Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(4):465–474. doi: 10.1111/j.1750-3639.2001.tb00415.x

Human Herpesvirus Latency

Randall J Cohrs 1,, Donald H Gilden 1,2
PMCID: PMC8098588  PMID: 11556692

Abstract

Herpesviruses are among the most successful human pathogens. In healthy individuals, primary infection is most often inapparent. After primary infection, the virus becomes latent in ganglia or blood mononuclear cells. Three major subfamilies of herpesviruses have been identified based on similar growth characteristics, genomic structure, and tissue predilection. Each herpesvirus has evolved its own unique ecological niche within the host that allows the maintenance of latency over the life of the individual (e.g. the adaptation to specific cell types in establishing latent infection and the mechanisms, including expression of different sets of genes, by which the virus remains latent). Neurotropic alpha‐herpesviruses become latent in dorsal root ganglia and reactivate to produce epidermal ulceration, either localized (herpes simplex types 1 and 2) or spread over several dermatomes (varicalla‐zoster virus). Human cytomegalovirus, the prototype beta‐herpesvirus, establishes latency in bone marrow‐derived myeloid progenitor cells. Reactivation of latent virus is especially serious in transplant recipients and AIDS patients. Lymphotropic gammaher‐pesviruses (Epstein‐Barr virus) reside latent in resting B cells and reactivate to produce various neurologic complications. This review highlights the alphaherpesvirus, specifically herpes simplex virus type 1 and varicella‐zoster virus, and describes the characteristics of latent infection.

Full Text

The Full Text of this article is available as a PDF (52.4 KB).

References

  • 1. Annunziato P, LaRussa P, Lee P, Steinberg S, Lungu O, Gershon AA, Silverstein S (1998) Evidence of latent varicella‐zoster virus in rat dorsal root ganglia. J Infect Dis 178 (Suppl 1): S48–S51. [DOI] [PubMed] [Google Scholar]
  • 2. Baringer JR (1974) Recovery of herpes simplex virus from human sacral ganglions. N Eng J Med 291: 828–830. [DOI] [PubMed] [Google Scholar]
  • 3. Bennett JL, Mahalingam R, Wellish MC, Gilden DH (1996) Epstein‐Barr virus—associated acute autonomic neuropathy. Ann Neurol 40: 453–455. [DOI] [PubMed] [Google Scholar]
  • 4. Block TM, Hill JM (1997) The latency associated transcripts (LAT) of herpes simplex virus: still no end in sight. J Neurovirol 3: 313–321. [DOI] [PubMed] [Google Scholar]
  • 5. Bratanich AC, Hanson ND, Jones CJ (1992) The latency‐related gene of bovine herpesvirus 1 inhibits the activity of immediate‐early transcription unit 1. Virology 191: 988–991. [DOI] [PubMed] [Google Scholar]
  • 6. Britt WJ, Alford CA (1996) Cytomegalovirus In: Fields Virology, 3rd Edition, Fields BN, Knipe DM, Howley PM, Chapter 77, pp. 2493–2523, Lippincott‐Raven: Philadelphia , New York . [Google Scholar]
  • 7. Clarke P, Beer T, Cohrs R, Gilden DH (1995) Configuration of latent varicella‐zoster virus DNA. J Virol 69: 8151–8154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Coffin RS, Howard MK, Latchman DS (1995) Altered dinucleotide content within the latently transcribed regions of the DNA of alpha herpes viruses—implications for latent RNA expression and DNA structure. Virology 209: 358–365. [DOI] [PubMed] [Google Scholar]
  • 9. Cohen JI (2000) Epstein‐Barr virus infection. N Engl J Med 343: 481–492. [DOI] [PubMed] [Google Scholar]
  • 10. Cohrs R, Mahalingam R, Dueland AN, Wolf W, Wellish M, Gilden DH (1992) Restricted transcription of varicella‐zoster virus in latently infected human trigeminal and thoracic ganglia. J Infect Dis 166 Suppl 1: S24–S29. [DOI] [PubMed] [Google Scholar]
  • 11. Cohrs RJ, Barbour M, Gilden DH (1996) Varicella‐zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol 70: 2789–2796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Cohrs RJ, Randall J, Smith J, Gilden DH, Dabrowski C, van Der KH , Tal‐Singer R (2000) Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella‐zoster virus nucleic acids using realtime PCR. J Virol 74: 11464–11471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Cohrs RJ, Srock K, Barbour MB, Owens G, Mahalingam R, Devlin ME, Wellish M, Gilden DH (1994) Varicella‐zoster virus (VZV) transcription during latency in human ganglia: construction of a cDNA library from latently infected human trigeminal ganglia and detection of a VZV transcript. J Virol 68: 7900–7908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Croen KD, Ostrove JM, Dragovic LJ, Smialek JE, Straus SE (1987) Latent herpes simplex virus in human trigeminal ganglia. Detection of an immediate early gene ‘antisense’ transcript by in situ hybridization. N Engl J Med 317: 1427–1432. [DOI] [PubMed] [Google Scholar]
  • 15. Croen KD, Ostrove JM, Dragovic L, Straus SE (1988) Patterns of gene expression and sites of latency in human nerve ganglia are different for varicella‐zoster virus and herpes simplex virus. Proc Natl Acad Sci USA 85: 9773–9777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Croen KD, Ostrove JM, Dragovic L, Straus SE (1991) Characterization of herpes simplex virus type 2 latency‐associated transcription in human sacral ganglia and in cell culture. J Infect Dis 163: 23–28. [DOI] [PubMed] [Google Scholar]
  • 17. Croen KD, Straus SE (1991) Varicella‐zoster virus latency. Ann Rev Microbiol 45: 265–282. [DOI] [PubMed] [Google Scholar]
  • 18. Davison AJ (1991) Varicella‐zoster virus. The Fourteenth Fleming Lecture. J Gen Virol 72: 475–486. [DOI] [PubMed] [Google Scholar]
  • 19. Davison AJ, Scott JE (1986) The complete DNA sequence of varicella‐zoster virus. J Gen Virol 67: 1759–1816. [DOI] [PubMed] [Google Scholar]
  • 20. Debrus S, Sadzot‐Delvaux C, Nikkels AF, Piette J, Rentier B (1995) Varicella‐zoster virus gene 63 encodes an immediate‐early protein that is abundantly expressed during latency. J Virol 69: 3240–3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Devi‐Rao GB, Aguilar JS, Rice MK, Garza HH Jr, Bloom DC, Hill JM, Wagner EK (1997) Herpes simplex virus genome replication and transcription during induced reactivation in the rabbit eye. J Virol 71: 7039–7047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Doerig C, Pizer LI, Wilcox CL (1991) An antigen encoded by the latency‐associated transcript in neuronal cell cultures latently infected with herpes simplex virus type 1. J Virol 65: 2724–2727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Drolet BS, Perng GC, Cohen J, Slanina SM, Yukht A, Nesburn AB, Wechsler SL (1998) The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein. Virology 242: 221–232. [DOI] [PubMed] [Google Scholar]
  • 24. Dueland AN, Martin JR, Devlin ME, Wellish M, Mahalingam R, Cohrs R, Soike KF, Gilden DH (1992) Acute simian varicella infection: Clinical, laboratory, pathologic, and virologic features. Lab Invest 66: 762–773. [PubMed] [Google Scholar]
  • 25. Dueland AN, Ranneberg‐Nilsen T, Degre M (1995) Detection of latent varicella zoster virus DNA and human gene sequences in human trigeminal ganglia by in situ amplification combined with in situ hybridization. Arch Virol 140: 2055–2066. [DOI] [PubMed] [Google Scholar]
  • 26. Efstathiou S, Minson AC, Field HJ, Anderson JR, Wildy P (1986) Detection of herpes simplex virus‐specific DNA sequences in latently infected mice and in humans. J Virol 57: 446–455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Fareed MU, Spivack JG (1994) Two open reading frames (ORF1 and ORF2) within the 2.0‐kilobase latency‐ associated transcript of herpes simplex virus type 1 are not essential for reactivation from latency. J Virol 68: 8071–8081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Farrell MJ, Dobson AT, Feldman LT (1991) Herpes simplex virus latency‐associated transcript is a stable intron. Proc Natl Acad Sci USA 88: 790–794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Gilden DH, Gesser R, Smith J, Wellish M, LaGuardia JJ, Cohrs RJ, Mahalingam R (2001) Presence of VZV and HSV‐1 DNA in human nodose and celiac ganglia. Virus Genes (in press). [DOI] [PubMed] [Google Scholar]
  • 30. Gilden DH, Kleinschmidt‐DeMasters BK, LaGuardia JJ, Mahalingam R, Cohrs RJ (2000) Neurologic complications of the reactivation of varicella‐zoster virus. N Engl J Med 342: 635–645. [DOI] [PubMed] [Google Scholar]
  • 31. Gilden DH, Rozenman Y, Murray R, Devlin M, Vafai A (1987) Detection of varicella‐zoster virus nucleic acid in neurons of normal human thoracic ganglia. Ann Neurol 22: 377–380. [DOI] [PubMed] [Google Scholar]
  • 32. Gilden DH, Vafai A, Shtram Y, Becker Y, Devlin M, Wellish M (1983) Varicella‐zoster virus DNA in human sensory ganglia. Nature 306: 478–480. [DOI] [PubMed] [Google Scholar]
  • 33. Goldenberg D, Mador N, Ball MJ, Panet A, Steiner I (1997) The abundant latency‐associated transcripts of herpes simplex virus type 1 are bound to polyribosomes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia. J Virol 71: 2897–2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Gordon YJ, Johnson B, Romanowski E, Araullo‐Cruz T (1988) RNA complementary to herpes simplex virus type 1 ICP0 gene demonstrated in neurons of human trigeminal ganglia. J Virol 62: 1832–1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Gotlieb‐Stematsky T, Arlazoroff A (1989) Epstein‐Barr virus In: Handbook of Clinical Neurology, McKendall RR (ed.), Volume 12, pp. 249–261, Elsevier Science Publishers BV: Amsterdam . [Google Scholar]
  • 36. Gray WL, Starnes B, White MW, Mahalingam R (2001) The DNA sequence of the simian varicella virus genome. Virology 284: 123–130. [DOI] [PubMed] [Google Scholar]
  • 37. Hayakawa Y, Hyman RW (1987) Isomerization of the UL region of varicella‐zoster virus DNA. Virus Res 8: 25–31. [DOI] [PubMed] [Google Scholar]
  • 38. Hyman RW, Ecker JR, Tenser RB (1983) Varicella‐zoster virus RNA in human trigeminal ganglia. Lancet 2: 814–816. [DOI] [PubMed] [Google Scholar]
  • 39. Inman M, Perng GC, Henderson G, Ghiasi H, Nesburn AB, Wechsler SL, Jones C (2001) Region of herpes simplex virus type 1 latency‐associated transcript sufficient for wild‐type spontaneous reactivation promotes cell survival in tissue culture. J Virol 75: 3636–3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Itoyama Y, Sekizawa T, Openshaw H, Kogure K, Kuroiwa Y (1984) Immunocytochemical localization of herpes simplex virus antigen in the trigeminal ganglia of experimentally infected mice. J Neurol Sci 66: 67–75. [DOI] [PubMed] [Google Scholar]
  • 41. Javier RT, Stevens JG, Dissette VB, Wagner EK (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166: 254–257. [DOI] [PubMed] [Google Scholar]
  • 42. Joklik WK (1980) The structure, components, and classification of viruses In: Principles of Animal Virology, Joklik WK (ed.), PP. 16–61, Appleton‐Century‐Crofts: New York . [Google Scholar]
  • 43. Kennedy PG, Grinfeld E, Gow JW (1998) Latent varicella‐zoster virus is located predominantly in neurons in human trigeminal ganglia. Proc Natl Acad Sci USA 95: 4658–4662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Kennedy PG, Grinfeld E, Gow JW (1999) Latent varicella‐zoster virus in human dorsal root ganglia. Virology 258: 451–454. [DOI] [PubMed] [Google Scholar]
  • 45. Kennedy PG, Steiner I (1994) A molecular and cellular model to explain the differences in reactivation from latency by herpes simplex and varicella‐zoster viruses. Neuropathol Appl Neurobiol 20: 368–374. [DOI] [PubMed] [Google Scholar]
  • 46. Kinchington PR, Reinhold WC, Casey TA, Straus SE, Hay J, Ruyechan WT (1985) Inversion and circularization of the varicella‐zoster virus genome. J Virol 56: 194–200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. King W, Thomas‐Powell AL, Raab‐Traub N, Hawke M, Kieff E (1980) Epstein‐Barr virus RNA. V. Viral RNA in a restringently infected, growth‐transformed cell line. J Virol 36: 506–518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Kutish G, Mainprize T, Rock D (1990) Characterization of the latency‐related transcriptionally active region of the bovine herpesvirus 1 genome. J Virol 64: 5730–5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. LaGuardia JJ, Cohrs RJ, Gilden DH (1999) Prevalence of varicella‐zoster virus DNA in dissociated human trigeminal ganglion neurons and nonneuronal cells. J Virol 73: 8571–8577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. LaGuardia JJ, Cohrs RJ, Gilden DH (2000) Numbers of neurons and non‐neuronal cells in human trigeminal ganglia. Neurol Res 22: 565–566. [DOI] [PubMed] [Google Scholar]
  • 51. Leib DA, Bogard CL, Kosz‐Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA (1989) A deletion mutant of the latency‐associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63: 2893–2900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Lekstrom‐Himes JA, Pesnicak L, Straus SE (1998) The quantity of latent viral DNA correlates with the relative rates at which herpes simplex virus types 1 and 2 cause recurrent genital herpes outbreaks. J Virol 72: 2760–2764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Lungu O, Annunziato PW, Gershon A, Staugaitis SM, Josefson D, LaRussa P, Silverstein SJ (1995) Reactivated and latent varicella‐zoster virus in human dorsal root ganglia. Proc Natl Acad Sci USA 92: 10980–10984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Lungu O, Panagiotidis CA, Annunziato PW, Gershon AA, Silverstein SJ (1998) Aberrant intracellular localization of varicella‐zoster virus regulatory proteins during latency. Proc Natl Acad Sci USA 95: 7080–7085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Mahalingam R, Wellish M, Cohrs R, Debrus S, Piette J, Rentier B, Gilden DH (1996) Expression of protein encoded by varicella‐zoster virus open reading frame 63 in latently infected human ganglionic neurons. Proc Natl Acad Sci USA 93: 2122–2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Mahalingam R, Wellish M, Lederer D, Forghani B, Cohrs R, Gilden D (1993) Quantitation of latent varicella‐zoster virus DNA in human trigeminal ganglia by polymerase chain reaction. J Virol 67: 2381–2384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Meier JL, Holman RP, Croen KD, Smialek JE, Straus SE (1993) Varicella‐zoster virus transcription in human trigeminal ganglia. Virology 193: 193–200. [DOI] [PubMed] [Google Scholar]
  • 58. Meier JL, Straus SE (1992) Comparative biology of latent varicella‐zoster virus and herpes simplex virus infections. J Infect Dis 166 (Suppl 1): S13–S23. [DOI] [PubMed] [Google Scholar]
  • 59. Mellerick DM, Fraser NW (1987) Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158: 265–275. [DOI] [PubMed] [Google Scholar]
  • 60. Millhouse S, Wigdahl B (2000) Molecular circuitry regulating herpes simplex virus type 1 latency in neurons. J Neurovirol 6: 6–24. [DOI] [PubMed] [Google Scholar]
  • 61. Mitchell WJ, Deshmane SL, Dolan A, McGeoch DJ, Fraser NW (1990) Characterization of herpes simplex virus type 2 transcription during latent infection of mouse trigeminal ganglia. J Virol 64: 5342–5348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Mitchell WJ, Lirette RP, Fraser NW (1990) Mapping of low abundance latency‐associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J Gen Virol 71: 125–132. [DOI] [PubMed] [Google Scholar]
  • 63. Mocarski ES, Roizman B (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31: 89–97. [DOI] [PubMed] [Google Scholar]
  • 64. Moriya A, Yoshiki A, Kita M, Fushiki S, Imanishi J (1994) Heat shock‐induced reactivation of herpes simplex virus type 1 in latently infected mouse trigeminal ganglion cells in dissociated culture. Arch Virol 135: 419–425. [DOI] [PubMed] [Google Scholar]
  • 65. Perng GC, Dunkel EC, Geary PA, Slanina SM, Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL (1994) The latency‐associated transcript gene of herpes simplex virus type 1 (HSV‐1) is required for efficient in vivo spontaneous reactivation of HSV‐1 from latency. J Virol 68: 8045–8055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. Perng GC, Jones C, Ciacci‐Zanella J, Stone M, Henderson G, Yukht A, Slanina SM, Hofman FM, Ghiasi H, Nesburn AB, Wechsler SL (2000) Virus‐induced neuronal apoptosis blocked by the herpes simplex virus latency‐associated transcript. Science 287: 1500–1503. [DOI] [PubMed] [Google Scholar]
  • 67. Pevenstein SR, Williams RK, McChesney D, Mont EK, Smialek JE, Straus SE (1999) Quantitation of latent varicella‐zoster virus and herpes simplex virus genomes in human trigeminal ganglia. J Virol 73: 10514–10518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Priola SA, Gustafson DP, Wagner EK, Stevens JG (1990) A major portion of the latent pseudorabies virus genome is transcribed in trigeminal ganglia of pigs. J Virol 64: 4755–4760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Rock DL, Fraser NW (1985) Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. J Virol 55: 849–852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Rock DL, Nesburn AB, Ghiasi H, Ong J, Lewis TL, Lokensgard JR, Wechsler SL (1987) Detection of latency‐related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J Virol 61: 3820–3826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Roizman B (1978) Provisional classification of herpesviruses In: Oncogenesis and Herpesviruses III, de The B, Henle W, Rapp R (eds.), PP. 1079–1082, International Agency for Research on Cancer: Lyhon , France . [Google Scholar]
  • 72. Rootman DS, Haruta Y, Hill JM (1990) Reactivation of HSV‐1 in primates by transcorneal iontophoresis of adrenergic agents. Invest Ophthalmol Vis Sci 31: 597–600. [PubMed] [Google Scholar]
  • 73. Sadzot‐Delvaux C, Merville‐Louis MP, Delree P, Marc P, Piette J, Moonen G, Rentier B (1990) An in vivo model of varicella‐zoster virus latent infection of dorsal root ganglia. J Neurosci Res 26: 83–89. [DOI] [PubMed] [Google Scholar]
  • 74. Sawtell NM (1997) Comprehensive quantification of herpes simplex virus latency at the single‐cell level. J Virol 71: 5423–5431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Sawtell NM (1998) The probability of in vivo reactivation of herpes simplex virus type 1 increases with the number of latently infected neurons in the ganglia. J Virol 72: 6888–6892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76. Shimeld C, Efstathiou S, Hill T (2001) Tracking the spread of a lacZ‐tagged herpes simplex virus type 1 between the eye and the nervous system of the mouse: Comparison of primary and recurrent infection. J Virol 75: 5252–5262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77. Slobedman B, Efstathiou S, Simmons A (1994) Quantitative analysis of herpes simplex virus DNA and transcriptional activity in ganglia of mice latently infected with wild‐type and thymidine kinase‐deficient viral strains. J Gen Virol 75: 2469–2474. [DOI] [PubMed] [Google Scholar]
  • 78. Steiner I (1996) Human herpes viruses latent infection in the nervous system. Immunol Rev 152: 157–173. [DOI] [PubMed] [Google Scholar]
  • 79. Stevens JG, Cook ML (1971) Latent herpes simplex virus in spinal ganglia of mice. Science 173: 843–845. [DOI] [PubMed] [Google Scholar]
  • 80. Stevens JG, Haarr L, Porter DD, Cook ML, Wagner EK (1988) Prominence of the herpes simplex virus latency‐associated transcript in trigeminal ganglia from seropositive humans. J Infect Dis 158: 117–123. [DOI] [PubMed] [Google Scholar]
  • 81. Stevens JG, Wagner EK, Devi‐Rao GB, Cook ML, Feldman LT (1987) RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235: 1056–1059. [DOI] [PubMed] [Google Scholar]
  • 82. Straus SE, Owens J, Ruyechan WT, Takiff HE, Casey TA, Vande Woude GF, Hay J (1982) Molecular cloning and physical mapping of varicella‐zoster virus DNA. Proc Natl Acad Sci USA 79: 993–997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Stroop WG, Schaefer DC (1987) Herpes simplex virus, type 1 invasion of the rabbit and mouse nervous systems revealed by in situ hybridization. Acta Neuropathol (Berl) 74: 124–132. [DOI] [PubMed] [Google Scholar]
  • 84. Thomas SK, Gough G, Latchman DS, Coffin RS (1999) Herpes simplex virus latency‐associated transcript encodes a protein which greatly enhances virus growth, can compensate for deficiencies in immediate‐early gene expression, and is likely to function during reactivation from virus latency. J Virol 73: 6618–6625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Thompson RL, Sawtell NM (2000) Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74: 965–974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Valyi‐Nagy T, Deshmane S, Dillner A, Fraser NW (1991) Induction of cellular transcription factors in trigeminal ganglia of mice by corneal scarification, herpes simplex virus type 1 infection, and explantation of trigeminal ganglia. J Virol 65: 4142–4152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Wagner EK (1994) The herpes simplex type 1 virus latency gene In: Frontiers of Virology, Becker Y, Darai G (eds.), Volume 3, pp. 210–221, Springer‐Verlag: Heidelberg . [Google Scholar]
  • 88. Wagner EK, Bloom DC (1997) Experimental investigation of herpes simplex virus latency. Clin Microbiol Rev 10: 419–443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Wagner EK, Devi‐Rao G, Feldman LT, Dobson AT, Zhang YF, Flanagan WM, Stevens JG (1988) Physical characterization of the herpes simplex virus latency‐ associated transcript in neurons. J Virol 62: 1194–1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Whitley RJ (1996) Herpes simplex viruses In: Fields Virology, 3rd Edition, Fields BN, Knipe DM, Howley PM (eds.), Chapter 73, pp. 2297–2342, Lippincott‐Raven: Philadelphia , New York . [Google Scholar]
  • 91. Zabolotny JM, Krummenacher C, Fraser NW (1997) The herpes simplex virus type 1 2.0‐kilobase latency‐associated transcript is a stable intron which branches at a guanosine. J Virol 71: 4199–4208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92. Zwaagstra JC, Ghiasi H, Slanina SM, Nesburn AB, Wheatley SC, Lillycrop K, Wood J, Latchman DS, Patel K, Wechsler SL (1990) Activity of herpes simplex virus type 1 latency‐associated transcript (LAT) promoter in neuron‐derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64: 5019–5028. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES