Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;9(3):435–442. doi: 10.1111/j.1750-3639.1999.tb00532.x

Amplification and Expression of Cyclin D Genes (CCND1 CCND2 and CCND3) in Human Malignant Gliomas

Rainer Büschges 1, Ruthild G Weber 2, Bertrand Actor 2, Peter Lichter 2, V Peter Collins 3, Guido Reifenberger 1,
PMCID: PMC8098615  PMID: 10416984

Abstract

Malignant gliomas frequently show genetic aberrations of genes coding for cell cycle regulatory proteins involved in the control of G1/S phase transition. These include mutation and/or deletion of the retinoblastoma (RB1) gene, homozygous deletion of the CDKN2A and CDKN2B genes, as well as amplification and overexpression of the CDK4 and CDK6 genes. The D‐type cyclins (cyclin D1, D2, and D3) promote cell cycle progression from G1 to S phase by binding to and activating the cyclin dependent kinases Cdk4 and Cdk6. Here, we have investigated a series of 110 primary malignant gliomas and 8 glioma cell lines for amplification and expression of the D‐type cyclin genes CCND1 (11q13), CCND2 (12p13), and CCND3 (6p21). We found the CCND1 gene amplified and overexpressed in one anaplastic astrocytoma of our tumor series. Two glioblastomas and one anaplastic astrocytoma showed CCND2 gene amplification, but lacked significant overexpression of CCND2 transcripts. Amplification and overexpression of the CCND3 gene was detected in the glioblastoma cell line CCF‐STTG1, as well as in one primary glioblastoma and in the sarcomatous component of one gliosarcoma. Our data thus suggest that amplification and increased expression of CCND1 and CCND3 contribute to the loss of cell cycle control in a small fraction of human malignant gliomas.

Full Text

The Full Text of this article is available as a PDF (145.3 KB).

References

  • 1. Bögler O, Su Huang HJ, Kleihues P, Cavenee WK (1995) The p53 gene and its role in human brain tumors. Glia 15: 308–327. [DOI] [PubMed] [Google Scholar]
  • 2. Buckley MF, Sweeney KJ, Hamilton JA, Sini RL, Manning DL, Nicholson RI, de Fazio A, Watts CK, Musgrove EA, Sutherland RL (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8: 2127–2133. [PubMed] [Google Scholar]
  • 3. Cavalla P, Dutto A, Piva R, Richiardi P, Grosso R, Schiffer D (1998) Cyclin D1 expression in gliomas. Acta Neuropathol. (Berl.) 95: 131–135. [DOI] [PubMed] [Google Scholar]
  • 4. Chakrabarty A, Bridges LR, Gray S (1996) Cyclin D1 in astrocytic tumours: an immunohistochemical study. Neuropathol. Appl. Neurobiol. 22: 311–316. [DOI] [PubMed] [Google Scholar]
  • 5. Cobbers JM, Wolter M, Reifenberger J, Ring GU, Jessen F, An HX, Niederacher D, Schmidt EE, Ichimura K, Floeth F, Kirsch L, Borchard F, Louis DN, Collins VP, Reifenberger G (1998) Frequent inactivation of CDKN2A and rare mutation of TP53 in PCNSL. Brain Pathol. 8: 263–276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Collins VP, James CD (1993) Gene and chromosomal alterations associated with the development of human gliomas. FASEB J. 7: 926–930. [DOI] [PubMed] [Google Scholar]
  • 7. Costello JF, Plass C, Arap W, Chapman VM, Held WA, Berger MS, Su Huang HJ, Cavenee WK (1997) Cyclin‐dependent kinase 6 (CDK6) amplification in human gliomas identified using two‐dimensional separation of genomic DNA. Cancer Res. 57: 1250–1254. [PubMed] [Google Scholar]
  • 8. Donnellan R, Chetty R (1998) Cyclin D1 and human neoplasia. Mol. Pathol. 51: 1–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Du Manoir S, Schröck E, Bentz M, Speicher MR, Joos S, Ried T, Lichter P, Cremer T (1995) Quantitative analysis of comparative genomic hybridization. Cytometry, 19: 27–41. [DOI] [PubMed] [Google Scholar]
  • 10. He J, Olson JJ, James CD (1995) Lack of p16INK4 or retinoblastoma protein (pRb), or amplification‐associated overexpression of cdk4 is observed in distinct subsets of malignant glial tumors and cell lines. Cancer Res. 55: 4833–4836. [PubMed] [Google Scholar]
  • 11. Hosokawa Y, Arnold A (1996) Cyclin D1/PRAD1 as a central target in oncogenesis. J. Lab. Clin. Med. 127: 246–252. [DOI] [PubMed] [Google Scholar]
  • 12. Ichimura K, Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDKN2A (p16INK4a, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13: 1065–1072. [PubMed] [Google Scholar]
  • 13. Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ, Look AT (1992) Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics 13: 565–574. [DOI] [PubMed] [Google Scholar]
  • 14. Kleihues P, Burger PC, Scheithauer B (1993) Histological typing of tumours of the central nervous system, pp. 16–19, Springer‐Verlag, Berlin . [Google Scholar]
  • 15. Knuutila S, Bjorkqvist AM, Autio K, Tarkkanen M, Wolf M, Monni O, Szymanska J, Larramendy ML, Tapper J, Pere H, EI‐Rifai W, Hemmer S, Wasenius VM, Vidgren V, Zhu Y (1998) DNA copy number amplifications in human neoplasms: review of comparative genomic hybridization studies. Am. J. Pathol. 152: 1107–1123. [PMC free article] [PubMed] [Google Scholar]
  • 16. Lantos PL, Vandenberg SR, Kleihues P (1996) Tumours of the nervous system In: Greenfield's Neuropathology, Graham DI, Lantos PL (eds.)., 6th Edition, Vol 2, pp. 583–879, Edward Arnold: London . [Google Scholar]
  • 17. Leach FS, Elledge SJ, Sherr CJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B (1993) Amplification of cyclin genes in colorectal carcinomas. Cancer Res. 53: 1986–1989. [PubMed] [Google Scholar]
  • 18. Lichter P, Bentz M, Joos S (1995) Detection of chromosomal aberrations by means of molecular cytogenetics: painting of chromosomes and chromosomal subregions and comparative genomic hybridization. Methods Enzymol. 254: 334–359. [DOI] [PubMed] [Google Scholar]
  • 19. Nagane M, Huang HJ, Cavenee WK (1997) Advances in the molecular genetics of gliomas. Curr. Opin. Oncol. 9: 215–222. [DOI] [PubMed] [Google Scholar]
  • 20. Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS, Collins VP (1996) Refined mapping of 12q13‐q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res. 56: 5141–5145. [PubMed] [Google Scholar]
  • 21. Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2A (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res. 54: 6321–6324. [PubMed] [Google Scholar]
  • 22. Schröck E, Thiel G, Lozanova T, du Manoir S, Meffert MC, Jauch A, Speicher MR, Nürnberg P, Vogel S, Jänisch W, Donis‐Keller H, Ried T, Witkowski R, Cremer T (1994) Comparative genomic hybridization of human malignant gliomas reveals multiple amplification sites and nonrandom chromosomal gains and losses. Am. J. Pathol. 144: 1203–1218. [PMC free article] [PubMed] [Google Scholar]
  • 23. Sherr CJ (1995) D‐type cyclins. Trends Biochem. Sci. 20: 187–190. [DOI] [PubMed] [Google Scholar]
  • 24. Sicinski P, Donaher JL, Geng Y, Parker SB, Gardner H, Park MY, Robker RL, Richards JS, McGinnis LK, Biggers JD, Eppig JJ, Branson RT, Elledge SJ, Weinberg RA (1996) Cyclin D2 is an FSH‐responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 384: 470–474. [DOI] [PubMed] [Google Scholar]
  • 25. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BAJ, Tunnacliffe A (1992) Degenerate oligonucleotideprimed PCR: General amplification of target DNA by a single degenerate primer. Genomics 13: 718–725. [DOI] [PubMed] [Google Scholar]
  • 26. Weber RG, Sommer C, Albert FK, Kiessling M, Cremer T (1996) Clinically distinct subgroups of glioblastoma multiforme studied by comparative genomic hybrization. Lab. Invest. 74: 108–119. [PubMed] [Google Scholar]
  • 27. Weber RG, Sabel M, Reifenberger J, Sommer C, Oberstraß J, Reifenberger G, Kiessling M, Cremer T (1996) Characterization of genomic alterations associated with glioma progression by comparative genomic hybridization. Oncogene 13: 983–994. [PubMed] [Google Scholar]
  • 28. Werner CA, Döhner H, Joos S, Trumper LH, Baudis M, Barth TF, Ott G, Möller P, Lichter P, Bentz M (1997) High‐level DNA amplifications are common genetic aberrations in B‐cell neoplasms. Am. J. Pathol. 151: 335–342. [PMC free article] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES