In the title salt, C20H42N4 2+·2ClO4 −, the macrocyclic dication lies about an inversion center. In the crystal, the organic dication and perchlorate anions are linked through N—H⋯O, C—H⋯O and N—H⋯N hydrogen bonds, forming a three-dimensional network.
Keywords: crystal structure, protonated macrocycle, perchlorate, hydrogen bonding, synchrotron radiation
Abstract
The crystal structure of the title salt, C20H42N4 2+·2ClO4 −, has been determined using synchrotron radiation at 220 (2) K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit comprises one half of the organic dication, which lies about a center of inversion, and one perchlorate anion. The macrocyclic dication adopts the most stable endodentate trans-III conformation. The crystal structure is stabilized by intramolecular N—H⋯N, and intermolecular N—H⋯O and C–H⋯O hydrogen bonds involving the macrocycle N—H and C—H groups as donors and the O atoms of perchlorate anions as acceptors, giving rise to a three-dimensional network.
Chemical context
The macrocyclic compound, 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane (C20H40N4) contains a cyclam backbone with two cyclohexane subunits and two methyl groups are also attached to carbon atoms 3 and 14 of the propyl chains that bridge opposite pairs of N atoms in the structure. The macrocycle is basic and readily captures two or four protons to form the [C20H42N4]2+ dication or the [C20H44N4]4+ tetracation in which all of the N—H bonds are generally available for hydrogen-bond formation (Moon et al., 2021 ▸).
Previously, the crystal structures of [Cu(C20H40N4)](NO3)2·3H2O, [Cu(C20H40N4)](NO3)2, [Cu(C20H40N4)](ClO4)2 and [Cu(C20H40N4)(H2O)2](BF4)2·2H2O were reported together with [Zn(C20H40N4)(OCOCH3)2]. In these structures, the copper(II) or zinc(II) cations have tetragonally distorted octahedral environments with the four N atoms of the macrocyclic ligand in equatorial positions and the O atoms of the counter-anions, water molecules or acetato ligands in axial positions (Choi et al., 2006 ▸, 2007 ▸, 2012a ▸,b ▸; Ross et al., 2012 ▸). In these CuII and ZnII complexes, the macrocyclic ligands adopt their most stable trans-III configurations. The crystal structures of (C20H40N4)·2(C11H10O) (Choi et al., 2012c ▸), (C20H40N4)·2(NO2OH) (Moon et al., 2020 ▸), [C20H42N4](SO4)·2MeOH (White et al., 2015 ▸), [C20H42N4]Br2·2H2O (Moon et al., 2021 ▸) and [C20H44N4]Br4·4H2O (Moon et al., 2021 ▸) have also been determined.
We report here the preparation of a new dicationic compound, [C20H42N4](ClO4)2, (I) and its structural characterization by synchrotron single-crystal X-ray diffraction.
Structural commentary
An ellipsoid plot of the molecular components in (I) with the atom-numbering scheme is shown in Fig. 1 ▸. The asymmetric unit consists of one half of the macrocyclic dication, which lies about a center of inversion, and one perchlorate anion. The four N atoms are coplanar, and the two methyl substituents are anti with respect to the macrocyclic plane as a result of the molecular inversion symmetry. The [C20H42N4]2+ dication adopts an endodentate conformation and trans-III configuration along the center of the macrocyclic cavity. The endo conformation of the dication may be due to the intramolecular N—H⋯N hydrogen-bonding interaction. Within the centrosymmetric diprotonated amine unit, the C—C and N—C bond lengths range from 1.5173 (18) to 1.5368 (18) Å and from 1.4795 (16) to 1.5044 (16) Å, respectively. The range of N—C—C and C—N—C angles is 108.89 (11) to 113.50 (11)° and 113.46 (11) to 114.61 (11)°, respectively. The bond lengths and angles within the dication are comparable to those found in the free ligand or other cations in (C20H40N4)·2C11H10O (Choi et al., 2012c ▸), [C20H42N4](SO4)·2MeOH (White et al., 2015 ▸) and [C20H42N4][Fe{HB(pz)3}(CN)3]2·2H2O·2MeOH (Kim et al., 2004 ▸; pz = pyrazolyl). The protonation of the N atoms may depend on the location of the neighboring counter-anions involved in hydrogen bonding. The bond-length difference can be noticed for several N—C bonds. The N—C bond length involving the non-protonated N1 atom is shorter than that involving protonated N2 atom, e.g. N1—C2 [1.4817 (18) Å] and N1—C3 [1.4795 (16) Å] are slightly shorter than N2—C8 [1.5044 (16) Å] and N2—C9 [1.4952 (18) Å]. Each of the two hydrogen atoms of N2 and N2′ (−x + 1, −y + 2, −z + 1) is involved in hydrogen bonding with both of the two remaining nitrogen atoms (Table 1 ▸). The intramolecular hydrogen bonding plays a substantial role in maintaining the endodentate geometry of the diprotonated macrocyclic cation. The Cl—O bond distances in the tetrahedral ClO4 − anion vary from 1.4218 (19) to 1.4529 (16) Å, and the O—Cl—O angles vary from 106.45 (10) to 110.51 (12)°. The distorted geometry of the ClO4 − anion undoubtedly results from its involvement in hydrogen-bonding interactions with the organic cation.
Figure 1.
The molecular structure of compound (I), drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding interactions and primed atoms are related by the symmetry operation (−x + 1, −y + 2, −z + 1).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1N1⋯O3i | 0.86 (2) | 2.22 (2) | 3.007 (2) | 152.4 (18) |
| N2—H2A⋯O1 | 0.90 | 2.09 | 2.970 (2) | 164 |
| N2—H2A⋯O2 | 0.90 | 2.56 | 3.239 (2) | 132 |
| N2—H2B⋯N1ii | 0.90 | 2.29 | 2.9846 (16) | 134 |
| N2—H2B⋯N1 | 0.90 | 2.39 | 2.8230 (17) | 109 |
| C7—H7A⋯O2iii | 0.98 | 2.57 | 3.423 (3) | 145 |
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}.
Supramolecular features
Three N—H⋯O, C–H⋯O and N—H⋯N hydrogen-bonding interactions occur in the crystal structure (Table 1 ▸). The O atoms of the perchlorate anions serve as hydrogen-bond acceptors. The ClO4 − anions are connected to the [C20H42N4]2+ dication by N—H⋯O hydrogen bonds. The macrocyclic dication is linked to a neighboring ClO4 − anion through a very weak C—H⋯O hydrogen bond. The extensive array of these contacts generates a three-dimensional network structure (Fig. 2 ▸), and these hydrogen-bonding interactions help to stabilize the crystal structure.
Figure 2.
Crystal packing in compound (I), viewed perpendicular to the ac plane. Dashed lines represent N—H⋯O (cyan), N—H⋯N (blue) and C—H⋯O (purple) hydrogen-bonding interactions, respectively.
Database survey
A search of the Cambridge Structural (Version 5.42, Update 1, February 2021; Groom et al., 2016 ▸) indicated 121 hits for organic and transition-metal compounds containing the macrocycles (C20H40N4), [C20H42N4]2+ or [C20H44N4]4+. The crystal structures of (C20H40N4)·2C11H10O (Choi et al., 2012c ▸), [C20H42N4](SO4)·2MeOH (White et al., 2015 ▸), [C20H42N4]Br2·2H2O (Moon et al., 2021 ▸), [C20H44N4]Cl4·4H2O (Moon et al., 2018 ▸) and [C20H44N4]Br4·4H2O (Moon et al., 2021 ▸) were reported previously and commented on in the Chemical context section.
Synthesis and crystallization
Commercially available trans-1,2-cyclohexanediamine and methyl vinyl ketone (Sigma-Aldrich) were used as provided. All chemicals were reagent grade and used without further purification. As a starting material, macrocycle 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12)docosane, L, was prepared according to a published procedure (Kang et al., 1991 ▸). Macrocycle L (0.034 g, 0.1 mmol) was suspended in methanol (20 mL) and the pH was adjusted to 3.0 with 0.5 M HClO4. The mixture was stirred magnetically for 30 min and the resulting solution was filtered. The neat filtrate was allowed to stand for one week to give block-like colorless crystals of (I) suitable for X-ray structural analysis.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. All non-hydrogen atoms were refined anisotropically. All C-bound H atoms and the hydrogen atoms of the diprotonated amine (H2A and H2B) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.98 Å and an N—H distance of 0.99 Å, and with U iso(H) values of 1.5 and 1.2 times, respectively, that of the parent atoms. The one N-bound H atom (H1N1) of the amine was assigned based on a difference-Fourier map, and a U iso(H) value of 1.5U eq(N1).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C20H42N4 2+·2ClO4 − |
| M r | 537.47 |
| Crystal system, space group | Monoclinic, P21/n |
| Temperature (K) | 220 |
| a, b, c (Å) | 10.689 (2), 8.4450 (17), 14.020 (3) |
| β (°) | 92.90 (3) |
| V (Å3) | 1263.9 (4) |
| Z | 2 |
| Radiation type | Synchrotron, λ = 0.630 Å |
| μ (mm−1) | 0.22 |
| Crystal size (mm) | 0.08 × 0.08 × 0.08 |
| Data collection | |
| Diffractometer | Rayonix MX225HS CCD area detector |
| Absorption correction | Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003 ▸) |
| T min, T max | 0.957, 1.000 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 12842, 3549, 3164 |
| R int | 0.063 |
| (sin θ/λ)max (Å−1) | 0.696 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.055, 0.172, 1.11 |
| No. of reflections | 3549 |
| No. of parameters | 158 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.86, −0.44 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021004278/vm2247Isup3.cml
CCDC reference: 2079010
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
supplementary crystallographic information
Crystal data
| C20H42N42+·2ClO4− | F(000) = 576 |
| Mr = 537.47 | Dx = 1.412 Mg m−3 |
| Monoclinic, P21/n | Synchrotron radiation, λ = 0.630 Å |
| a = 10.689 (2) Å | Cell parameters from 41946 reflections |
| b = 8.4450 (17) Å | θ = 0.4–33.6° |
| c = 14.020 (3) Å | µ = 0.22 mm−1 |
| β = 92.90 (3)° | T = 220 K |
| V = 1263.9 (4) Å3 | Block, colorless |
| Z = 2 | 0.08 × 0.08 × 0.08 mm |
Data collection
| Rayonix MX225HS CCD area detector diffractometer | 3164 reflections with I > 2σ(I) |
| Radiation source: PLSII 2D bending magnet | Rint = 0.063 |
| ω scan | θmax = 26.0°, θmin = 2.5° |
| Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski et al., 2003) | h = −14→14 |
| Tmin = 0.957, Tmax = 1.000 | k = −11→11 |
| 12842 measured reflections | l = −19→19 |
| 3549 independent reflections |
Refinement
| Refinement on F2 | 0 restraints |
| Least-squares matrix: full | Hydrogen site location: mixed |
| R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
| wR(F2) = 0.172 | w = 1/[σ2(Fo2) + (0.1016P)2 + 0.4023P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.11 | (Δ/σ)max < 0.001 |
| 3549 reflections | Δρmax = 0.86 e Å−3 |
| 158 parameters | Δρmin = −0.44 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.35546 (11) | 1.04262 (14) | 0.58019 (8) | 0.0179 (2) | |
| H1N1 | 0.3881 (18) | 1.135 (3) | 0.5913 (14) | 0.027* | |
| N2 | 0.58037 (10) | 0.87373 (14) | 0.61832 (7) | 0.0189 (2) | |
| H2A | 0.556980 | 0.771653 | 0.612584 | 0.023* | |
| H2B | 0.556374 | 0.923391 | 0.563613 | 0.023* | |
| C1 | 0.17869 (17) | 0.8824 (2) | 0.51236 (13) | 0.0357 (4) | |
| H1A | 0.104402 | 0.890989 | 0.470004 | 0.054* | |
| H1B | 0.158772 | 0.823502 | 0.569045 | 0.054* | |
| H1C | 0.243896 | 0.827482 | 0.479816 | 0.054* | |
| C2 | 0.22417 (13) | 1.04715 (17) | 0.54095 (10) | 0.0208 (3) | |
| H2 | 0.171026 | 1.086474 | 0.591704 | 0.025* | |
| C3 | 0.37355 (13) | 0.95865 (16) | 0.67248 (9) | 0.0186 (3) | |
| H3 | 0.339745 | 0.850008 | 0.664720 | 0.022* | |
| C4 | 0.30834 (15) | 1.03951 (18) | 0.75469 (10) | 0.0254 (3) | |
| H4A | 0.337406 | 1.149317 | 0.760396 | 0.030* | |
| H4B | 0.217795 | 1.041505 | 0.739748 | 0.030* | |
| C5 | 0.33416 (16) | 0.95505 (19) | 0.85002 (10) | 0.0270 (3) | |
| H5A | 0.296287 | 1.015186 | 0.900932 | 0.032* | |
| H5B | 0.295502 | 0.849816 | 0.847313 | 0.032* | |
| C6 | 0.47429 (16) | 0.9383 (2) | 0.87300 (10) | 0.0284 (3) | |
| H6A | 0.488076 | 0.877269 | 0.932053 | 0.034* | |
| H6B | 0.511244 | 1.043474 | 0.883362 | 0.034* | |
| C7 | 0.53896 (14) | 0.85522 (19) | 0.79198 (9) | 0.0258 (3) | |
| H7A | 0.629365 | 0.849658 | 0.807106 | 0.031* | |
| H7B | 0.506976 | 0.746930 | 0.784522 | 0.031* | |
| C8 | 0.51363 (13) | 0.94746 (16) | 0.69916 (9) | 0.0187 (3) | |
| H8 | 0.546260 | 1.056300 | 0.708844 | 0.022* | |
| C9 | 0.71994 (13) | 0.8814 (2) | 0.63136 (9) | 0.0257 (3) | |
| H9A | 0.747588 | 0.810782 | 0.683724 | 0.031* | |
| H9B | 0.744648 | 0.989510 | 0.649456 | 0.031* | |
| C10 | 0.78531 (13) | 0.83475 (19) | 0.54199 (9) | 0.0239 (3) | |
| H10A | 0.750585 | 0.733364 | 0.519265 | 0.029* | |
| H10B | 0.874193 | 0.817560 | 0.559494 | 0.029* | |
| Cl1 | 0.54918 (4) | 0.43816 (5) | 0.65415 (3) | 0.03296 (16) | |
| O1 | 0.45977 (15) | 0.55690 (19) | 0.61926 (13) | 0.0495 (4) | |
| O2 | 0.67029 (15) | 0.5118 (2) | 0.65563 (14) | 0.0618 (5) | |
| O3 | 0.5462 (2) | 0.3046 (2) | 0.59233 (17) | 0.0762 (6) | |
| O4 | 0.51936 (16) | 0.3923 (2) | 0.74864 (12) | 0.0598 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0238 (5) | 0.0176 (5) | 0.0127 (5) | −0.0015 (4) | 0.0047 (4) | 0.0024 (4) |
| N2 | 0.0246 (5) | 0.0218 (6) | 0.0109 (4) | 0.0014 (4) | 0.0056 (4) | 0.0023 (4) |
| C1 | 0.0388 (8) | 0.0307 (8) | 0.0374 (9) | −0.0110 (7) | −0.0011 (6) | −0.0010 (7) |
| C2 | 0.0229 (6) | 0.0235 (7) | 0.0165 (6) | 0.0007 (5) | 0.0065 (4) | 0.0003 (5) |
| C3 | 0.0262 (6) | 0.0175 (6) | 0.0128 (5) | 0.0000 (5) | 0.0073 (4) | 0.0028 (4) |
| C4 | 0.0347 (7) | 0.0271 (7) | 0.0155 (6) | 0.0061 (6) | 0.0121 (5) | 0.0040 (5) |
| C5 | 0.0407 (8) | 0.0275 (7) | 0.0139 (6) | 0.0017 (6) | 0.0128 (5) | 0.0031 (5) |
| C6 | 0.0427 (8) | 0.0326 (8) | 0.0105 (6) | −0.0001 (6) | 0.0061 (5) | 0.0000 (5) |
| C7 | 0.0349 (7) | 0.0315 (7) | 0.0113 (5) | 0.0049 (6) | 0.0060 (5) | 0.0046 (5) |
| C8 | 0.0265 (6) | 0.0194 (6) | 0.0106 (5) | −0.0004 (5) | 0.0063 (4) | 0.0006 (4) |
| C9 | 0.0242 (6) | 0.0387 (8) | 0.0146 (6) | 0.0006 (6) | 0.0047 (4) | 0.0006 (5) |
| C10 | 0.0264 (6) | 0.0291 (7) | 0.0168 (6) | 0.0062 (5) | 0.0063 (5) | 0.0030 (5) |
| Cl1 | 0.0328 (2) | 0.0270 (3) | 0.0393 (3) | −0.00471 (14) | 0.00435 (17) | 0.00776 (14) |
| O1 | 0.0454 (8) | 0.0462 (9) | 0.0564 (9) | 0.0068 (6) | −0.0015 (7) | 0.0120 (7) |
| O2 | 0.0423 (8) | 0.0658 (11) | 0.0770 (12) | −0.0215 (8) | 0.0003 (8) | 0.0287 (10) |
| O3 | 0.1111 (16) | 0.0318 (8) | 0.0893 (14) | −0.0193 (10) | 0.0399 (12) | −0.0118 (9) |
| O4 | 0.0577 (9) | 0.0755 (12) | 0.0463 (9) | −0.0126 (9) | 0.0036 (7) | 0.0284 (9) |
Geometric parameters (Å, º)
| N1—C3 | 1.4795 (16) | C5—C6 | 1.523 (2) |
| N1—C2 | 1.4817 (18) | C5—H5A | 0.9800 |
| N1—H1N1 | 0.86 (2) | C5—H5B | 0.9800 |
| N2—C9 | 1.4952 (18) | C6—C7 | 1.530 (2) |
| N2—C8 | 1.5044 (16) | C6—H6A | 0.9800 |
| N2—H2A | 0.9000 | C6—H6B | 0.9800 |
| N2—H2B | 0.9000 | C7—C8 | 1.5290 (18) |
| C1—C2 | 1.521 (2) | C7—H7A | 0.9800 |
| C1—H1A | 0.9700 | C7—H7B | 0.9800 |
| C1—H1B | 0.9700 | C8—H8 | 0.9900 |
| C1—H1C | 0.9700 | C9—C10 | 1.5173 (18) |
| C2—C10i | 1.5314 (19) | C9—H9A | 0.9800 |
| C2—H2 | 0.9900 | C9—H9B | 0.9800 |
| C3—C8 | 1.5278 (19) | C10—H10A | 0.9800 |
| C3—C4 | 1.5368 (18) | C10—H10B | 0.9800 |
| C3—H3 | 0.9900 | Cl1—O3 | 1.4218 (19) |
| C4—C5 | 1.528 (2) | Cl1—O4 | 1.4315 (16) |
| C4—H4A | 0.9800 | Cl1—O2 | 1.4354 (15) |
| C4—H4B | 0.9800 | Cl1—O1 | 1.4529 (16) |
| C3—N1—C2 | 114.61 (11) | H5A—C5—H5B | 108.0 |
| C3—N1—H1N1 | 103.8 (13) | C5—C6—C7 | 111.23 (13) |
| C2—N1—H1N1 | 114.3 (13) | C5—C6—H6A | 109.4 |
| C9—N2—C8 | 113.46 (11) | C7—C6—H6A | 109.4 |
| C9—N2—H2A | 108.9 | C5—C6—H6B | 109.4 |
| C8—N2—H2A | 108.9 | C7—C6—H6B | 109.4 |
| C9—N2—H2B | 108.9 | H6A—C6—H6B | 108.0 |
| C8—N2—H2B | 108.9 | C8—C7—C6 | 109.34 (13) |
| H2A—N2—H2B | 107.7 | C8—C7—H7A | 109.8 |
| C2—C1—H1A | 109.5 | C6—C7—H7A | 109.8 |
| C2—C1—H1B | 109.5 | C8—C7—H7B | 109.8 |
| H1A—C1—H1B | 109.5 | C6—C7—H7B | 109.8 |
| C2—C1—H1C | 109.5 | H7A—C7—H7B | 108.3 |
| H1A—C1—H1C | 109.5 | N2—C8—C3 | 109.71 (11) |
| H1B—C1—H1C | 109.5 | N2—C8—C7 | 111.10 (11) |
| N1—C2—C1 | 110.99 (12) | C3—C8—C7 | 111.66 (11) |
| N1—C2—C10i | 108.89 (11) | N2—C8—H8 | 108.1 |
| C1—C2—C10i | 112.81 (13) | C3—C8—H8 | 108.1 |
| N1—C2—H2 | 108.0 | C7—C8—H8 | 108.1 |
| C1—C2—H2 | 108.0 | N2—C9—C10 | 112.70 (11) |
| C10i—C2—H2 | 108.0 | N2—C9—H9A | 109.1 |
| N1—C3—C8 | 109.08 (10) | C10—C9—H9A | 109.1 |
| N1—C3—C4 | 113.50 (11) | N2—C9—H9B | 109.1 |
| C8—C3—C4 | 108.65 (12) | C10—C9—H9B | 109.1 |
| N1—C3—H3 | 108.5 | H9A—C9—H9B | 107.8 |
| C8—C3—H3 | 108.5 | C9—C10—C2i | 116.25 (13) |
| C4—C3—H3 | 108.5 | C9—C10—H10A | 108.2 |
| C5—C4—C3 | 112.33 (12) | C2i—C10—H10A | 108.2 |
| C5—C4—H4A | 109.1 | C9—C10—H10B | 108.2 |
| C3—C4—H4A | 109.1 | C2i—C10—H10B | 108.2 |
| C5—C4—H4B | 109.1 | H10A—C10—H10B | 107.4 |
| C3—C4—H4B | 109.1 | O3—Cl1—O4 | 110.51 (12) |
| H4A—C4—H4B | 107.9 | O3—Cl1—O2 | 110.20 (14) |
| C6—C5—C4 | 111.15 (12) | O4—Cl1—O2 | 110.28 (11) |
| C6—C5—H5A | 109.4 | O3—Cl1—O1 | 110.37 (13) |
| C4—C5—H5A | 109.4 | O4—Cl1—O1 | 108.95 (11) |
| C6—C5—H5B | 109.4 | O2—Cl1—O1 | 106.45 (10) |
| C4—C5—H5B | 109.4 | ||
| C3—N1—C2—C1 | −67.02 (15) | C9—N2—C8—C7 | −65.28 (15) |
| C3—N1—C2—C10i | 168.21 (11) | N1—C3—C8—N2 | −53.86 (14) |
| C2—N1—C3—C8 | 173.99 (10) | C4—C3—C8—N2 | −178.05 (10) |
| C2—N1—C3—C4 | −64.72 (15) | N1—C3—C8—C7 | −177.48 (11) |
| N1—C3—C4—C5 | −177.06 (12) | C4—C3—C8—C7 | 58.32 (15) |
| C8—C3—C4—C5 | −55.52 (16) | C6—C7—C8—N2 | 177.49 (12) |
| C3—C4—C5—C6 | 54.72 (17) | C6—C7—C8—C3 | −59.68 (16) |
| C4—C5—C6—C7 | −55.07 (17) | C8—N2—C9—C10 | −169.40 (12) |
| C5—C6—C7—C8 | 57.14 (16) | N2—C9—C10—C2i | 71.50 (17) |
| C9—N2—C8—C3 | 170.77 (11) |
Symmetry code: (i) −x+1, −y+2, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1N1···O3ii | 0.86 (2) | 2.22 (2) | 3.007 (2) | 152.4 (18) |
| N2—H2A···O1 | 0.90 | 2.09 | 2.970 (2) | 164 |
| N2—H2A···O2 | 0.90 | 2.56 | 3.239 (2) | 132 |
| N2—H2B···N1i | 0.90 | 2.29 | 2.9846 (16) | 134 |
| N2—H2B···N1 | 0.90 | 2.39 | 2.8230 (17) | 109 |
| C7—H7A···O2iii | 0.98 | 2.57 | 3.423 (3) | 145 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2.
References
- Choi, J.-H., Joshi, T. & Spiccia, L. (2012a). Z. Anorg. Allg. Chem. 638, 146–151.
- Choi, J.-H., Ryoo, K. S. & Park, K.-M. (2007). Acta Cryst. E63, m2674–m2675.
- Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012b). Acta Cryst. E68, m190. [DOI] [PMC free article] [PubMed]
- Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102. [DOI] [PMC free article] [PubMed]
- Choi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383–m2385.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.
- Kim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333–1339.
- Moon, D. & Choi, J.-H. (2018). Acta Cryst. E74, 1039–1041. [DOI] [PMC free article] [PubMed]
- Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.
- Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2020). Asian J. Chem. 32, 697–702.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.
- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021004278/vm2247Isup3.cml
CCDC reference: 2079010
Additional supporting information: crystallographic information; 3D view; checkCIF report


