: 2331–2335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Roberts RG, Coffey AJ, Bobrow M, Bentley DR (1992) Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13: 942–950. [DOI] [PubMed] [Google Scholar]
  • 53. Roberts RG, Gardner RJ, Bobrow M (1994) Searching for the 1 in 2,400,000: a review of dystrophin gene point mutations. Hum Mutat 4: 1–11. [DOI] [PubMed] [Google Scholar]
  • 54. Sadoulet‐Puccio HM, Khurana TS, Cohen JB, Kunkel LM (1996) Cloning and characterization of the human homologue of a dystrophin related phosphoprotein found at the Torpedo electric organ post‐synaptic membrane. Hum Mol Genet 5: 489–496. [DOI] [PubMed] [Google Scholar]
  • 55. Sadoulet‐Puccio HM, Rajala M, Kunkel LM (1997) Dystrobrevin and dystrophin: an interaction through coiled‐coil motifs. Proc Natl Acad Sci USA 94: 12413–12418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Sorimachi H, Saido TC, Suzuki K (1994) New era of calpain research. Discovery of tissue‐specific calpain. FEBS Lett 343: 1–5. [DOI] [PubMed] [Google Scholar]
  • 57. Speer MC, Tandan R, Rao PN, Fries T, Stajich JM, Bolhuis PA, Jobsis GJ, Vance JM, Viles KD, Sheffield D, James C, Kahler SG, Pettenati M, Gilbert JR, Denton PH, Yamaoka LH, Pericak‐Vance MA (1996) Evidence for locus heterogeneity in the Bethlem myopathy and linkage to 2q37. Hum Mol Genet 5: 1043–1046. [DOI] [PubMed] [Google Scholar]
  • 58. Sugita H, Arahata K, Ishiguro T, Suhara Y, Tsukahara T, Ishiura S, Eguchi C, Nonaka I, Ozawa E (1988) Negative immunostaining of Duchenne muscular dystrophy (DMD) and mdx muscle surface membrane with antibody against synthetic peptide fragment predicted from DMD cDNA. Proc Japan Acad 64 Ser. B: 37–39. [DOI] [PubMed] [Google Scholar]
  • 59. Suzuki A, Yoshida M, Yamamoto H, Ozawa E (1992) Glycoprotein‐binding site of dystrophin is confined to the cysteine‐rich domain and the first half of the carboxy‐terminal domain. FEBS Lett 308: 154–160. [DOI] [PubMed] [Google Scholar]
  • 60. Takano A, Bönnemann CG, Honda H, Feener C, Kunkel LM., Sobue G (2000) Intrafamilial phenotypic variation in limb‐girdle muscular dystrophy 2C with compound heterozygous mutations. Muscle Nerve 23: 807–810. [DOI] [PubMed] [Google Scholar]
  • 61. Tanaka H, Ishiguro T, Eguchi C, Saito K, Ozawa E (1991) Expression of a dystrophin‐related protein associated with the skeletal muscle cell membrane. Histochemistry 96: 1–5. [DOI] [PubMed] [Google Scholar]
  • 62. Tanaka H, Yoshida M, Ishiguro T, Eguchi C, Nonaka I, Ozawa E (1989) Expression of dystrophin on the cell surface membrane of intrafusal fibers of human skeletal muscle. Protoplasma 152: 109–111. [Google Scholar]
  • 63. Tomé FM, Evangelista T, Leclerc A, Sunada Y, Manole E, Estournet B, Barois A, Campbell KP, Fardeau M (1994) Congenital muscular dystrophy with merosin deficiency. C R Acad Sci [III] 317: 351–357. [PubMed] [Google Scholar]
  • 64. Vainzof M, Passos‐Bueno MR, Canovas M, Moreira ES, Pavanello RC, Marie SK, Anderson LV, Bönnemann CG, McNally EM, Nigro V, Kunkel LM, Zatz M (1996) The sarcoglycan complex in the six autosomal recessive limbgirdle muscular dystrophies. Hum Mol Genet 5: 1963–1969. [DOI] [PubMed] [Google Scholar]
  • 65. Wagner KR, Cohen JB, Huganir RL (1993) The 87K postsynaptic membrane protein from Torpedo is a protein‐tyrosine kinase substrate homologous to dystrophin. Neuron 10: 511–522. [DOI] [PubMed] [Google Scholar]
  • 66. Yoshida M, Hama H, Ishikawa‐Sakurai M, Imamura M, Mizuno Y, Araishi K, Wakabayashi‐Takai E, Noguchi S, Sasaoka T, Ozawa E (2000) Biochemical evidence for association of dystrobrevin with the sarcoglycan‐sarcospan complex as a basis for understanding sarcoglycanopathy. Hum Mol Genet 9: 1033–1040. [DOI] [PubMed] [Google Scholar]
  • 67. Yoshida M, Noguchi S, Wakabayashi E, Piluso G, Belsito A, Nigro V, Ozawa E (1997) The fourth component of the sarcoglycan complex. FEBS Lett 403: 143–148. [DOI] [PubMed] [Google Scholar]
  • 68. Yoshida M, Suzuki A, Yamamoto H, Noguchi S, Mizuno Y, Ozawa E (1994) Dissociation of the complex of dystrophin and its associated proteins into several unique groups by n‐octyl beta‐D‐glucoside. Eur J Biochem 222: 1055–1061. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES