Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;11(3):328–341. doi: 10.1111/j.1750-3639.2001.tb00403.x

Oncogene Activation in Pituitary Tumors

Run Yu 1, Shlomo Melmed 1,
PMCID: PMC8098594  PMID: 11414475

Abstract

Pituitary tumors constitute 10% of intracranial neoplasms and are mostly benign, monoclonal adenomas derived from single mutant cells. Pituitary oncogenes have been intensively studied and three of them, gsp, ccnd1, and PTTG are abundant in significant numbers of cases. gsp is present in ∼40% of Caucasian patients with GH‐secreting tumors and results from a mutated, constitutively active α sub‐unit of Gs protein. Persistent activation of the cAMP‐PKA‐CREB pathway may lead to uncontrolled cell proliferation and GH secretion. ccnd1 is overexpressed cyclin D1, and cyclin D1 gene is amplified in some pituitary tumors. PTTG is expressed in most pituitary tumors. PTTG is localized to both the nucleus and cytoplasm and interacts with several protein partners. At least three tumorigenesis mechanisms are proposed for human PTTG. 1) PTTG and FGF form a positive feedback loop and stimulate tumor vascularity. 2) PTTG transactivates c‐myc or other pro‐proliferation genes. 3) PTTG overexpression causes aneuploidy. PTTG expression activates p53 and causes p53‐dependent and ‐independent apoptosis. Due to lack of functional human pituitary cell cultures and appropriate animal models for pituitary tumors, many of the results reviewed here are obtained from heterologous systems.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Supported by NIH grant CA75979, the Doris Factor Molecular Endocrinology Laboratory, and the Annenberg Foundation

References

  • 1. Alexander JM, Biller BM, Bikkal H, Zervas NT, Arnold A, Klibanski A (1990) Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 86: 336–840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19: 798–827. [DOI] [PubMed] [Google Scholar]
  • 3. Bertherat J, Chanson P, Montminy M (1995) The cyclic adenosine 3′,5′‐monophosphate‐responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol Endocrinol 9: 777–783. [DOI] [PubMed] [Google Scholar]
  • 4. Boggild MD, Jenkinson S, Pistorello M, Boscaro M, Scanarini M, McTernan P, Perrett CW, Thakker RV, Clayton RN (1994) Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab 78: 387–392. [DOI] [PubMed] [Google Scholar]
  • 5. Chen L. Puri R. Lefkowitz EJ. Kakar SS (2000) Identification of the human pituitary tumor transforming gene (hPTTG) family: molecular structure, expression, and chromosomal localization. Gene 248: 41–50. [DOI] [PubMed] [Google Scholar]
  • 6. Chien W, Pei L (2000) A novel binding factor facilitates nuclear translocation and transcriptional activation function of the pituitary tumor‐transforming gene product. J Biol Chem 275: 19422–19427. [DOI] [PubMed] [Google Scholar]
  • 7. Clayton RN, Perfer M, Wass JAH, Vanderpump M, Karidamou E, Simpson D, Farrel WE (1999) Human pituitary tumors have multiclonal Origins. 81st Annual Meeting of Endocrine Society, San Diego.
  • 8. Cooper GM (1995) Oncogenes, 2nd Edition, Jones and Bartlett: Boston . [Google Scholar]
  • 9. Daniely M, Aviram A, Adams EF, Buchfelder M, Barkai G, Fahlbusch R, Goldman B, Friedman E (1998) Comparative genomic hybridization analysis of nonfunctioning pituitary tumors. J Clini Endocrinol Metab 83: 1801–1805. [DOI] [PubMed] [Google Scholar]
  • 10. Debbas M, White E (1993) Wild‐type p53 mediates apoptosis by E1A, which is inhibited by E1 B. Genes Dev 7 (4): 546–554. [DOI] [PubMed] [Google Scholar]
  • 11. Dominguez A, Ramos‐Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M, Pintor‐Toro JA (1998) hpttg, a human homologue of rat pttg, is overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 17: 2187–93. [DOI] [PubMed] [Google Scholar]
  • 12. Farrell WE, Clayton RN (2000) Molecular pathogenesis of pituitary tumors. Front Neuroendocrinol 21: 174–198. [DOI] [PubMed] [Google Scholar]
  • 13. Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M (1996) Cut2 proteolysis required for sisterchromatid seperation in fission yeast. Nature 381: 438–441. [DOI] [PubMed] [Google Scholar]
  • 14. Harada K, Nishizaki T, Ozaki S, Kubota H, Harada K, Okamura T, Ito H, Sasaki K (1999) Cytogenetic alterations in pituitary adenomas detected by comparative genomic hybridization. Cancer Genet Cytogenet 112: 38–41. [DOI] [PubMed] [Google Scholar]
  • 15. Harbour JW, Dean DC (2000) Rb function in cell‐cycle regulation and apoptosis. Nat Cell Biol 2: E65–67. [DOI] [PubMed] [Google Scholar]
  • 16. Heaney AP, Horwitz GA, Wang Z, Singson R, Melmed S (1999) Early involvement of estrogen‐induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 5: 1317–21. [DOI] [PubMed] [Google Scholar]
  • 17. Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M, Melmed, S (2000) Pituitary tumor transforming gene: a novel marker in colorectal tumors. Lancet 355: 712–715. [DOI] [PubMed] [Google Scholar]
  • 18. Heaney AP, Melmed S (2000) New pituitary oncogenes. Endocrine-Related Cancer 7: 3–15. [DOI] [PubMed] [Google Scholar]
  • 19. Hermaking H, Eick D (1994) Mediation of c‐myc induced apoptosis by p53. Science 265: 2091–2093. [DOI] [PubMed] [Google Scholar]
  • 20. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S (1990) Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71: 1427–1433. [DOI] [PubMed] [Google Scholar]
  • 21. Herman V, Drazin NZ, Gonsky R, Melmed S (1993) Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77: 50–55. [DOI] [PubMed] [Google Scholar]
  • 22. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN, Farrell WE (1999) Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumors. Clin Cancer Res 5: 2133–2139. [PubMed] [Google Scholar]
  • 23. Hosoi E, Yokogoshi Y, Hosoi E, Horie H, Sano T, Yamada S, Saito S (1993) Analysis of the Gs alpha gene in growth hormone‐secreting pituitary adenomas by the polymerase chain reaction‐direct sequencing method using paraffinembedded tissues. Acta Endocrinol 129: 301–306. [DOI] [PubMed] [Google Scholar]
  • 24. Hui AB, Pang JC, Ko CW, Ng HK (1999) Detection of chromosomal imbalances in growth hormone‐secreting pituitary tumors by comparative genomic hybridization. Hum Pathol 30: 1019–1023. [DOI] [PubMed] [Google Scholar]
  • 25. Hunter T, Pines P (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79: 573–582. [DOI] [PubMed] [Google Scholar]
  • 26. Imoto M, Doki Y, Jiang W, Han EK, Weinstein IB (1997) Effects of cyclin D1 overexpression on G1 progression‐related events. Exp Cell Res 236: 173–180. [DOI] [PubMed] [Google Scholar]
  • 27. Ishikawa H, Heaney AP, Yu R, Horwitz GA, Melmed S (2001) Human Pituitary Tumor‐Transforming Gene Induces Angiogenesis. J Clin Endocrinol Metab 86: 867–874. [DOI] [PubMed] [Google Scholar]
  • 28. Joensuu H, Klemi PJ (1988) DNA aneuploidy in adenomas of endocrine organs. Am J Pathol 132: 145–151. [PMC free article] [PubMed] [Google Scholar]
  • 29. Jugenburg M, Kovacs K, Stefaneanu L, Scheithauer BW (1995) Vasculature in nontumorous hypophyses, pituitary adenomas and carcinomas: a quantitative morphologic study. Endocr Pathol 6: 115–124. [DOI] [PubMed] [Google Scholar]
  • 30. Kakar SS (1999) Molecular cloning, genomic organization, and identification of the promoter for the human pituitary tumor transforming gene (PTTG). Gene 240(2): 317–324. [DOI] [PubMed] [Google Scholar]
  • 31. Karga HJ, Alexander JM, Hedley‐Whyte ET, Klibanski A, Jameson JL (1992) Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 74: 914–919. [DOI] [PubMed] [Google Scholar]
  • 32. Kouhara H, Hadari YR, Spivak‐Kroizman T, Schilling J, Bar‐Sagi D, Lax I, Schlessinger J (1997) A lipid‐anchored Grb2‐binding protein that links FGF‐receptor activation to the Ras/MAPK signaling pathway. Cell 89: 693–702. [DOI] [PubMed] [Google Scholar]
  • 33. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340: 692–696. [DOI] [PubMed] [Google Scholar]
  • 34. Landis CA, Harsh G, Lyons J, Davis RL, McCormick F, Bourne HR (1990) Clinical characteristics of acromegalic patients whose pituitary tumors contain mutant Gs protein. J Clin Endocrinol Metab 71: 1416–1420. [DOI] [PubMed] [Google Scholar]
  • 35. LaVallee TM, Prudovsky IA, McMahon GA, Hu X, Maciag T (1998) Activation of the MAP kinase pathway by FGF‐1 correlates with cell proliferation induction while activation of the Src pathway correlates with migration. J Cell Biol 141: 1647–1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323–331. [DOI] [PubMed] [Google Scholar]
  • 37. Li R, Sonik A, Stindl R, Rasnick D, Duesberg P (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci USA 97: 3236–3241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Ludecke DK, Beck‐Bornholdt HP, Saeger W, Schmidt W (1985) Tumour ploidy in DNA histograms of pituitary adenomas. Acta Neurochir 76: 18–22. [DOI] [PubMed] [Google Scholar]
  • 39. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR (1990) Two G protein oncogenes in human endocrine tumors. Science 249: 655–659. [DOI] [PubMed] [Google Scholar]
  • 40. Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA (1998) Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann Intern Med 129: 484–494. [DOI] [PubMed] [Google Scholar]
  • 41. Marx SJ, Agarwal SK, Kester MB, Heppner C, Kim YS, Skarulis MC, James LA, Goldsmith PK, Saggar SK, Park SY, Spiegel AM, Burns AL, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Emmert‐Buck MR, Guru SC, Manickam P, Crabtree J, Erdos MR, Collins FS, Chandrasekharappa SC (1999) Multiple endocrine neoplasia type 1: clinical and genetic features of the hereditary endocrine neoplasias. Recent Prog Horn Res 54: 397–438. [PubMed] [Google Scholar]
  • 42. McCabe, CJ (2000) Pituitary tumor transforming gene (pttg), basic fibroblast growth factor (fgf‐2) and vascular endothelial growth factor (vegf) expression in sporadic pituitary adenomas. 7th European workshop on pituitary disease, Oxford, UK.
  • 43. Melmed S (1994) Pituitary neoplasia. Endocrinol Metab Clinics N Am 23: 81–92. [PubMed] [Google Scholar]
  • 44. Melmed S (1998) Pituitary Function and Neoplasia In: Principles of molecular medicine, Jameson JL (eds.), Chapter 48, pp. 443–450, Humana Press: Totowa , NJ . [Google Scholar]
  • 45. Melmed S (1999) Pathogenesis of pituitary tumors. Endocrinol Metab Clin North Am 28: 1–12. [DOI] [PubMed] [Google Scholar]
  • 46. Metzger AK, Mohapatra G, Minn YA, Bollen AW, Lamborn K, Waldman FM, Wilson CB, Feuerstein BG (1999) Multiple genetic aberrations including evidence of chromosome 11q13 rearrangement detected in pituitary adenomas by comparative genomic hybridization. J Neurosurg 90: 306–314. [DOI] [PubMed] [Google Scholar]
  • 47. Motokura T, Arnold A (1993) Cyclin D and oncogenesis. Curr Opin Genet Dev 3: 5–10. [DOI] [PubMed] [Google Scholar]
  • 48. Nevins JR, Leone G, DeGregori J, Jakoi L (1997) Role of the Rb/E2F pathway in cell growth control. J Cell Physiol 173: 233–236. [DOI] [PubMed] [Google Scholar]
  • 49. Nigro S, Geido E, Infusini E, Orecchia R, Giaretti W (1996) Transfection of human mutated K‐ras in mouse NIH‐3T3 cells is associated with increased cloning efficiency and DNA aneuploidization. Int J Cancer 67: 871–875. [DOI] [PubMed] [Google Scholar]
  • 50. Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79: 547–550. [DOI] [PubMed] [Google Scholar]
  • 51. Pei L, Melmed S, Scheithauer B, Kovacs K, Prager D (1994) H‐ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 78: 842–846. [DOI] [PubMed] [Google Scholar]
  • 52. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WF, Prager D (1995) Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 55: 1613–1616. [PubMed] [Google Scholar]
  • 53. Pei L, Melmed S (1996) Oncogenes and tumor suppressor genes in pituitary tumorigenesis. Front Horn Res 20: 122–136. [Google Scholar]
  • 54. Pei L, Melmed S (1997) Isolation and characterization of a pituitary tumor transforming gene (PTTG). Mol Endocrinol 11: 433–441. [DOI] [PubMed] [Google Scholar]
  • 55. Pei L (1998) Genomic organization and identification of an enhancer element containing binding sites for multiple proteins in rat pituitary tumor‐transforming gene. J Biol Chem 273: 5219–5225. [DOI] [PubMed] [Google Scholar]
  • 56. Pei L (2000) Activation of mitogen‐activated protein kinase cascade regulates pituitary tumor‐transforming gene transactivation function. J Biol Chem 275: 31191–31198. [DOI] [PubMed] [Google Scholar]
  • 57. Pei L (2001) Identification of c‐Myc as a down‐stream target for pituitary tumor‐transforming gene. J Biol Chem 276: 8484–8491. [DOI] [PubMed] [Google Scholar]
  • 58. Prezant TR, Levine J, Melmed S (1998) Molecular characterization of the men1 tumor suppressor gene in sporadic pituitary tumors. J Clin Endocrinol Metab 83: 1388–1391. [DOI] [PubMed] [Google Scholar]
  • 59. Prezant TR, Kadioglu P, Melmed S (1999) An intronless homolog of human proto‐oncogene hPTTG is expressed in pituitary tumors: evidence for hPTTG family. J Clin Endocrinol Metab 84: 1149–1152. [DOI] [PubMed] [Google Scholar]
  • 60. Ramos‐Morales F, Dominguez A, Romero F, Luna R, Multon MC, Pintor‐Toro JA, Tortolero M (2000) Cell cycle regulated expression and phosphorylation of hpttg protooncogene product. Oncogene 19: 403–409. [DOI] [PubMed] [Google Scholar]
  • 61. Resnitzky D (1997) Ectopic expression of cyclin D1 but not cyclin E induces anchorage‐independent cell cycle progression. Mol Cell Biol 17: 5640–5647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Saez C, Japon MA, Ramos‐Morales F, Romero F, Segura DI, Tortolero M, Pintor‐Toro JA (1999) hpttg is overexpressed in pituitary adenomas and other primary epithelial neoplasias. Oncogene 18: 5473–5476. [DOI] [PubMed] [Google Scholar]
  • 63. Sakamuro D, Eviner V, Elliott KJ, Showe L, White E, Prendergast GC (1995) c‐Myc induces apoptosis in epithelial cells by both p53‐dependent and p53‐independent mechanisms. Oncogene 11: 2411–2418. [PubMed] [Google Scholar]
  • 64. Sandberg AA, Turc‐Carel C, Gemmill RM (1988) Chromosomes in solid tumors and beyond. Cancer Res 48: 1049–1059. [PubMed] [Google Scholar]
  • 65. Schechter J (1972) Ultrastructural changes in the capillary bed of human pituitary tumours. Am J Pathol 67: 109–126. [PMC free article] [PubMed] [Google Scholar]
  • 66. Sherr CJ (1995) D‐type cyclins. Trends Biochem Sci 20: 187–190. [DOI] [PubMed] [Google Scholar]
  • 67. Shimon I, Melmed S (1997) Genetic basis of endocrine disease: pituitary tumor pathogenesis. J Clin Endocrinol Metab 82: 1675–1681. [DOI] [PubMed] [Google Scholar]
  • 68. Suhardja AS, Kovacs KT, Rutka JT (1999) Molecular pathogenesis of pituitary adenomas: a review. Acta Neurochir 141: 729–736. [DOI] [PubMed] [Google Scholar]
  • 69. Teodoro JG, Shore GC, Branton PE (1995) Adenovirus E1A proteins induce apoptosis by both p53‐dependent and p53‐independent mechanisms. Oncogene 11: 467–474. [PubMed] [Google Scholar]
  • 70. Thompson EB (1998) The many roles of c‐Myc in apoptosis. Annu Rev Physiol 60: 575–600. [DOI] [PubMed] [Google Scholar]
  • 71. Tordjman K, Stern N, Ouaknine G, Yossiphov Y, Razon N, Nordenskjold M, Friedman E (1993) Activating mutations of the Gs alpha‐gene in nonfunctioning pituitary tumors. J Clin Endocrinol Metab 77: 765–769. [DOI] [PubMed] [Google Scholar]
  • 72. Trudel M, Lanoix J, Barisoni L, Blouin MJ, Desforges M, L'Italien C, D'Agati V (1997) C‐myc‐induced apoptosis in polycystic kidney disease is Bcl‐2 and p53 independent. J Exp Med 186: 1873–1884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA (2000) Angiogenesis in pituitary adenomas and the normal pituitary gland. J Clin Endocrinol Metab 85: 1159–1162. [DOI] [PubMed] [Google Scholar]
  • 74. U HS. Kelley P. Lee WH (1988) Abnormalities of the human growth hormone gene and protooncogenes in some human pituitary adenomas. Mol Endocrinol 2: 85–89. [DOI] [PubMed] [Google Scholar]
  • 75. Wang Z, Melmed S (2000) Characterization of the murine pituitary tumor transforming gene (PTTG) and its promoter. Endocrinology 141: 763–771. [DOI] [PubMed] [Google Scholar]
  • 76. Wang Z, Melmed S (2000) Pituitary tumor transforming gene (PTTG) transforming and transactivation activity. J Biol Chem 275: 7459–7461. [DOI] [PubMed] [Google Scholar]
  • 77. Weiner RL, Elias KA, Monnet F (1995) In: Prolactin. Basic and clinical correlates, Macleod RM, Thorner MO, Scapagnini U (eds.), pp. 641–653, Liviana press: Padova , Italy . [Google Scholar]
  • 78. Williamson EA, Daniels M, Foster S, Kelly WF, Kendall‐Taylor P, Harris PE (1994) Gs alpha and Gi2 alpha mutations in clinically non‐functioning pituitary tumours. Clin Endocrinol 41: 815–820. [DOI] [PubMed] [Google Scholar]
  • 79. Williamson EA, Ince PG, Harrison D, Kendall‐Taylor P, Harris PE (1995) G‐protein mutations in human pituitary adrenocorticotrophic hormone‐secreting adenomas. Eur J Clin Invest 25: 128–131. [DOI] [PubMed] [Google Scholar]
  • 80. Woloschak M, Roberts JL, Post K (1994) c‐myc, c‐fos, and c‐myb gene expression in human pituitary adenomas. J Clin Endocrinol Metab 79: 253–257. [DOI] [PubMed] [Google Scholar]
  • 81. Yin XY, Grove L, Datta NS, Long MW, Prochownik EV (1999) C‐myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene 18: 1177–1184. [DOI] [PubMed] [Google Scholar]
  • 82. Yoshimoto K, Iwahana H, Fukuda A, Sano T, Itakura M (1993) Rare mutations of the Gs alpha subunit gene in human endocrine tumors. Mutation detection by polymerase chain reaction‐primer‐introduced restriction analysis. Cancer 72: 1386–1393. [DOI] [PubMed] [Google Scholar]
  • 83. Yu R, Ren SG, Horwitz GA, Wang Z, Melmed S (2000) Pituitary tumor transforming gene (PTTG) regulates placental JEG‐3 cell division and survival: evidence from live cell imaging. Mol Endocrinol 14: 1137–1146. [DOI] [PubMed] [Google Scholar]
  • 84. Yu R, Heaney AP, Lu W, Chen J, Melmed S (2000) Pituitary tumor transforming gene causes aneuploidy and p53‐dependent and p53‐independent apoptosis. J Biol Chem 275: 36502–36505. [DOI] [PubMed] [Google Scholar]
  • 85. Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221: 227–236. [DOI] [PubMed] [Google Scholar]
  • 86. Zachary I, Masters SB, Bourne HR (1990) Increased mitogenic responsiveness of Swiss 3T3 cells expressing constitutively active Gs alpha. Biochem Biophys Res Commun 168: 1184–1193. [DOI] [PubMed] [Google Scholar]
  • 87. Zhang X, Horwitz GA, Prezant TR, Valentini A, Nakashima M, Bronstein MD, Melmed S (1999) Structure, expression, and function of human pituitary tumor‐transforming gene (PTTG). Mol Endocrinol 13: 156–166. [DOI] [PubMed] [Google Scholar]
  • 88. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S (1999) Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 84: 761–767. [DOI] [PubMed] [Google Scholar]
  • 89. Zhuang Z, Ezzat SZ, Vortmeyer AO, Weil R, Oldfield EH, Park WS, Pack S, Huang S, Agarwal SK, Guru SC, Manickam P, Debelenko LV, Kester MB, Olufemi SE, Heppner C, Crabtree JS, Burns AL, Spiegel AM, Marx SJ, Chandrasekharappa SC, Collins FS, Emmert‐Buck MR, Liotta LA, Asa SL, Lubensky IA (1997) Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 57: 5446–5451. [PubMed] [Google Scholar]
  • 90. Zou H, McGarry TJ, Bernal T, Kirschner MW (1999) Identification of a vertebrate sister‐chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285: 418–422. [DOI] [PubMed] [Google Scholar]
  • 91. Zur A, Brandeis M (2001) Securin degradation is mediated by fzy and fzr, and is required for complete chromatid separation but not for cytokinesis. EMBO J 20: 792–801. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES