Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Apr 9;77(Pt 5):516–521. doi: 10.1107/S2056989021003583

Crystal structure and Hirshfeld surface analysis of 6-amino-8-(2,6-di­chloro­phen­yl)-1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

Farid N Naghiyev a, Tatiana A Tereshina b, Victor N Khrustalev b,c, Mehmet Akkurt d, Rovnag M Rzayev e, Anzurat A Akobirshoeva f,*, İbrahim G Mamedov a
PMCID: PMC8100256  PMID: 34026256

In the crystal structure of the title compound, inter­molecular N—H⋯N and C—H⋯N hydrogen bonds between the mol­ecules lead to sheets extending parallel to the (110) and (Inline graphic10) planes.

Keywords: crystal structure; cyclo­addition product; 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine; Hirshfeld surface analysis

Abstract

In the mol­ecular structure of the title compound, C16H13Cl2N5, the 1,4-di­hydro­pyridine ring of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system adopts a screw-boat conformation, while the 1,3-diazinane ring is puckered. In the crystal, inter­molecular N—H⋯N and C—H⋯N hydrogen bonds form mol­ecular sheets parallel to the (110) and (Inline graphic10) planes, crossing each other. Adjacent mol­ecules are further linked by C—H⋯π inter­actions, which form zigzag chains propagating parallel to [100]. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from N⋯H/H⋯N (28.4%), H⋯H (24.5%), C⋯H/H⋯C (21.4%) and Cl⋯H/H⋯Cl (16.1%) contacts.

Chemical context  

Chemical transformations comprising carbon–carbon and carbon–heteroatom bond-formation reactions are fundamental tools in modern synthetic organic chemistry (Yadigarov et al., 2009; Abdelhamid et al., 2011; Khalilov et al., 2011; Yin et al., 2020). They are also used for the synthesis of valuable building blocks in medicinal chemistry, coordination chemistry and material science (Mahmoudi et al., 2017, 2019; Viswanathan et al., 2019).

Pyrido[l,2-a]pyrimidines constitute a valuable class of heterocycles because many of them possess broad biological activities, such as mono­amine oxidase inhibition, anti­hypertensive, insecticide, serotonergic antagonist, analgesic, anti-inflammatory, cytoprotective, bronchodilatory, phospho­diesterase-inhibitory, anti­thrombotic, anti­allergic, anti­atherosclerotic and hypoglycaemic activities, as well as anti­tumor effects (Hermecz & Mészáros, 1988; Ukrainets et al., 2018). The pyrido[1,2-a]pyrimidine motif is incorporated into the structure of some marketed drugs, including the anti­asthmatic agent pemirolast, the tranquilizer pirenperone, the anti­allergic agent ramastine, and the psychotropic agents risperidone and paliperidone (Awouters et al., 1986; Blaton et al., 1995; Yahata et al., 2006; Riva et al., 2011). Over recent decades, a number of synthetic protocols for the synthesis of pyrido[1,2-a]pyrimidines have been reported, and these approaches have focused on two-component reactions (Wu et al., 2003; Pryadeina et al., 2005). Multi-component reactions have developed as powerful tools for the design of complex mol­ecules, natural products and drug-like mol­ecules in a minimum number of synthetic steps (Abdelhamid et al., 2014; McLaughlin et al., 2014; Janssen et al., 2018).graphic file with name e-77-00516-scheme1.jpg

As part of our studies on the chemistry of bridgehead nitro­gen heterocycles, as well as taking into account our ongoing structural studies (Mamedov et al., 2013; Naghiyev et al., 2020a,b,c; Naghiyev et al., 2021), we report here the crystal structure and Hirshfeld surface analysis of the title compound, C16H13Cl2N5, obtained by an efficient three-component synthetic protocol.

Structural commentary  

In the mol­ecular structure of the title compound, (Fig. 1), the 1,4-di­hydro­pyridine ring (N5/C6–C9/C9A) of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/C2–C4/N5/C6–C9/C9A) adopts a screw-boat conformation with puckering parameters (Cremer & Pople, 1975) Q T = 0.520 (3) Å, θ = 120.8 (3)° and φ = 270.4 (3)°, while the 1,3-diazinane ring (N1/C2–C4/N5/C9A) is puckered [Q T = 0.160 (3) Å, θ = 75.2 (11)° and φ = 169.4 (10)°]. The di­chloro­phenyl ring (C11–C16) makes a dihedral angle of 80.82 (12)° with the mean plane of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system.

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, inter­molecular N—H⋯N hydrogen bonds between the amine functions as donor groups and the nitrile N atoms as acceptor groups and inter­molecular C—H⋯N hydrogen bonds lead to the formation of sheets extending parallel to (110) and (Inline graphic10) (Table 1; Figs. 2, 3 and 4). These hydrogen-bonded sheets cross each other (Fig. 5). C—H⋯π inter­actions (Table 1), which form zigzag chains propagating parallel to [100] (Fig. 6), are also involved in the packing.

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C11–C16 di­chloro­phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N10i 0.85 (3) 2.43 (3) 3.152 (3) 143 (3)
N6—H6A⋯N17ii 0.85 (4) 2.17 (3) 2.927 (3) 149 (3)
N6—H6B⋯N10iii 0.85 (4) 2.16 (4) 2.953 (3) 156 (3)
C4—H4B⋯N17iv 0.99 2.59 3.440 (4) 144
C2—H2ACg3iv 0.99 2.87 3.653 (3) 136

Symmetry codes: (i) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}; (ii) x-{\script{1\over 2}}, y-{\script{1\over 2}}, z; (iii) x, -y+1, z+{\script{1\over 2}}; (iv) x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}.

Figure 2.

Figure 2

A view showing details of the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds in the unit cell of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) x, 1 − y, −Inline graphic + z; (b) x, 1 − y, Inline graphic + z; (c) −Inline graphic + x, −Inline graphic + y, z; (d) Inline graphic + x, Inline graphic + y, z; (e) −Inline graphic + x, Inline graphic − y, −Inline graphic + z; (f) −Inline graphic + x, Inline graphic − y, Inline graphic + z; (g) Inline graphic + x, Inline graphic − y, Inline graphic + z].

Figure 3.

Figure 3

A view along [100] showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 4.

Figure 4

A view along [010] showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 5.

Figure 5

A view along [001] showing the inter­molecular N—H⋯N and C—H⋯N hydrogen bonds of the title compound. The di­chloro­phenyl group and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 6.

Figure 6

A view along [010] showing the C—H⋯π inter­actions in the title compound.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed with CrystalExplorer17.5 (Turner et al., 2017). Fig. 7(a) and Fig. 7(b) show the front and back sides of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over d norm in the range −0.4776 to +1.4517 a.u., using a ‘high standard’ surface resolution colour-mapped over the normalized contact distance. The red, white and blue regions visible on the d norm surfaces indicate contacts with distances shorter, longer and equal to the van der Waals separations. The red spots highlight the inter­atomic contacts, including the N—H⋯N and C—H⋯N hydrogen bonds.

Figure 7.

Figure 7

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.4776 to +1.4517 a.u.

The overall two-dimensional fingerprint plot for the title compound and those delineated into N⋯H/H⋯N, H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl contacts are illustrated in Fig. 8. Numerical details of the various contacts are given in Table 2 and their percentage contributions to the Hirshfeld surfaces are collated in Table 3. N⋯H/H⋯N (28.4%), H⋯H (24.5%), C⋯H/H⋯C (21.4%) and Cl⋯H/H⋯Cl (16.1%) contribute significantly to the packing while Cl⋯C/C⋯Cl, Cl⋯Cl, Cl⋯N/N⋯Cl, C⋯N/N⋯C, C⋯C and N⋯N contacts have a negligible directional impact.

Figure 8.

Figure 8

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) N⋯H/H⋯N, (c) H⋯H, (d) C⋯H/H⋯C and (f) Cl⋯H/H⋯Cl inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
H6B⋯N10 2.16 x, 1 − y, {1\over 2} + z
H1⋯N10 2.43 {1\over 2} + x, {3\over 2} − y, {1\over 2} + z
H4B⋯N17 2.59 −{1\over 2} + x, {3\over 2} − y, {1\over 2} + z
H6A⋯N17 2.16 −{1\over 2} + x, −{1\over 2} + y, z
N10⋯H15 2.81 −1 + x, y, z
H3B⋯H13 2.57 x, y, 1 + z

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
N⋯H/H⋯N 28.4
H⋯H 24.5
C⋯H/H⋯C 21.4
Cl⋯H/H⋯Cl 16.1
Cl⋯C/C⋯Cl 3.3
Cl⋯Cl 2.5
Cl⋯N/N⋯Cl 2.3
C⋯N/N⋯C 0.8
C⋯C 0.6
N⋯N 0.2

The large number of N⋯H/H⋯N, H⋯H, C⋯H/H⋯C and Cl⋯H/H⋯Cl inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Database survey  

Four related compounds, which have the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system of the title compound, were found in a search of the Cambridge Structural Database (CSD version 5.42, update of November 2020; Groom et al., 2016): 9-(4-nitro­benzyl­idene)-8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one (refcode VAMBET; Khodjaniyazov & Ashurov, 2016), 11-(amino­methyl­idene)-8,9,10,11-tetra­hydro­pyrido[2′,3′:4,5]pyrimido[1,2-a]azepin-5(7H)-one (HECLUZ; Khodjaniyazov et al., 2017), 7′-amino-1′H-spiro[cyclo­heptane-1,2′-pyrimido[4,5-d]pyrimidin]-4′(3′H)-one (LEGLIU; Chen et al., 2012) and 11-(2-oxopyrrolidin-1-ylmeth­yl)-1,2,3,4,5,6,11,11a-octa­hydro­pyrido[2,1-b]quinazolin-6-one dihydrate (KUTPEV; Samarov et al., 2010).

In the crystal of VAMBET, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (101). In the mol­ecule of HECLUZ, the seven-membered penta­methyl­ene ring adopts a twist-boat conformation. In the crystal, hydrogen bonds with 16-membered ring and three chain motifs are generated by N—H⋯N and N—H⋯O contacts. The amino group is located close to the nitro­gen atoms, forming hydrogen bonds with Inline graphic(4) and Inline graphic(12) graph-set motifs. This amino group also forms a hydrogen bond with the C=O oxygen atom of a mol­ecule translated parallel to [100], which links the mol­ecules into Inline graphic(16) rings. Hydrogen-bonded chains are formed along [100] by alternating Inline graphic(12) and Inline graphic(16) rings. These chains are stabilized by inter­molecular π–π stacking inter­actions observed between the pyridine and pyrimidine rings. In LEGLIU, the mol­ecular structure is built up from two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds between the two N—H groups and the ketone O atoms of the neighbouring mol­ecules. In KUTPEV, water mol­ecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating parallel to [010]. Neighbouring chains are linked by the quinazoline mol­ecules by means of O—H⋯O=C hydrogen bonds, forming a two-dimensional network.

Synthesis and crystallization  

To a dissolved mixture of 2-(2,6-di­chloro­benzyl­idene)malono­nitrile (1.14 g; 5.1 mmol) and malono­nitrile (0.34 g; 5.2 mmol) in methanol (40 mL), 1,3-di­amino­propane (0.38 g; 5.2 mmol) was added and was stirred at room temperature for 10 min. Then 25 mL of methanol were removed from the reaction mixture that was left overnight. The precipitated crystals were separated by filtration and recrystallized from ethanol (yield 78%; m.p. 541–542 K).

1H NMR (300 MHz, DMSO-d 6): 1.89 (m, 2H, CH2); 3.13 (m, 2H, CH2); 3.67 (m, 2H, CH2); 5.31 (s, 1H, CH-Ar); 6.14 (s, 2H, NH2); 6.78 (s, 1H, NH); 7.25 (t, 1H, Ar-H, 3 J H–H = 7,9); 7.42 (d, 2H, 2Ar-H, 3 J H–H = 7,8). 13C NMR (75 MHz, DMSO-d 6): 22.30 (CH2), 36.32 (Ar-CH), 38.62 (CH2), 42.92 (CH2), 51.70 (=Cquar), 55.06 (=Cquar), 121.61 (CN), 122.04 (CN), 129.56 (3CHarom), 138.25 (3Car), 152.11 (=Cquar), 154.17 (=Cquar).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with U iso(H) = 1.2U eq(C). All N-bound H atoms were located in a difference map [N1—H1 = 0.85 (3) Å, N6—H6A = 0.85 (4) Å and N6—H6B = 0.85 (4) Å] and they were refined with the constraint U iso(H) = 1.2U eq(N).

Table 4. Experimental details.

Crystal data
Chemical formula C16H13Cl2N5
M r 346.21
Crystal system, space group Monoclinic, C c
Temperature (K) 100
a, b, c (Å) 8.6598 (2), 16.0275 (5), 11.6590 (3)
β (°) 90.7364 (9)
V3) 1618.08 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.30 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.880, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 21346, 5861, 4528
R int 0.064
(sin θ/λ)max−1) 0.758
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.090, 1.03
No. of reflections 5861
No. of parameters 217
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.32
Absolute structure Flack x determined using 1774 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013).
Absolute structure parameter 0.27 (3)

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021003583/wm5605sup1.cif

e-77-00516-sup1.cif (638.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021003583/wm5605Isup2.hkl

e-77-00516-Isup2.hkl (466.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021003583/wm5605Isup3.cml

CCDC reference: 2075706

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, VNK, FNN, TAT and AAA; writing (original draft), MA and IGM; writing (review and editing of the manuscript), MA and IGM; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, RMR, AAA and FNN; supervision, IGM and MA.

supplementary crystallographic information

Crystal data

C16H13Cl2N5 F(000) = 712
Mr = 346.21 Dx = 1.421 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
a = 8.6598 (2) Å Cell parameters from 4611 reflections
b = 16.0275 (5) Å θ = 2.5–32.2°
c = 11.6590 (3) Å µ = 0.41 mm1
β = 90.7364 (9)° T = 100 K
V = 1618.08 (8) Å3 Needle, colourless
Z = 4 0.30 × 0.03 × 0.03 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 4528 reflections with I > 2σ(I)
φ and ω scans Rint = 0.064
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 32.6°, θmin = 2.5°
Tmin = 0.880, Tmax = 0.980 h = −13→13
21346 measured reflections k = −24→24
5861 independent reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0315P)2 + 0.2854P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5861 reflections Δρmax = 0.25 e Å3
217 parameters Δρmin = −0.32 e Å3
2 restraints Absolute structure: Flack x determined using 1774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Primary atom site location: difference Fourier map Absolute structure parameter: 0.27 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.48473 (9) 0.76604 (6) 0.16871 (7) 0.0429 (2)
Cl2 0.69787 (9) 0.56058 (4) 0.51124 (7) 0.03080 (17)
N1 0.5635 (3) 0.75406 (14) 0.7250 (2) 0.0199 (5)
H1 0.604 (4) 0.801 (2) 0.709 (3) 0.024*
C2 0.5218 (3) 0.73373 (16) 0.8418 (2) 0.0207 (5)
H2A 0.4154 0.7528 0.8576 0.025*
H2B 0.5934 0.7611 0.8969 0.025*
C3 0.5326 (4) 0.63931 (17) 0.8531 (2) 0.0248 (6)
H3A 0.6392 0.6206 0.8373 0.030*
H3B 0.5064 0.6222 0.9321 0.030*
C4 0.4209 (3) 0.59988 (16) 0.7681 (2) 0.0218 (5)
H4A 0.4471 0.5401 0.7595 0.026*
H4B 0.3151 0.6033 0.7990 0.026*
N5 0.4232 (3) 0.64027 (13) 0.65394 (19) 0.0167 (4)
C6 0.3418 (3) 0.60234 (14) 0.5649 (2) 0.0163 (5)
N6 0.2511 (3) 0.53821 (15) 0.5930 (2) 0.0236 (5)
H6A 0.214 (4) 0.506 (2) 0.541 (3) 0.028*
H6B 0.238 (4) 0.522 (2) 0.661 (3) 0.028*
C7 0.3535 (3) 0.63028 (15) 0.4540 (2) 0.0155 (5)
C8 0.4667 (3) 0.69614 (15) 0.4164 (2) 0.0167 (5)
H8 0.4066 0.7379 0.3704 0.020*
C9 0.5266 (3) 0.74104 (16) 0.5222 (2) 0.0179 (5)
C9A 0.5062 (3) 0.71289 (15) 0.6322 (2) 0.0161 (5)
C10 0.2600 (3) 0.59393 (15) 0.3682 (2) 0.0147 (5)
N10 0.1851 (3) 0.56730 (13) 0.2941 (2) 0.0194 (5)
C11 0.5914 (3) 0.66149 (18) 0.3380 (3) 0.0200 (5)
C12 0.6051 (3) 0.6880 (2) 0.2246 (3) 0.0283 (6)
C13 0.7126 (4) 0.6549 (3) 0.1492 (3) 0.0375 (8)
H13 0.7167 0.6742 0.0723 0.045*
C14 0.8127 (4) 0.5940 (2) 0.1873 (3) 0.0383 (8)
H14 0.8869 0.5715 0.1367 0.046*
C15 0.8058 (3) 0.56565 (19) 0.2989 (3) 0.0314 (7)
H15 0.8746 0.5235 0.3254 0.038*
C16 0.6971 (3) 0.59938 (18) 0.3718 (3) 0.0240 (6)
C17 0.5995 (3) 0.81835 (17) 0.5040 (2) 0.0228 (6)
N17 0.6562 (4) 0.88151 (16) 0.4841 (2) 0.0362 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0391 (4) 0.0681 (6) 0.0215 (4) −0.0012 (4) 0.0009 (3) 0.0190 (4)
Cl2 0.0305 (4) 0.0267 (3) 0.0353 (4) 0.0081 (3) 0.0050 (3) 0.0077 (3)
N1 0.0294 (12) 0.0147 (10) 0.0156 (11) −0.0072 (9) 0.0006 (9) 0.0002 (8)
C2 0.0278 (14) 0.0215 (13) 0.0127 (12) −0.0055 (10) −0.0012 (10) −0.0013 (10)
C3 0.0353 (16) 0.0207 (13) 0.0180 (14) −0.0050 (11) −0.0071 (12) 0.0033 (10)
C4 0.0328 (14) 0.0189 (12) 0.0136 (13) −0.0088 (11) −0.0029 (11) 0.0027 (9)
N5 0.0237 (11) 0.0145 (10) 0.0120 (10) −0.0050 (8) 0.0000 (8) 0.0003 (7)
C6 0.0200 (12) 0.0127 (10) 0.0161 (12) −0.0016 (9) −0.0006 (9) −0.0018 (9)
N6 0.0354 (13) 0.0211 (11) 0.0142 (11) −0.0141 (10) −0.0024 (10) 0.0009 (9)
C7 0.0179 (11) 0.0150 (11) 0.0137 (12) −0.0006 (9) 0.0007 (9) −0.0013 (9)
C8 0.0216 (13) 0.0135 (10) 0.0151 (12) −0.0022 (9) 0.0001 (10) 0.0002 (9)
C9 0.0242 (13) 0.0149 (11) 0.0148 (13) −0.0040 (9) 0.0029 (10) −0.0025 (9)
C9A 0.0189 (12) 0.0131 (10) 0.0163 (12) −0.0025 (9) 0.0001 (9) −0.0007 (9)
C10 0.0179 (11) 0.0123 (10) 0.0140 (12) 0.0010 (9) 0.0034 (9) 0.0018 (8)
N10 0.0226 (11) 0.0193 (11) 0.0163 (12) 0.0030 (9) −0.0013 (9) −0.0016 (8)
C11 0.0220 (12) 0.0199 (11) 0.0181 (12) −0.0082 (9) 0.0022 (10) −0.0051 (9)
C12 0.0257 (15) 0.0417 (17) 0.0175 (15) −0.0130 (13) 0.0008 (11) −0.0018 (12)
C13 0.0281 (16) 0.067 (2) 0.0179 (15) −0.0197 (16) 0.0048 (12) −0.0117 (15)
C14 0.0248 (15) 0.053 (2) 0.038 (2) −0.0131 (15) 0.0123 (13) −0.0255 (16)
C15 0.0214 (14) 0.0300 (15) 0.043 (2) −0.0064 (12) 0.0079 (13) −0.0150 (14)
C16 0.0228 (14) 0.0229 (13) 0.0264 (15) −0.0039 (10) 0.0037 (11) −0.0039 (11)
C17 0.0329 (15) 0.0213 (12) 0.0144 (13) −0.0073 (11) 0.0054 (11) −0.0053 (10)
N17 0.064 (2) 0.0259 (12) 0.0189 (13) −0.0208 (13) 0.0093 (12) −0.0046 (10)

Geometric parameters (Å, º)

Cl1—C12 1.749 (4) N6—H6B 0.85 (4)
Cl2—C16 1.741 (3) C7—C10 1.406 (4)
N1—C9A 1.355 (3) C7—C8 1.509 (3)
N1—C2 1.451 (3) C8—C9 1.514 (4)
N1—H1 0.85 (3) C8—C11 1.529 (4)
C2—C3 1.522 (4) C8—H8 1.0000
C2—H2A 0.9900 C9—C9A 1.373 (4)
C2—H2B 0.9900 C9—C17 1.408 (4)
C3—C4 1.514 (4) C10—N10 1.155 (3)
C3—H3A 0.9900 C11—C12 1.395 (4)
C3—H3B 0.9900 C11—C16 1.405 (4)
C4—N5 1.481 (3) C12—C13 1.392 (4)
C4—H4A 0.9900 C13—C14 1.375 (5)
C4—H4B 0.9900 C13—H13 0.9500
N5—C6 1.387 (3) C14—C15 1.380 (5)
N5—C9A 1.393 (3) C14—H14 0.9500
C6—N6 1.337 (3) C15—C16 1.385 (4)
C6—C7 1.373 (4) C15—H15 0.9500
N6—H6A 0.85 (4) C17—N17 1.150 (3)
C9A—N1—C2 123.1 (2) C7—C8—C9 108.2 (2)
C9A—N1—H1 114 (2) C7—C8—C11 112.7 (2)
C2—N1—H1 121 (2) C9—C8—C11 115.0 (2)
N1—C2—C3 106.8 (2) C7—C8—H8 106.8
N1—C2—H2A 110.4 C9—C8—H8 106.8
C3—C2—H2A 110.4 C11—C8—H8 106.8
N1—C2—H2B 110.4 C9A—C9—C17 119.5 (2)
C3—C2—H2B 110.4 C9A—C9—C8 123.9 (2)
H2A—C2—H2B 108.6 C17—C9—C8 116.4 (2)
C4—C3—C2 108.7 (2) N1—C9A—C9 122.4 (2)
C4—C3—H3A 110.0 N1—C9A—N5 116.5 (2)
C2—C3—H3A 110.0 C9—C9A—N5 121.1 (2)
C4—C3—H3B 110.0 N10—C10—C7 176.6 (3)
C2—C3—H3B 110.0 C12—C11—C16 114.7 (3)
H3A—C3—H3B 108.3 C12—C11—C8 121.7 (3)
N5—C4—C3 113.0 (2) C16—C11—C8 123.5 (3)
N5—C4—H4A 109.0 C13—C12—C11 123.2 (3)
C3—C4—H4A 109.0 C13—C12—Cl1 115.9 (3)
N5—C4—H4B 109.0 C11—C12—Cl1 120.8 (2)
C3—C4—H4B 109.0 C14—C13—C12 119.3 (3)
H4A—C4—H4B 107.8 C14—C13—H13 120.3
C6—N5—C9A 119.3 (2) C12—C13—H13 120.3
C6—N5—C4 117.9 (2) C13—C14—C15 120.2 (3)
C9A—N5—C4 122.8 (2) C13—C14—H14 119.9
N6—C6—C7 122.1 (2) C15—C14—H14 119.9
N6—C6—N5 116.6 (2) C14—C15—C16 119.2 (3)
C7—C6—N5 121.2 (2) C14—C15—H15 120.4
C6—N6—H6A 120 (2) C16—C15—H15 120.4
C6—N6—H6B 124 (2) C15—C16—C11 123.3 (3)
H6A—N6—H6B 115 (3) C15—C16—Cl2 116.0 (3)
C6—C7—C10 119.1 (2) C11—C16—Cl2 120.6 (2)
C6—C7—C8 123.9 (2) N17—C17—C9 176.9 (3)
C10—C7—C8 117.0 (2)
C9A—N1—C2—C3 46.5 (3) C17—C9—C9A—N5 174.5 (3)
N1—C2—C3—C4 −60.3 (3) C8—C9—C9A—N5 −1.8 (4)
C2—C3—C4—N5 43.2 (3) C6—N5—C9A—N1 170.2 (2)
C3—C4—N5—C6 171.2 (2) C4—N5—C9A—N1 −11.5 (4)
C3—C4—N5—C9A −7.1 (4) C6—N5—C9A—C9 −9.1 (4)
C9A—N5—C6—N6 −173.0 (2) C4—N5—C9A—C9 169.2 (2)
C4—N5—C6—N6 8.6 (4) C7—C8—C11—C12 116.4 (3)
C9A—N5—C6—C7 6.4 (4) C9—C8—C11—C12 −118.9 (3)
C4—N5—C6—C7 −172.0 (2) C7—C8—C11—C16 −61.5 (3)
N6—C6—C7—C10 4.1 (4) C9—C8—C11—C16 63.2 (3)
N5—C6—C7—C10 −175.2 (2) C16—C11—C12—C13 1.1 (4)
N6—C6—C7—C8 −173.2 (2) C8—C11—C12—C13 −176.9 (3)
N5—C6—C7—C8 7.4 (4) C16—C11—C12—Cl1 −179.0 (2)
C6—C7—C8—C9 −16.0 (3) C8—C11—C12—Cl1 3.0 (4)
C10—C7—C8—C9 166.6 (2) C11—C12—C13—C14 −1.0 (5)
C6—C7—C8—C11 112.3 (3) Cl1—C12—C13—C14 179.1 (2)
C10—C7—C8—C11 −65.1 (3) C12—C13—C14—C15 0.5 (5)
C7—C8—C9—C9A 13.2 (3) C13—C14—C15—C16 −0.2 (5)
C11—C8—C9—C9A −113.8 (3) C14—C15—C16—C11 0.4 (4)
C7—C8—C9—C17 −163.2 (2) C14—C15—C16—Cl2 −179.4 (2)
C11—C8—C9—C17 69.8 (3) C12—C11—C16—C15 −0.8 (4)
C2—N1—C9A—C9 169.2 (3) C8—C11—C16—C15 177.2 (3)
C2—N1—C9A—N5 −10.1 (4) C12—C11—C16—Cl2 179.0 (2)
C17—C9—C9A—N1 −4.7 (4) C8—C11—C16—Cl2 −3.1 (4)
C8—C9—C9A—N1 179.0 (3)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C11–C16 dichlorophenyl ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···N10i 0.85 (3) 2.43 (3) 3.152 (3) 143 (3)
N6—H6A···N17ii 0.85 (4) 2.17 (3) 2.927 (3) 149 (3)
N6—H6B···N10iii 0.85 (4) 2.16 (4) 2.953 (3) 156 (3)
C4—H4B···N17iv 0.99 2.59 3.440 (4) 144
C2—H2A···Cg3iv 0.99 2.87 3.653 (3) 136

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x−1/2, y−1/2, z; (iii) x, −y+1, z+1/2; (iv) x−1/2, −y+3/2, z+1/2.

Funding Statement

This work was funded by Baki Dövl\#601;t Universiteti grant . RUDN University Strategic Academic Leadership Program grant .

References

  1. Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. [DOI] [PMC free article] [PubMed]
  2. Abdelhamid, A. A., Mohamed, S. K., Maharramov, A. M., Khalilov, A. N. & Allahverdiev, M. A. (2014). J. Saudi Chem. Soc. 18, 474–478.
  3. Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.
  4. Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535.
  5. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546. [DOI] [PMC free article] [PubMed]
  8. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  12. Hermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203–230. [DOI] [PubMed]
  13. Janssen, G. V., van den Heuvel, J. A. C., Megens, R. P., Benningshof, J. C. J. & Ovaa, H. (2018). Bioorg. Med. Chem. 26, 41–49. [DOI] [PubMed]
  14. Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. [DOI] [PMC free article] [PubMed]
  15. Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455. [DOI] [PMC free article] [PubMed]
  16. Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500. [DOI] [PMC free article] [PubMed]
  17. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  18. Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.
  19. Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.
  20. Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234–239. [DOI] [PubMed]
  21. McLaughlin, E. C., Norman, M. W., Ko Ko, T. & Stolt, I. (2014). Tetrahedron Lett. 55, 2609–2611.
  22. Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020a). Acta Cryst. E76, 720–723. [DOI] [PMC free article] [PubMed]
  23. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020b). Molecules, 25, 2235. [DOI] [PMC free article] [PubMed]
  24. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  25. Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020c). Acta Cryst. E76, 1365–1368. [DOI] [PMC free article] [PubMed]
  26. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  27. Pryadeina, M. V., Burgart, Y. V., Kodess, M. I. & Saloutin, V. I. (2005). Russ. Chem. Bull. 54, 2841–2845.
  28. Riva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319–2325.
  29. Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890. [DOI] [PMC free article] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  33. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  34. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.
  35. Ukrainets, I. V., Bereznyakova, N. L., Sim, G. & Davidenko, A. A. (2018). Pharm. Chem. J. 52, 601–605.
  36. Viswanathan, A., Kute, D., Musa, A., Mani, S. K., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
  37. Wu, Y.-J., He, H., Hu, S., Huang, Y., Scola, P. M., Grant-Young, K., Bertekap, R. L., Wu, D., Gao, Q., Li, Y., Klakouski, C. & Westphal, R. S. (2003). J. Med. Chem. 46, 4834–4837. [DOI] [PubMed]
  38. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.
  39. Yahata, H., Saito, M., Sendo, T., Itoh, Y., Uchida, M., Hirakawa, T., Nakano, H. & Oishi, R. (2006). Int. J. Cancer, 118, 2636–2638. [DOI] [PubMed]
  40. Yin, J., Khalilov, A. N., Muthupandi, P., Ladd, R. & Birman, V. B. (2020). J. Am. Chem. Soc. 142, 60–63. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021003583/wm5605sup1.cif

e-77-00516-sup1.cif (638.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021003583/wm5605Isup2.hkl

e-77-00516-Isup2.hkl (466.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021003583/wm5605Isup3.cml

CCDC reference: 2075706

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES