Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;10(1):95–112. doi: 10.1111/j.1750-3639.2000.tb00247.x

Inflammation and Stroke: Putative Role for Cytokines, Adhesion Molecules and iNOS in Brain Response to Ischemia

Gregory del Zoppo 1, Irene Ginis 2, John M Hallenbeck 2, Constantino Iadecola 3, Xinkang Wang 4, Giora Z Feuerstein 4,
PMCID: PMC8098633  PMID: 10668900

Abstract

Ischemic stroke is a leading cause of death and disability in developed countries. Yet, in spite of substantial research and development efforts, no specific therapy for stroke is available. Several mechnism for neuroprotection have been explored including ionchannels, excitatory amino acids and oxygen raicals yet none has culminated in an effective therapeutic effect. The review article on “inflammation and stroke” summarizes key data in support for the possibility that inflammatory cells and mediators are important contributing and confounding factors in ischemic brain injury. In particular, the role of cytokines, endothelial cells and leukocyte adhesion molecules, nitric oxide and cyclooxygenase (COX‐2) products are discussed. Furthermore, the potential role for certain cytokines in modulation of brain vulnerability to ischemia is also reviewed.The data suggest that novel therapeutic strategies may evolve from detailed research on some specific inflammatory factors that act in spatial and temporal relationships with traditionally recognized neurotoxic factors. The dual nature of some mediators in reformatting of brain cells for resistance or sensitivity to injury demonstrate the delicate balance needed in interventions based on anti‐inflammatory strategies.

Full Text

The Full Text of this article is available as a PDF (162.3 KB).

References

  • 1. Abumiya T, Lucero J, Heo JH, Tagaya M, Koziol JA, Copeland BR, del Zoppo GJ (1999) Activated microvessels express vascular endothelial growth factor and integrin αvβ3 during focal cerebral ischemia. J Cereb Blood Flow Metab 19:1038–1050. [DOI] [PubMed] [Google Scholar]
  • 2. Aronowski J, Strong R, Grotta JC (1997) Reperfusion Injury: Demonstration of Brain Damage Produced by Reperfusion After Transient Focal Ischemia in Rats. J Cereb Blood Flow Metab 17:1048–1056. [DOI] [PubMed] [Google Scholar]
  • 3. Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20(6):445–52. [DOI] [PubMed] [Google Scholar]
  • 4. Auge N, Escargueil‐Blanc I, Lajoie‐Mazenc I, Suc I, Andrieu‐Abadie N, Pieraggi MT, Chatelut M, Thiers JC, Jaffrezou JP, Laurent G, Levade T, Negre‐Salvayre A, Salvayre R (1998) Potential role for ceramide in mitogenactivated protein kinase activation and proliferation of vascular smooth muscle cells induced by oxidized low density lipoprotein. J Biol Chem 273(21): 12893–900. [DOI] [PubMed] [Google Scholar]
  • 5. Baeuerle PA, Baltimore D (1996) NF‐kappa B: ten years after. Cell 87: 13–20. [DOI] [PubMed] [Google Scholar]
  • 6. Balasingam V, Tejada‐Berges T, Wright E, Bouckova R, Yong VW (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14(2):846–856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Barnes DA, Houston M, Perez HD (1998) TNF‐α and IL‐1β cross‐desensitization of astrocytes and astrocytoma cell lines. J Neuroimmunol 87(1–2): 17–26. [DOI] [PubMed] [Google Scholar]
  • 8. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG Feuerstein GZ (1997) Tumour necrosis factor α. A mediator of focal Ischemic brain injury. Stroke 28: 1233–1244. [DOI] [PubMed] [Google Scholar]
  • 9. Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE (1991): Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res 29: 336–345. [DOI] [PubMed] [Google Scholar]
  • 10. Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ (1992) Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci Biobehav Rev 16: 219–233. [DOI] [PubMed] [Google Scholar]
  • 11. Barone FC, White RF, Spera PA, Currie RW, Wang XK, Feuerstein GZ (1998) Ischemic preconditioning and brain tolerance: Temporal histologic and functional outcomes, protein synthesis requirement, and IL‐1 ra and early gene expression. Stroke 29: 1937–1951. [DOI] [PubMed] [Google Scholar]
  • 12. Betz AL, Yanag GY, Davidson BL (1995) Attenuation of stroke in rats using an adenoviral vector to induce overexpression of interleukin‐1 receptor antagonist in brain. J Cereb Blood Flow Metab 15: 547–551. [DOI] [PubMed] [Google Scholar]
  • 13. Botchkina GI, Geimonen E, Bilof ML, et al. (1999) Loss of NF‐kappaB activity during cerebral ischemia and TNF cytotoxicity. Mol Med 5(6): 372–381. [PMC free article] [PubMed] [Google Scholar]
  • 14. Botchkina GI, Meistrell ME III, Botchkina IL, Tracey KJ (1997) Expression of TNF and TNF receptor (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 3(11): 765–781. [PMC free article] [PubMed] [Google Scholar]
  • 15. Bowes MP, Ziviin JA, Rothlein R (1993) Monoclonal antibody to ICAM‐1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp Neurol 119: 215–219. [DOI] [PubMed] [Google Scholar]
  • 16. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nature Medicine 2: 788–794. [DOI] [PubMed] [Google Scholar]
  • 17. Burda J, Martin ME, Gottlieb M, Chavko M, Marsala J, Alcazar A, Pavon M, Fando JL, Salinas M (1998) The intraischemic and early reperfusion changes of protein synthesis in the rat brain. eIF‐2 alpha kinase activity and role of initiation factors eIF‐2 alpha and eIF‐4E. J Cereb Blood Flow Metab 18(1):59–66. [DOI] [PubMed] [Google Scholar]
  • 18. Buttini M, Appel K, Sauater A, Gebicke‐Haerter P‐J, Boddeke HWGM (1996) Expression of tumour necrosis factor alpha after focal cerebral ischemia in the rat. Neuroscience 71: 1–16. [DOI] [PubMed] [Google Scholar]
  • 19. Buttini M, Boddeki H (1995) Peripheral lipopolysaccharide stimulations induces interleukin‐1β mRNA in rat brain microglial cells. Neuroscience 65: 523–550. [DOI] [PubMed] [Google Scholar]
  • 20. Carroll JE, Howard EF, Hess DC, Wakade CG, Chen Q, Cheng C (1998) Nuclear factor‐ kappa B activation during cerebral reperfusion: effect of attenuation with N‐acetyl‐cysteine treatment. Brain Res Mol Brain Res 56: 186–91. [DOI] [PubMed] [Google Scholar]
  • 21. Chen H, Chopp M, Bodzin G (1992) Neutropenia reduces the volume of cerebral infarct after transient middle cerebral artery occlusion in the rat. Neurosci Res Commun 11: 93–99. [Google Scholar]
  • 22. Chen J, Simon R (1997) Ischemic tolerance in the brain. Neurology 48(2):306–11. [DOI] [PubMed] [Google Scholar]
  • 23. Chopp M, Li Y, Jiang N, Zhang RL, Prostak J (1996) Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 16: 578–584. [DOI] [PubMed] [Google Scholar]
  • 24. Chopp M, Zhang RI, Chen H, Li Y, Jiang N, Rusche RJ (1994) Post ischemic administration of an anti‐MAC‐1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Stroke 25: 869–876. [DOI] [PubMed] [Google Scholar]
  • 25. Clark RK, Lee EV, White RF, Jonak ZL, Feuerstein GZ, Barone FC (1994) Reperfusion following focal stroke hastens inflammation and resolution of ischemic injury. Brain Res Bull 35: 387–391. [DOI] [PubMed] [Google Scholar]
  • 26. Clark WM, Madden KP, Rothlein R, Zivin JA (1991) Reduction of central nervous system ischemic injury by monoclonal antibody to intercellular adhesion molecule. J Neurosurg 75: 623–627. [DOI] [PubMed] [Google Scholar]
  • 27. Crow JP, Beckman JS (1995) Reactions between nitric oxide, superoxide and peroxynitrite: Footprints of perxynitrite in vivo. In: Nitric oxide. Biochemistry, Molecular Biology and Therapeutic Implications (Ignarro L. and Murad F., eds), San Diego , Academic Press, pp 17–43. [DOI] [PubMed] [Google Scholar]
  • 28. D'Souza S, Alinauskas K, McCrea E, Goodyer C, Antel JP (1995) Differential susceptibility of human CNS‐derived cell populations to TNF‐dependent and independent immune‐mediated injury. J Neurosci 15(11):7293–7300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Darnay BG and Aggarwal BB (1997) Early events in TNF signaling: a story of associations and dissociations. J Leukoc Biol 61(5):559–566. [DOI] [PubMed] [Google Scholar]
  • 30. Dawson DA, Martin D, Hallenbeck JM (1996) Inhibition of tumour necrosis factor‐alpha reduces focal cerebral ischemic injury in the spontaneously hypertensive rat. Neurosci Lett 218: 41–44. [DOI] [PubMed] [Google Scholar]
  • 31. Degraba TJ (1998) The role of acute inflammation after acute stroke: Utility of pursuing anti‐adhesion molecule therapy. Neurology 51: S62–S68. [DOI] [PubMed] [Google Scholar]
  • 32. del Zoppo GJ (1994) Microvascular changes during cerebral ischaemia and reperfusion. Cerebrovasc Brain Metab Rev 6:47–96. [PubMed] [Google Scholar]
  • 33. del Zoppo GJ, Haring H‐P, Tagaya M, Wagner S, Akamine P, Hamann GF (1996) Loss of α1β1 integrin immunoreactivity on cerebral microvessels and astrocytes following focal cerebral ischemia/reperfusion. Cerebrovasc Dis 6:9. [Google Scholar]
  • 34. del Zoppo GJ, Schmid‐Schönbein GW, Mori E, Copeland BR, Chang C‐M (1991) Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 22: 1276–1283. [DOI] [PubMed] [Google Scholar]
  • 35. del Zoppo GJ, von Kummer R, Hamann GF (1998) Ischemic damage of brain microvessels: Inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry 65: 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Di Loreto S, Balestrino M, Pellegrini P, Berghella AM, Del Beato T, Di Marco F, Adorno D (1997) Blockade of N‐methyl‐D‐aspartate receptor prevents hypoxic neuronal death and cytokine release. Neuroimmunomodulation 4(4): 195–199. [DOI] [PubMed] [Google Scholar]
  • 37. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397. [DOI] [PubMed] [Google Scholar]
  • 38. Dutka AJ, Kochanek PM, Hallenbeck JM (1989) Influence of graulocytopenia on canine cerebral ischemia induced by an embolism. Stroke 20: 390–395. [DOI] [PubMed] [Google Scholar]
  • 39. Eng LF (1988) Regulation of glial intermediate filaments in astrogliosis In: Biochemical Pathology of Astrocytes, Norenberg MD, Hertz L, Schousboe A (ed.), Alan R. Liss, 79–90. [Google Scholar]
  • 40. Fan K, Young PR, Barone FC, Feuerstein GZ, Smith DH, Mcintosh TK (1996) Experimental traumatic brain injury induces differential expression of TNF‐α mRNA in the CNS. Mol Brain Res 36: 287–291. [DOI] [PubMed] [Google Scholar]
  • 41. Feuerstein GZ, Wang XK, Barone FC (1998) Inflammatory mediators of ischemic injury: Cytokine gene regulation in stroke In: Cerebrovascular Disease: Pathophysiology, Diagnosis and Management, Ginsberg MD, Bogousslavsky J (ed.), Blackwell Science Inc, 507–531. [Google Scholar]
  • 42. Forster C, Clark HB, Ross ME, Iadecola C (1999) Inducible nitric oxide synthase expression in human cerebral infarcts [In Process Citation]. Acta Neuropathol (Berl) 97: 215–20. [DOI] [PubMed] [Google Scholar]
  • 43. Garcia JH, Kamijyo Y (1974) Cerebral infarction: Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33: 409–421. [DOI] [PubMed] [Google Scholar]
  • 44. Garcia JH, Liu K‐F, Ye Z‐R (1997) Cytokines and reperfusion in ischemic stroke. Brain Pathol 7: 1151–1161. [Google Scholar]
  • 45. Garcia JH, Liu KF, Yoshida Y, Lian J, Chen S, del Zoppo GJ (1994) Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 144:188–199. [PMC free article] [PubMed] [Google Scholar]
  • 46. Ginis I, Schweizer U, Brenner M, Liu J, Azzam N, Spatz M, Hallenbeck JM (1999) TNF‐a pretreatment prevents subsequent activation of cultureed brain cells with TNF‐a and hypoxia via ceramide. Am J Physiol 276 (Cell Physiol): C1171–1183. [DOI] [PubMed] [Google Scholar]
  • 47. Giulian D, Chen J, Ingeman JE, George JK, Noponen M (1989) The role of mononuclear phagocytes in wound healing after traumatic injury to the adult mammalian brain. J Neurosci 9: 4416–4429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Goldblum SE, Sun WL (1990) Tumour necrosis factor‐alpha augments pulmonary arterial transendothelial albumen flux in vitro . Am J Physiol 285: L57–L67. [DOI] [PubMed] [Google Scholar]
  • 49. Goodman JC, Robertson CS, Grossman RG, Narayan RK (1990) Elevation of tumour necrosis factor in head injury. J Neuroimmunol 30: 2–3. [DOI] [PubMed] [Google Scholar]
  • 50. Goodman Y, Mattson MP (1996) Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid beta‐peptide toxicity. J Neurochem 66: 869–872. [DOI] [PubMed] [Google Scholar]
  • 51. Gosh S, Struim JC, Bell AM (1997) Lipid Biochemistry: Function of glycorolipids and sphingolipids in cellular singaling. FASEB J 11: 45–50. [DOI] [PubMed] [Google Scholar]
  • 52. Grandati M, Verrecchia C, Revaud ML, Allix M, Boulu RG, Plotkine M (1997) Calcium‐independent NO‐synthase activity and nitrites/nitrates production in transient focal cerebral ischaemia in mice. Br J Pharmacol 122: 625–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Ann Rev Physiol 57: 707–36. [DOI] [PubMed] [Google Scholar]
  • 54. Grilli M, Pizzi M, Memo M, Spano P (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF‐ kappaB activation. Science 274: 1383–5. [DOI] [PubMed] [Google Scholar]
  • 55. Gross SS, Wolin MS (1995) Nitric oxide: pathophysiological mechanisms. Ann Rev Physiol 57: 737–69. [DOI] [PubMed] [Google Scholar]
  • 56. Hallenbeck JM, Dutka AJ, Tanishima T, Kochanek PM, Kummaroo KK, Thompson CB, Obrenovitch TP, Contrersa TJ (1986) Polymorphonuclear leukocyte accumulation in brain regions with low blood flow during the early postischemic period. Stroke 17: 246–253. [DOI] [PubMed] [Google Scholar]
  • 57. Hallenbeck JM, Dutka AJ, Vogel SN, Heldman E, Doron DA, Feuerstein G (1991) Lipopolysaccharide‐induced production of tumor necrosis factor activity in rats with and without risk factors for stroke. Brain Res 541(1):115–120. [DOI] [PubMed] [Google Scholar]
  • 58. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ (1995) Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 26:2120–2126. [DOI] [PubMed] [Google Scholar]
  • 59. Hannun YA (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274(5294): 1855–1859. [DOI] [PubMed] [Google Scholar]
  • 60. Haring H‐P, Akamine P, Habermann R, Koziol JA, del Zoppo GJ (1996) Distribution of the integrin‐like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol 55: 236–245. [DOI] [PubMed] [Google Scholar]
  • 61. Haring H‐P, Berg EL, Tsurushita N, Tagaya M, del Zoppo GJ (1996) E‐selectin appears in non‐ischemic tissue during experimental focal cerebral ischemia. Stroke 27:1386–1392. [DOI] [PubMed] [Google Scholar]
  • 62. Hayward NJ, Elliot PJ, Sawyer SD, Bronson RJ, Bartus RT (1996) Lack of evidence for neutrophil participation during infarct formation following focal cerebral ischemia in the rat. Exp Neurol 139: 188–202. [DOI] [PubMed] [Google Scholar]
  • 63. Heidenreich KA, Kummer JL (1996) inhibition of p38 mitogen‐activated protein kinase by insulin in cultured fetal neurons. J Biol Chem 271: 9891–9894. [DOI] [PubMed] [Google Scholar]
  • 64. Heinel LA, Rubin S, Rosenwasser RH, Vasthare US, Tuma RF (1994) Leukocyte involvement in cerebral infarct generation after ischemia and repeerfusion. Brain Res Bull 34: 37–141. [DOI] [PubMed] [Google Scholar]
  • 65. Heo J, Lucero J, Abumiya T, Koziol J, Copeland B, del Zoppo G (1999) Matrix metalloproteinases increase very early during experimental focal ischemia. J Cereb Blood Flow Metab 19:624–633. [DOI] [PubMed] [Google Scholar]
  • 66. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC, Moskowitz MA (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro‐L‐arginine. J Cereb Blood Flow Metab 16: 981–987. [DOI] [PubMed] [Google Scholar]
  • 67. Huwiler A, Dorsch S, Briner VA, van den Bosch H, Pfeilschifter J (1999) Nitric oxide stimulates chronic ceramide formation in glomerular endothelial cells. Biochem Biophys Res Commun 258(1):60–65. [DOI] [PubMed] [Google Scholar]
  • 68. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain damage. Trends Neurosci 20: 132–138. [DOI] [PubMed] [Google Scholar]
  • 69. Iadecola C, Forster C, Nogawa S, Clark HB, Ross ME (1999) Cyclooxygenase immunoreactivity in the human brain following cerebral ischemia. Acta Neuropathologica 98: 9–14. [DOI] [PubMed] [Google Scholar]
  • 70. Iadecola C, Salkowski CA, Zhang F, Aber T, Nagayama M, Vogel SN, Ross ME (1999) The Transcription Factor Interferon Regulatory Factor 1 Is Expressed after Cerebral Ischemia and Contributes to Ischemic Brain Injury. J Exp Med 189: 719–727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Iadecola C, Xu X, Zhang F, El‐Fakahany EE, Ross ME (1995) Marked induction of calcium‐independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 14: 52–59. [DOI] [PubMed] [Google Scholar]
  • 72. Iadecola C, Zhang F, Casey R, Clark HB, Ross ME (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27: 1373–1380. [DOI] [PubMed] [Google Scholar]
  • 73. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction in ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17: 9157–9164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74. Iadecola C, Zhang F, Xu X (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268: R286–R292. [DOI] [PubMed] [Google Scholar]
  • 75. Iadecola C, Zhang F, Xu X, Casey R, Ross ME (1995c) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15: 378–384. [DOI] [PubMed] [Google Scholar]
  • 76. Ito A, Horigome K (1995) Ceramide prevents neuronal programmed cell death induced by nerve growth factor deprivation. J Neurochem 65(1):463–6. [DOI] [PubMed] [Google Scholar]
  • 77. Jiang N, Moyle M, Soule HR, Rote WE, Chopp M (1995) Neutrophil inhibitory factor is neuroprotective after focal ischemia in rats. Ann Neurol 38: 935–942. [DOI] [PubMed] [Google Scholar]
  • 78. Karsan A, Harlan JM (1996) Modulation of endothelial cell apoptosis: mechanisms and pathophysiological roles. J Atheroscler Thromb 3(2):75–80. [DOI] [PubMed] [Google Scholar]
  • 79. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P (1996) COX‐2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex. Proc Natl Acad Sci USA 93: 2317–2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Khayyam N, Thavendiranathan P, Carmichael FJ, Kus B, Jay V, Burnham WM (1999) Neuroprotective effects of acetylsalicylic acid in an animal model of focal brain ischemia. Neuroreport 10: 371–4. [DOI] [PubMed] [Google Scholar]
  • 81. Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1990) Calphostin C (UCN‐1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 172: 993–999. [DOI] [PubMed] [Google Scholar]
  • 82. Kogure K, Yamasaki Y, Matsuo Y, Kato H, Onodera H (1996) Inflammation of the brain after ischemia. Acta Neurochir 66 (Suppl.): 40–43. [DOI] [PubMed] [Google Scholar]
  • 83. Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT (1992) Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo . Am J Physiol 263: H1234–1242. [DOI] [PubMed] [Google Scholar]
  • 84. Lee JY, Leonhardt LG, Obeid LM (1998) Cell‐cycle‐dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M. Biochem J 334 (Pt 2):457–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Lieberman AP, Pitha PM, Shin HS, Shin ML (1989) Production of tumour necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci USA 86: 6348–6352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Liu T, Ginis I, Spatz M, Hallenbeck JM (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF‐α and ceramide. Am J Physiol (Cell Physiol) In Press. [DOI] [PubMed] [Google Scholar]
  • 87. Liu T, Clark RK, Mcdonnell PC, Young PR, White RF, Barone FC, Feuerstein GF (1994) Tumour necrosis factor a expression in ischemic neurons. Stroke 25: 1481–1488. [DOI] [PubMed] [Google Scholar]
  • 88. Liu T, McDonnel PC, Young PR, White RF, Siren AL, Barone FC, Feuerstein GZ (1993) Interleukin‐1β mRNA expression in ischemic rat cortex. Stroke 24: 1746–1751. [DOI] [PubMed] [Google Scholar]
  • 89. Loddick SA, Rothwell NJ (1996) Neuroprotective effects of human recombinant interleukin‐1 receptor antagonist in focal ischemia in the rat. J Cereb Blood Flow Metab 16: 932–940. [DOI] [PubMed] [Google Scholar]
  • 90. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N, Chen H, Mudgett JS (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81: 641–50. [DOI] [PubMed] [Google Scholar]
  • 91. Martin D, Chinookoswong N, Miller G (1995) The interleukin‐1 receptor antagonist (rhIL‐1 ra) protects against cerebral infarction in a rat model of hypoxia‐ischemia. Exp Neurol 130: 362–367. [DOI] [PubMed] [Google Scholar]
  • 92. Matsuo Y, Onodera H, Shiga Y, Nakamur M, Ninomiya M, Kihara T, Kogure K (1994) Correlation between myeloperoxidose‐quantified neutrophil accumulation and ischemic brain injury in the rat: effects of neutrophil depletion. Stroke 25:1469–1475. [DOI] [PubMed] [Google Scholar]
  • 93. Mattson M (1997) Neuroprotective signal transduction: Relevancte to stroke. Neurosci Biobehav Rev 21(2):193–206. [DOI] [PubMed] [Google Scholar]
  • 94. Melillo G, Taylor LS, Brooks A, Cox GW, Varesio L (1996) Regulation of inducible nitric oxide synthase expression in IFN‐gamma‐ treated murine macrophages cultured under hypoxic conditions. J Immunol 157: 2638–44. [PubMed] [Google Scholar]
  • 95. Miettinen S, Fusco FR, Yrjanheikki J, Keinanen R, Hirvonen T, Roivainen R, Narhi M, Hokfelt T, Koistinaho J (1997) Spreading depression and focal brain ischemia induce cyclooxygenase‐2 in cortical neurons through N‐methyl‐D‐aspartic acid‐receptors and phospholipase A2. Proc Natl Acad Sci USA 94: 6500–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Minami M, Kuraishi Y, Satoh M (1991) Effects of kainic acid on messenger RNA levels of IL‐1β, IL‐6, TNF‐α and LIF in the rat brain. Biochem Biophys Res Commun 176: 593–598. [DOI] [PubMed] [Google Scholar]
  • 97. Minami M, Kuraishi Y, Yabuuchi K, Yamazaki A, Satoh M (1992) Induction of interleukin‐1β mRNA in rat brain after transient forebrain ischemia. J Neurochem 58: 390–392. [DOI] [PubMed] [Google Scholar]
  • 98. Mori E (1991) Fibrinolytic recanalization therapy in acute cerebrovascular thromboembolism, in Hacke W, del Zoppo GJ, Hirschberg M (eds): Edition, Heidelberg , Springer‐Verlag; pp 137–146. [Google Scholar]
  • 99. Mori E, Chambers JD, Copeland BR, Arfors K‐E, del Zoppo GJ (1992) Inhibition of polymorphonuclear leukocyte adherence suppresses non‐reflow after focal cerebral ischemia. Stroke 23:712–718. [DOI] [PubMed] [Google Scholar]
  • 100. Mori E, Del Zoppo M, Chambers GL, Copeland JD, Arfors KE (1992b) Inhibition of polymorphonuclear leukocyte adherence suppresses no‐reflow after focal cerebral ischemia in baboons. Stroke 23: 712–718. [DOI] [PubMed] [Google Scholar]
  • 101. Mori T, Asano T, Matsui T, Muramatsu H, Ueda M, Kamiya T, Katayama Y, Abe T (1999) Intraluminal increase of superoxide anion following transient focal cerebral ischemia in rats. Brain Res 816(2):350–7. [DOI] [PubMed] [Google Scholar]
  • 102. Nagayama M, Aber T, Nagayama T, Ross ME, Iadecola C (1999) Age‐dependent increase in ischemic brain injury in wild‐type mice and in mice lacking the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 19: 661–6. [DOI] [PubMed] [Google Scholar]
  • 103. Nagayama M, Zhang F, Iadecola C (1998) Delayed treatment with aminoguanidine decreases focal cerebral ischemic damage and enhances neurologic recovery in rats. J Cereb Blood Flow Metab 18: 1107–13. [DOI] [PubMed] [Google Scholar]
  • 104. Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, Chen J, Graham SH (1998) Cyclooxygenase‐2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci USA 95:10954–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Nathan C (1997) Inducible nitric oxide synthase: what difference does it make J Clin Invest 100: 2417–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Nawashiro H, Martin D, Hallenbeck JM (1997) Inhibition of tumour necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab 17: 229–232. [DOI] [PubMed] [Google Scholar]
  • 107. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997) TNF‐alpha pre‐treatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17(5):483–90. [DOI] [PubMed] [Google Scholar]
  • 108. Nguyen H, Hiscott J, Pitha PM (1997) The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 8: 293–312. [DOI] [PubMed] [Google Scholar]
  • 109. Nogawa S, Forster C, Zhang F, Nagayama M, Ross ME, Iadecola C (1998) Interaction between inducible nitric oxide synthase and cyclooxygenase‐2 after cerebral ischemia. Proc Natl Acad Sci USA 95: 10966–71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo‐oxygenase‐2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17: 2746–2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Norton WT, Aquino DA, Hozumi I, Chiu TC, Brosnan CF (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17: 877–885. [DOI] [PubMed] [Google Scholar]
  • 112. O'Callaghan JP (1991) Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci 4: 197–206. [PubMed] [Google Scholar]
  • 113. Okada Y, Copeland BR, Hamann GF, Koziol JA, Cheresh DR, del Zoppo GJ (1996) Integrin αvβ3 is expressed in selected microvessels following focal cerebral ischemia. Am J Pathol 149:37–44. [PMC free article] [PubMed] [Google Scholar]
  • 114. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, Del Zoppa GZ (1994) P‐selectin and intercellular adhesion molecule‐1 expression after focal brain ischemia and reperfusion. Stroke 25: 202–211. [DOI] [PubMed] [Google Scholar]
  • 115. Parmentier S, Bohme GA, Lerouet D, Damour D, Stutzmann JM, Margaill I, Plotkine M (1999) Selective inhibition of inducible nitric oxide synthase prevents ischaemic brain injury. Br J Pharmacol 127: 546–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Pena LA, Fuks Z, Kolesnick R (1997) Stress‐induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol 53(5):615–21. [DOI] [PubMed] [Google Scholar]
  • 117. Perry VH, Gordon S (1991) Macrophages and the nervous system. Int Rev Cytol 125: 203–244. [DOI] [PubMed] [Google Scholar]
  • 118. Pickard JD (1981) Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism. J. Cereb. Blood Flow Metabol 1: 361–384. [DOI] [PubMed] [Google Scholar]
  • 119. Planas AM, Soriano MA, Rodriguez‐Farre E, Ferrer I (1995) Induction of cyclooxygenase‐2 mRNA and protein following transient focal ischemia in the rat brain. Neurosci Lett 200: 187–90. [DOI] [PubMed] [Google Scholar]
  • 120. Relton JK, Martin D, Thompson RC, Russell DA (1996) Peripheral administration of interleukin‐1 receptor antagonist inhibits brain damage after focal cerebral ischemia in the rat. Ex Neurol 138: 206–213. [DOI] [PubMed] [Google Scholar]
  • 121. Robbins DS, Shirazi Y, Drydale BE, Lieberman A, Shin HS, Shin ML (1987) Production of cytotoxic factor for oligodendrocytes by stimulated astrocytes. J Immunol 139: 2593–2597. [PubMed] [Google Scholar]
  • 122. Romanic AM, White RF, Arleth AJ, Ohlstein EO, Barone FC (1998) Matrix metalloproteinase expression increases following cerebral focal ischemia: Inhibition of MMP‐9 reduces infarct size. Stroke 29: 1020–1030. [DOI] [PubMed] [Google Scholar]
  • 123. Rosenberg GA, Estrada EY, Dencoff JE, Stetler‐Stevenson WG (1995) Tumour necrosis factor‐α‐induced gelatinase B causes delayed opening of the blood brain barrier: an expanded therapeutic window. Brain Res 703: 151–155. [DOI] [PubMed] [Google Scholar]
  • 124. Rothwell NJ (1991) Functions and mechanism of interleukin‐1 in the brain. Trends Pharmacol Sci 12: 430–435. [DOI] [PubMed] [Google Scholar]
  • 125. Rothwell NJ, Relton JK (1993) Involvement of interleukin‐1 and lipocortin‐1 in ischemic brain damage. Cerebrovas Brain Metab Rev 5: 178–198. [PubMed] [Google Scholar]
  • 126. Salvemini D, Masferrer JL (1996) Interactions of nitric oxide with cyclooxygenase: in vitro, ex vivo, and in vivo studies. Methods Enzymol 269: 12–25. [DOI] [PubMed] [Google Scholar]
  • 127. Samdeni AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28: 1283–1288. [DOI] [PubMed] [Google Scholar]
  • 128. Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumour necrosis factor‐alpha by microglia and astrocytes in culture. Brain Res 491: 394–397. [DOI] [PubMed] [Google Scholar]
  • 129. Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, Leahy K, Perkins W, Isakson P (1995) Mediation of inflammation by cyclooxygenase‐2. Agents and Actions Suppl 46: 41–50. [DOI] [PubMed] [Google Scholar]
  • 130. Semmler JH, Wachtel H, Endres S (1993) The specific type IV phosphodiesterase inhibitor rolipram suppresses tumour necrosis factor‐α production by human mononuclear cells. Int J Immunopharm 15: 409–413. [DOI] [PubMed] [Google Scholar]
  • 131. Shohami E, Bass E, Wallach D, Yamin A, Gallily R (1996) Inhibition of tumour necrosis factor alpha (TNF‐α activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 16: 378–384. [DOI] [PubMed] [Google Scholar]
  • 132. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine and Growth Factor Reviews 10: 119–130. [DOI] [PubMed] [Google Scholar]
  • 133. Shohami E, Novikov M, Bass R, Yamin A, Gallily R (1994) Closed head injury triggers early production of TNF‐α and IL‐6 by brain tissue. J Cereb Blood Flow Metab 14: 615–619. [DOI] [PubMed] [Google Scholar]
  • 134. Siren AL, Heldman E, Doron D, Lysko PG, Yue T‐L, Liu T, Feuerstein GZ, Hallenbeck J (1992) Release of proinflammatory and prothrombotic mediators in the brain and peripheral circulation in spontaneously hypertensive and normotensive Wistar‐Kyoto rats. Stroke 23: 1643–1651. [DOI] [PubMed] [Google Scholar]
  • 135. Smith RA, Baglioni C (1992) Characterization of TNF receptors. Immunol Se 56: 149–160. [PubMed] [Google Scholar]
  • 136. Smith WL, DeWitt DL (1995) Biochemistry of prostaglandin endoperoxide H synthase‐1 and synthase‐2 and their differential susceptibility to nonsteroidal antiinflammatory drugs. Sem Nephrol 15: 179–94. [PubMed] [Google Scholar]
  • 137. Smith WL, Marnett LJ (1991) Prostaglandin endoperoxide synthase: structure and catalysis. Biochim Biophys Acta 1083:1–17. [DOI] [PubMed] [Google Scholar]
  • 138. Smyth MJ, Obeid LM, Hannun YA (1997) Ceramide: a novel lipid mediator of apoptosis. Adv Pharmacol 41:133–54. [DOI] [PubMed] [Google Scholar]
  • 139. Subbaramaiah K, Chung WJ, Dannenberg AJ (1998) Ceramide regulates the transcription of cyclooxygenase‐2. Evidence for involvement of extracellular signal‐regulated kinase/c‐Jun N‐terminal kinase and p38 mitogen‐activated protein kinase pathways. J Biol Chem 273(49): 32943–9. [DOI] [PubMed] [Google Scholar]
  • 140. Suematsu M, Tsuchiya M (1992) Microtopographic analysis of oxidative stress in organ micro‐vasculatory units. Adv Exp Med Biol 316: 211–221. [DOI] [PubMed] [Google Scholar]
  • 141. Tagaya M, Liu KF, Copeland B, Seiffert D, Engler R, Garcia JH, del Zoppo GJ (1997) DNA scission after focal brain ischemia. Temporal differences in two species. Stroke 28(6):1245–54. [DOI] [PubMed] [Google Scholar]
  • 142. Tasaki K, Ruetzler CA, Ohtsuki Tu, Martin D, Nawashiro H, Hallenbeck JM (1997) Lipopolysaccharide pre‐treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 748(1–2):267–70. [DOI] [PubMed] [Google Scholar]
  • 143. Tepper AD, Cock JG, De Vries E, Borst J, Van Blitterswijk WJ (1997) CD95/Fast‐induced ceramide formation proceeds with slow kinetics and is not blocked by caspase‐3/CPP32 inhibition. J Biol Chem 272(39):24308–12. [DOI] [PubMed] [Google Scholar]
  • 144. Tracy KJ, Ceraml A (1994) Tumour necrosis factor: A pleotropic cytokine and therapeutic target. Ann Rev Med 45:491–503. [DOI] [PubMed] [Google Scholar]
  • 145. Uno H, Matsuyama T, Akita H, Nishimura H, Sugita M (1997) Induction of tumor necrosis factor‐alpha in the mouse hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 17(5):491–499. [DOI] [PubMed] [Google Scholar]
  • 146. Van Antwerp DJ, Martin SJ, Verma IM, Green DR (1998) Inhibition of TNF‐induced apoptosis by NF‐kappa B. Trends Cell Biol 8(3):107–11. [DOI] [PubMed] [Google Scholar]
  • 147. Vodovotz Y, Kwon NS, Pospischil M, Manning J, Paik J, Nathan C (1994) Inactivation of nitric oxide synthase after prolonged incubation of mouse macrophages with IFN‐gamma and bacterial lipopolysaccharide. J Immunol 152(8):4110–8. [PubMed] [Google Scholar]
  • 148. Vourte J, Linsberg PJ, Kaste M, Meri S, Jansson SE, Rothlein R, Repo H (1999) Anti‐ICAM‐1 monoclonal antibody R65 (Enlimomab) promotes activation of neutrophils in whole blood. J Immunol 162: 2353–2357. [PubMed] [Google Scholar]
  • 149. Wagner S, Tagaya M, Koziol JA, Quaranta V, del Zoppo GJ (1997) Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by α6β4 during focal cerebral ischemia/reperfusion. Stroke 28:858–865. [DOI] [PubMed] [Google Scholar]
  • 150. Wang X‐K, Barone FC, Aiyar NV, Feuerstein GZ (1997) Increased interleukin‐1 receptor and interleukin‐1 receptor antagonist gene expression after focal stroke. Stroke 28:155–162. [DOI] [PubMed] [Google Scholar]
  • 151. Wang X‐K, Li X. Erhardt JA, Barone FC, Feuerstein GZ (2000) Detection of Tumor necrosis factor‐α mRNA induction in ischemic brain tolerance by means of real‐time polymerase chain reaction. J Cereb blood Flow Metab, In Press. [DOI] [PubMed] [Google Scholar]
  • 152. Wang X‐K, Siren A‐L, Yue T‐L, Barone FC, Feuerstein GZ (1994) Upregulation of intracellular adhesion molecule‐1 (ICAM1) on brain microvascular endothelial cells in rat ischemic cortex. Mol Brain Res 26: 61–68. [DOI] [PubMed] [Google Scholar]
  • 153. Wang X‐K, Yue T‐L, Barone FC, Feuerstein GZ (1995) Demonstration of increased endothelial‐leukocyte adhesion molecule 1 mRNA expression in rat ischemic cortex. Stroke 26: 1665–1669. [DOI] [PubMed] [Google Scholar]
  • 154. Wang XK, Yue T‐L, Barone FC, White R, Young PR, McDonnell PC, Feuerstein GZ (1994) Concomitant cortical expression of TNF‐α and IL‐1β mRNA following transient focal ischemia. Mol Chem Neuropathol 23: 103–114. [DOI] [PubMed] [Google Scholar]
  • 155. Wang YM, Seibenhener ML, Vandenplas ML, Wooten MW (1999) Atypical PKC zeta is activated by ceramide, resulting in coactivation of NF‐kappaB/JNK kinase and cell survival. J Neurosci Res 55(3):293–302. [DOI] [PubMed] [Google Scholar]
  • 156. Xia Z, Dickens M, Raingeaud J, Davis JR, Greenberg ME (1995) Opposing effects of ERK and JNK‐p38 MAP kinases on apoptosis. Science 270: 1326–1331. [DOI] [PubMed] [Google Scholar]
  • 157. Xu J, Yeh CH, Chen S, He L, Sensi SL, Canzoniero LM, Choi DW, Hsu CY (1998) Involvement of de novo ceramide biosynthesis in tumor necrosis factoralpha/cycloheximide‐induced cerebral endothelial cell death. J Biol Chem 27:16521–16526. [DOI] [PubMed] [Google Scholar]
  • 158. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen‐inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11: 371–86. [DOI] [PubMed] [Google Scholar]
  • 159. Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K (1995) Interleukin‐1 as a patho‐genetic mediator of ischemic brain damage in the rats. Stroke 26: 676–681. [DOI] [PubMed] [Google Scholar]
  • 160. Young AR, Touzani O, Derlon J‐M, Sette G, MacKenzie ET, Baron J‐C (1997) Early reperfusion in the anesthetized baboon reduces brain damage following middle cerebral artery occlusion: A quantitative analysis of infarction volume. Stroke 28:632–638. [DOI] [PubMed] [Google Scholar]
  • 161. Zhang RL, Chopp M, Jaing N, Tang WX, Prostak J, Manning AM, Anderson DC (1995) Anti‐intercellular adhesion molecule‐1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke 26: 1438–1443. [DOI] [PubMed] [Google Scholar]
  • 162. Zhang RL, Chopp M, Li Y, Zaloga C, Jiang N, Jone M, Miyasaka M, Ward P (1994) Anti‐ICAM‐1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 44: 1747–1751. [DOI] [PubMed] [Google Scholar]
  • 163. Zhang RL, Zhang ZG, Chopp M (1999) Increased therapeutic efficacy with rt‐PA and anto‐CD18 antibody treatment of stroke in the rat. Neurology 52: 273–279. [DOI] [PubMed] [Google Scholar]
  • 164. Zhao X, Haensel C, Ross ME, Iadecola C (1999) Gene‐dosing effect of reduction of ischemic brain injury in mice lacking the inducible nitric oxide synthase gene. Soc Neurosci Abstr 25 (part 1): 793. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES