Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Apr 23;77(Pt 5):551–554. doi: 10.1107/S2056989021004278

Crystal structure of 3,14-dimethyl-2,13-di­aza-6,17-diazo­niatri­cyclo­[16.4.0.07,12]docosane bis­(per­chlorate) from synchrotron X-ray data

Dohyun Moon a, Sunghwan Jeon b, Jong-Ha Choi b,*
PMCID: PMC8100260  PMID: 34026263

In the title salt, C20H42N4 2+·2ClO4 , the macrocyclic dication lies about an inversion center. In the crystal, the organic dication and perchlorate anions are linked through N—H⋯O, C—H⋯O and N—H⋯N hydrogen bonds, forming a three-dimensional network.

Keywords: crystal structure, protonated macrocycle, perchlorate, hydrogen bonding, synchrotron radiation

Abstract

The crystal structure of the title salt, C20H42N4 2+·2ClO4 , has been determined using synchrotron radiation at 220 (2) K. The structure determination reveals that protonation has occurred at diagonally opposite amine N atoms. The asymmetric unit comprises one half of the organic dication, which lies about a center of inversion, and one perchlorate anion. The macrocyclic dication adopts the most stable endodentate trans-III conformation. The crystal structure is stabilized by intra­molecular N—H⋯N, and inter­molecular N—H⋯O and C–H⋯O hydrogen bonds involving the macrocycle N—H and C—H groups as donors and the O atoms of perchlorate anions as acceptors, giving rise to a three-dimensional network.

Chemical context  

The macrocyclic compound, 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane (C20H40N4) contains a cyclam backbone with two cyclo­hexane subunits and two methyl groups are also attached to carbon atoms 3 and 14 of the propyl chains that bridge opposite pairs of N atoms in the structure. The macrocycle is basic and readily captures two or four protons to form the [C20H42N4]2+ dication or the [C20H44N4]4+ tetra­cation in which all of the N—H bonds are generally available for hydrogen-bond formation (Moon et al., 2021).

Previously, the crystal structures of [Cu(C20H40N4)](NO3)2·3H2O, [Cu(C20H40N4)](NO3)2, [Cu(C20H40N4)](ClO4)2 and [Cu(C20H40N4)(H2O)2](BF4)2·2H2O were reported together with [Zn(C20H40N4)(OCOCH3)2]. In these structures, the copper(II) or zinc(II) cations have tetra­gonally distorted octa­hedral environments with the four N atoms of the macrocyclic ligand in equatorial positions and the O atoms of the counter-anions, water mol­ecules or acetato ligands in axial positions (Choi et al., 2006, 2007, 2012a ,b ; Ross et al., 2012). In these CuII and ZnII complexes, the macrocyclic ligands adopt their most stable trans-III configurations. The crystal structures of (C20H40N4)·2(C11H10O) (Choi et al., 2012c ), (C20H40N4)·2(NO2OH) (Moon et al., 2020), [C20H42N4](SO4)·2MeOH (White et al., 2015), [C20H42N4]Br2·2H2O (Moon et al., 2021) and [C20H44N4]Br4·4H2O (Moon et al., 2021) have also been determined.

We report here the preparation of a new dicationic compound, [C20H42N4](ClO4)2, (I) and its structural characterization by synchrotron single-crystal X-ray diffraction.graphic file with name e-77-00551-scheme1.jpg

Structural commentary  

An ellipsoid plot of the mol­ecular components in (I) with the atom-numbering scheme is shown in Fig. 1. The asymmetric unit consists of one half of the macrocyclic dication, which lies about a center of inversion, and one perchlorate anion. The four N atoms are coplanar, and the two methyl substituents are anti with respect to the macrocyclic plane as a result of the mol­ecular inversion symmetry. The [C20H42N4]2+ dication adopts an endodentate conformation and trans-III configuration along the center of the macrocyclic cavity. The endo conformation of the dication may be due to the intra­molecular N—H⋯N hydrogen-bonding inter­action. Within the centrosymmetric diprotonated amine unit, the C—C and N—C bond lengths range from 1.5173 (18) to 1.5368 (18) Å and from 1.4795 (16) to 1.5044 (16) Å, respectively. The range of N—C—C and C—N—C angles is 108.89 (11) to 113.50 (11)° and 113.46 (11) to 114.61 (11)°, respectively. The bond lengths and angles within the dication are comparable to those found in the free ligand or other cations in (C20H40N4)·2C11H10O (Choi et al., 2012c ), [C20H42N4](SO4)·2MeOH (White et al., 2015) and [C20H42N4][Fe{HB(pz)3}(CN)3]2·2H2O·2MeOH (Kim et al., 2004; pz = pyrazol­yl). The protonation of the N atoms may depend on the location of the neighboring counter-anions involved in hydrogen bonding. The bond-length difference can be noticed for several N—C bonds. The N—C bond length involving the non-protonated N1 atom is shorter than that involving protonated N2 atom, e.g. N1—C2 [1.4817 (18) Å] and N1—C3 [1.4795 (16) Å] are slightly shorter than N2—C8 [1.5044 (16) Å] and N2—C9 [1.4952 (18) Å]. Each of the two hydrogen atoms of N2 and N2′ (−x + 1, −y + 2, −z + 1) is involved in hydrogen bonding with both of the two remaining nitro­gen atoms (Table 1). The intra­molecular hydrogen bonding plays a substantial role in maintaining the endodentate geometry of the diprotonated macrocyclic cation. The Cl—O bond distances in the tetra­hedral ClO4 anion vary from 1.4218 (19) to 1.4529 (16) Å, and the O—Cl—O angles vary from 106.45 (10) to 110.51 (12)°. The distorted geometry of the ClO4 anion undoubtedly results from its involvement in hydrogen-bonding inter­actions with the organic cation.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions and primed atoms are related by the symmetry operation (−x + 1, −y + 2, −z + 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O3i 0.86 (2) 2.22 (2) 3.007 (2) 152.4 (18)
N2—H2A⋯O1 0.90 2.09 2.970 (2) 164
N2—H2A⋯O2 0.90 2.56 3.239 (2) 132
N2—H2B⋯N1ii 0.90 2.29 2.9846 (16) 134
N2—H2B⋯N1 0.90 2.39 2.8230 (17) 109
C7—H7A⋯O2iii 0.98 2.57 3.423 (3) 145

Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}.

Supra­molecular features  

Three N—H⋯O, C–H⋯O and N—H⋯N hydrogen-bonding inter­actions occur in the crystal structure (Table 1). The O atoms of the perchlorate anions serve as hydrogen-bond acceptors. The ClO4 anions are connected to the [C20H42N4]2+ dication by N—H⋯O hydrogen bonds. The macrocyclic dication is linked to a neighboring ClO4 anion through a very weak C—H⋯O hydrogen bond. The extensive array of these contacts generates a three-dimensional network structure (Fig. 2), and these hydrogen-bonding inter­actions help to stabilize the crystal structure.

Figure 2.

Figure 2

Crystal packing in compound (I), viewed perpendicular to the ac plane. Dashed lines represent N—H⋯O (cyan), N—H⋯N (blue) and C—H⋯O (purple) hydrogen-bonding inter­actions, respectively.

Database survey  

A search of the Cambridge Structural (Version 5.42, Update 1, February 2021; Groom et al., 2016) indicated 121 hits for organic and transition-metal compounds containing the macrocycles (C20H40N4), [C20H42N4]2+ or [C20H44N4]4+. The crystal structures of (C20H40N4)·2C11H10O (Choi et al., 2012c ), [C20H42N4](SO4)·2MeOH (White et al., 2015), [C20H42N4]Br2·2H2O (Moon et al., 2021), [C20H44N4]Cl4·4H2O (Moon et al., 2018) and [C20H44N4]Br4·4H2O (Moon et al., 2021) were reported previously and commented on in the Chemical context section.

Synthesis and crystallization  

Commercially available trans-1,2-cyclo­hexa­nedi­amine and methyl vinyl ketone (Sigma-Aldrich) were used as provided. All chemicals were reagent grade and used without further purification. As a starting material, macrocycle 3,14-dimethyl-2,6,13,17-tetra­aza­tri­cyclo­(16.4.0.07,12)docosane, L, was prepared according to a published procedure (Kang et al., 1991). Macrocycle L (0.034 g, 0.1 mmol) was suspended in methanol (20 mL) and the pH was adjusted to 3.0 with 0.5 M HClO4. The mixture was stirred magnetically for 30 min and the resulting solution was filtered. The neat filtrate was allowed to stand for one week to give block-like colorless crystals of (I) suitable for X-ray structural analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. All C-bound H atoms and the hydrogen atoms of the diprotonated amine (H2A and H2B) were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.98 Å and an N—H distance of 0.99 Å, and with U iso(H) values of 1.5 and 1.2 times, respectively, that of the parent atoms. The one N-bound H atom (H1N1) of the amine was assigned based on a difference-Fourier map, and a U iso(H) value of 1.5U eq(N1).

Table 2. Experimental details.

Crystal data
Chemical formula C20H42N4 2+·2ClO4
M r 537.47
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 10.689 (2), 8.4450 (17), 14.020 (3)
β (°) 92.90 (3)
V3) 1263.9 (4)
Z 2
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.22
Crystal size (mm) 0.08 × 0.08 × 0.08
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003)
T min, T max 0.957, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12842, 3549, 3164
R int 0.063
(sin θ/λ)max−1) 0.696
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.055, 0.172, 1.11
No. of reflections 3549
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.86, −0.44

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND 4 (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247sup1.cif

e-77-00551-sup1.cif (626.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247Isup2.hkl

e-77-00551-Isup2.hkl (194.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021004278/vm2247Isup3.cml

CCDC reference: 2079010

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

supplementary crystallographic information

Crystal data

C20H42N42+·2ClO4 F(000) = 576
Mr = 537.47 Dx = 1.412 Mg m3
Monoclinic, P21/n Synchrotron radiation, λ = 0.630 Å
a = 10.689 (2) Å Cell parameters from 41946 reflections
b = 8.4450 (17) Å θ = 0.4–33.6°
c = 14.020 (3) Å µ = 0.22 mm1
β = 92.90 (3)° T = 220 K
V = 1263.9 (4) Å3 Block, colorless
Z = 2 0.08 × 0.08 × 0.08 mm

Data collection

Rayonix MX225HS CCD area detector diffractometer 3164 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.063
ω scan θmax = 26.0°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski et al., 2003) h = −14→14
Tmin = 0.957, Tmax = 1.000 k = −11→11
12842 measured reflections l = −19→19
3549 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.1016P)2 + 0.4023P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
3549 reflections Δρmax = 0.86 e Å3
158 parameters Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.35546 (11) 1.04262 (14) 0.58019 (8) 0.0179 (2)
H1N1 0.3881 (18) 1.135 (3) 0.5913 (14) 0.027*
N2 0.58037 (10) 0.87373 (14) 0.61832 (7) 0.0189 (2)
H2A 0.556980 0.771653 0.612584 0.023*
H2B 0.556374 0.923391 0.563613 0.023*
C1 0.17869 (17) 0.8824 (2) 0.51236 (13) 0.0357 (4)
H1A 0.104402 0.890989 0.470004 0.054*
H1B 0.158772 0.823502 0.569045 0.054*
H1C 0.243896 0.827482 0.479816 0.054*
C2 0.22417 (13) 1.04715 (17) 0.54095 (10) 0.0208 (3)
H2 0.171026 1.086474 0.591704 0.025*
C3 0.37355 (13) 0.95865 (16) 0.67248 (9) 0.0186 (3)
H3 0.339745 0.850008 0.664720 0.022*
C4 0.30834 (15) 1.03951 (18) 0.75469 (10) 0.0254 (3)
H4A 0.337406 1.149317 0.760396 0.030*
H4B 0.217795 1.041505 0.739748 0.030*
C5 0.33416 (16) 0.95505 (19) 0.85002 (10) 0.0270 (3)
H5A 0.296287 1.015186 0.900932 0.032*
H5B 0.295502 0.849816 0.847313 0.032*
C6 0.47429 (16) 0.9383 (2) 0.87300 (10) 0.0284 (3)
H6A 0.488076 0.877269 0.932053 0.034*
H6B 0.511244 1.043474 0.883362 0.034*
C7 0.53896 (14) 0.85522 (19) 0.79198 (9) 0.0258 (3)
H7A 0.629365 0.849658 0.807106 0.031*
H7B 0.506976 0.746930 0.784522 0.031*
C8 0.51363 (13) 0.94746 (16) 0.69916 (9) 0.0187 (3)
H8 0.546260 1.056300 0.708844 0.022*
C9 0.71994 (13) 0.8814 (2) 0.63136 (9) 0.0257 (3)
H9A 0.747588 0.810782 0.683724 0.031*
H9B 0.744648 0.989510 0.649456 0.031*
C10 0.78531 (13) 0.83475 (19) 0.54199 (9) 0.0239 (3)
H10A 0.750585 0.733364 0.519265 0.029*
H10B 0.874193 0.817560 0.559494 0.029*
Cl1 0.54918 (4) 0.43816 (5) 0.65415 (3) 0.03296 (16)
O1 0.45977 (15) 0.55690 (19) 0.61926 (13) 0.0495 (4)
O2 0.67029 (15) 0.5118 (2) 0.65563 (14) 0.0618 (5)
O3 0.5462 (2) 0.3046 (2) 0.59233 (17) 0.0762 (6)
O4 0.51936 (16) 0.3923 (2) 0.74864 (12) 0.0598 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0238 (5) 0.0176 (5) 0.0127 (5) −0.0015 (4) 0.0047 (4) 0.0024 (4)
N2 0.0246 (5) 0.0218 (6) 0.0109 (4) 0.0014 (4) 0.0056 (4) 0.0023 (4)
C1 0.0388 (8) 0.0307 (8) 0.0374 (9) −0.0110 (7) −0.0011 (6) −0.0010 (7)
C2 0.0229 (6) 0.0235 (7) 0.0165 (6) 0.0007 (5) 0.0065 (4) 0.0003 (5)
C3 0.0262 (6) 0.0175 (6) 0.0128 (5) 0.0000 (5) 0.0073 (4) 0.0028 (4)
C4 0.0347 (7) 0.0271 (7) 0.0155 (6) 0.0061 (6) 0.0121 (5) 0.0040 (5)
C5 0.0407 (8) 0.0275 (7) 0.0139 (6) 0.0017 (6) 0.0128 (5) 0.0031 (5)
C6 0.0427 (8) 0.0326 (8) 0.0105 (6) −0.0001 (6) 0.0061 (5) 0.0000 (5)
C7 0.0349 (7) 0.0315 (7) 0.0113 (5) 0.0049 (6) 0.0060 (5) 0.0046 (5)
C8 0.0265 (6) 0.0194 (6) 0.0106 (5) −0.0004 (5) 0.0063 (4) 0.0006 (4)
C9 0.0242 (6) 0.0387 (8) 0.0146 (6) 0.0006 (6) 0.0047 (4) 0.0006 (5)
C10 0.0264 (6) 0.0291 (7) 0.0168 (6) 0.0062 (5) 0.0063 (5) 0.0030 (5)
Cl1 0.0328 (2) 0.0270 (3) 0.0393 (3) −0.00471 (14) 0.00435 (17) 0.00776 (14)
O1 0.0454 (8) 0.0462 (9) 0.0564 (9) 0.0068 (6) −0.0015 (7) 0.0120 (7)
O2 0.0423 (8) 0.0658 (11) 0.0770 (12) −0.0215 (8) 0.0003 (8) 0.0287 (10)
O3 0.1111 (16) 0.0318 (8) 0.0893 (14) −0.0193 (10) 0.0399 (12) −0.0118 (9)
O4 0.0577 (9) 0.0755 (12) 0.0463 (9) −0.0126 (9) 0.0036 (7) 0.0284 (9)

Geometric parameters (Å, º)

N1—C3 1.4795 (16) C5—C6 1.523 (2)
N1—C2 1.4817 (18) C5—H5A 0.9800
N1—H1N1 0.86 (2) C5—H5B 0.9800
N2—C9 1.4952 (18) C6—C7 1.530 (2)
N2—C8 1.5044 (16) C6—H6A 0.9800
N2—H2A 0.9000 C6—H6B 0.9800
N2—H2B 0.9000 C7—C8 1.5290 (18)
C1—C2 1.521 (2) C7—H7A 0.9800
C1—H1A 0.9700 C7—H7B 0.9800
C1—H1B 0.9700 C8—H8 0.9900
C1—H1C 0.9700 C9—C10 1.5173 (18)
C2—C10i 1.5314 (19) C9—H9A 0.9800
C2—H2 0.9900 C9—H9B 0.9800
C3—C8 1.5278 (19) C10—H10A 0.9800
C3—C4 1.5368 (18) C10—H10B 0.9800
C3—H3 0.9900 Cl1—O3 1.4218 (19)
C4—C5 1.528 (2) Cl1—O4 1.4315 (16)
C4—H4A 0.9800 Cl1—O2 1.4354 (15)
C4—H4B 0.9800 Cl1—O1 1.4529 (16)
C3—N1—C2 114.61 (11) H5A—C5—H5B 108.0
C3—N1—H1N1 103.8 (13) C5—C6—C7 111.23 (13)
C2—N1—H1N1 114.3 (13) C5—C6—H6A 109.4
C9—N2—C8 113.46 (11) C7—C6—H6A 109.4
C9—N2—H2A 108.9 C5—C6—H6B 109.4
C8—N2—H2A 108.9 C7—C6—H6B 109.4
C9—N2—H2B 108.9 H6A—C6—H6B 108.0
C8—N2—H2B 108.9 C8—C7—C6 109.34 (13)
H2A—N2—H2B 107.7 C8—C7—H7A 109.8
C2—C1—H1A 109.5 C6—C7—H7A 109.8
C2—C1—H1B 109.5 C8—C7—H7B 109.8
H1A—C1—H1B 109.5 C6—C7—H7B 109.8
C2—C1—H1C 109.5 H7A—C7—H7B 108.3
H1A—C1—H1C 109.5 N2—C8—C3 109.71 (11)
H1B—C1—H1C 109.5 N2—C8—C7 111.10 (11)
N1—C2—C1 110.99 (12) C3—C8—C7 111.66 (11)
N1—C2—C10i 108.89 (11) N2—C8—H8 108.1
C1—C2—C10i 112.81 (13) C3—C8—H8 108.1
N1—C2—H2 108.0 C7—C8—H8 108.1
C1—C2—H2 108.0 N2—C9—C10 112.70 (11)
C10i—C2—H2 108.0 N2—C9—H9A 109.1
N1—C3—C8 109.08 (10) C10—C9—H9A 109.1
N1—C3—C4 113.50 (11) N2—C9—H9B 109.1
C8—C3—C4 108.65 (12) C10—C9—H9B 109.1
N1—C3—H3 108.5 H9A—C9—H9B 107.8
C8—C3—H3 108.5 C9—C10—C2i 116.25 (13)
C4—C3—H3 108.5 C9—C10—H10A 108.2
C5—C4—C3 112.33 (12) C2i—C10—H10A 108.2
C5—C4—H4A 109.1 C9—C10—H10B 108.2
C3—C4—H4A 109.1 C2i—C10—H10B 108.2
C5—C4—H4B 109.1 H10A—C10—H10B 107.4
C3—C4—H4B 109.1 O3—Cl1—O4 110.51 (12)
H4A—C4—H4B 107.9 O3—Cl1—O2 110.20 (14)
C6—C5—C4 111.15 (12) O4—Cl1—O2 110.28 (11)
C6—C5—H5A 109.4 O3—Cl1—O1 110.37 (13)
C4—C5—H5A 109.4 O4—Cl1—O1 108.95 (11)
C6—C5—H5B 109.4 O2—Cl1—O1 106.45 (10)
C4—C5—H5B 109.4
C3—N1—C2—C1 −67.02 (15) C9—N2—C8—C7 −65.28 (15)
C3—N1—C2—C10i 168.21 (11) N1—C3—C8—N2 −53.86 (14)
C2—N1—C3—C8 173.99 (10) C4—C3—C8—N2 −178.05 (10)
C2—N1—C3—C4 −64.72 (15) N1—C3—C8—C7 −177.48 (11)
N1—C3—C4—C5 −177.06 (12) C4—C3—C8—C7 58.32 (15)
C8—C3—C4—C5 −55.52 (16) C6—C7—C8—N2 177.49 (12)
C3—C4—C5—C6 54.72 (17) C6—C7—C8—C3 −59.68 (16)
C4—C5—C6—C7 −55.07 (17) C8—N2—C9—C10 −169.40 (12)
C5—C6—C7—C8 57.14 (16) N2—C9—C10—C2i 71.50 (17)
C9—N2—C8—C3 170.77 (11)

Symmetry code: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O3ii 0.86 (2) 2.22 (2) 3.007 (2) 152.4 (18)
N2—H2A···O1 0.90 2.09 2.970 (2) 164
N2—H2A···O2 0.90 2.56 3.239 (2) 132
N2—H2B···N1i 0.90 2.29 2.9846 (16) 134
N2—H2B···N1 0.90 2.39 2.8230 (17) 109
C7—H7A···O2iii 0.98 2.57 3.423 (3) 145

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+3/2.

References

  1. Choi, J.-H., Joshi, T. & Spiccia, L. (2012a). Z. Anorg. Allg. Chem. 638, 146–151.
  2. Choi, J.-H., Ryoo, K. S. & Park, K.-M. (2007). Acta Cryst. E63, m2674–m2675.
  3. Choi, J.-H., Subhan, M. A. & Ng, S. W. (2012b). Acta Cryst. E68, m190. [DOI] [PMC free article] [PubMed]
  4. Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012c). Acta Cryst. E68, o102. [DOI] [PMC free article] [PubMed]
  5. Choi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383–m2385.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.
  8. Kim, J., Han, S., Cho, I.-K., Choi, K. Y., Heu, M., Yoon, S. & Suh, B. J. (2004). Polyhedron, 23, 1333–1339.
  9. Moon, D. & Choi, J.-H. (2018). Acta Cryst. E74, 1039–1041. [DOI] [PMC free article] [PubMed]
  10. Moon, D., Jeon, S. & Choi, J.-H. (2021). J. Mol. Struct. 1232, 130011.
  11. Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2020). Asian J. Chem. 32, 697–702.
  12. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.
  14. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  15. Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. [DOI] [PubMed]
  19. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  20. White, F., Sadler, P. J. & Melchart, M. (2015). CSD Communication (CCDC 1408165). CCDC, Cambridge, England.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247sup1.cif

e-77-00551-sup1.cif (626.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004278/vm2247Isup2.hkl

e-77-00551-Isup2.hkl (194.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021004278/vm2247Isup3.cml

CCDC reference: 2079010

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES