Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Apr 9;77(Pt 5):480–490. doi: 10.1107/S2056989021003479

A new tetra­kis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid: crystal structures of two triclinic polymorphs and of two potassium–organic frameworks

Jessica Pacifico a, Helen Stoeckli-Evans b,*
PMCID: PMC8100264  PMID: 34026250

The crystal structures of two triclinic polymorphs of a new tetra­kis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfanedi­yl)]tetra­propionic acid, are reported, together with the crystal structures of two potassium-organic frameworks.

Keywords: crystal structure, pyrazine, tetra­kis­, carboxyl­ate, polymorphism, hydrogen bonding, supra­molecular framework, alkali metal, potassium-organic framework, Hirshfeld surface, energy framework

Abstract

Two polymorphs of the title tetra­kis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfanedi­yl]}tetra­propionic acid, C20H28N2O8S4, (H4L1), have been obtained, H4L1_A and H4L1_B. Each structure crystallized with half a mol­ecule in the asymmetric unit of a triclinic P Inline graphic unit cell. The whole mol­ecules are generated by inversion symmetry, with the pyrazine rings being located about inversion centers. The crystals of H4L1_B were of poor quality, but the X-ray diffraction analysis does show the change in conformation of the –CH2—S—CH2—CH2– side chains compared to those in polymorph H4L1_A. In the crystal of H4L1_A, mol­ecules are linked by two pairs of O—H⋯O hydrogen bonds, enclosing R 2 2(8) ring motifs forming layers parallel to plane (100), which are linked by C—H⋯O hydrogen bonds to form a supra­molecular framework. In the crystal of H4L1_B, mol­ecules are also linked by two pairs of O—H⋯O hydrogen bonds enclosing R 2 2(8) ring motifs, however here, chains are formed propagating in the [001] direction and stacking up the a-axis. Reaction of H4L1 with Hg(NO3)2 in the presence of a potassium acetate buffer did not produce the expected binuclear complex, instead crystals of a potassium–organic framework were obtained, poly[(μ-3-{[(3,5,6-tris­{[(2-carb­oxy­eth­yl)sulfan­yl]meth­yl}pyrazin-2-yl)meth­yl]sulfan­yl}propano­ato)potassium], [K(C20H27N2O8S4)]n (KH3L1). The organic mono-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. A carb­oxy H atom is disordered by symmetry and the charge is compensated for by a potassium ion. A similar reaction with Zn(NO3)2 resulted in the formation of crystals of a dipotassium-organic framework, poly[(μ-3,3′-{[(3,6-bis­{[(2-carb­oxy­eth­yl)sulfan­yl]meth­yl}pyrazine-2,5-di­yl)bis(methyl­ene)]bis­(sulfanedi­yl)}dipropionato)dipotassium], [K2(C20H26N2O8S4)]n (K2H2L1). Here, the organic di-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. Two symmetry-related acid groups are deprotonated and the charges are compensated for by two potassium ions.

Chemical context  

The title tetrakis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfane­di­yl)]tetra­propionic acid (H4L1), is to the best of our knowledge, only the third pyrazine tetrakis-substituted carb­oxy­lic acid ligand to have been synthesized. The first is pyrazine-2,3,5,6-tetra­carb­oxy­lic acid (pztca), which was originally synthesized by Wolff at the end of the 19th century (Wolff, 1887, 1893), while the second is 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetra­yl)tetra­benzoic acid (pztba), which was first synthesized by Jiang et al. (2017). Pztca (Fig. 1) has been used to synthesize a number of coordination polymers, the first being poly{[(2,5-di­carb­oxy­pyrazine-3,6-di­carboxyl­ato)transdi­aqua­iron(II) dihydrate]} (Marioni et al., 1986), while pztba (Fig. 1) has been shown to form a series of metal–organic frameworks (Jiang et al., 2017; Wang et al., 2019).graphic file with name e-77-00480-scheme1.jpg

Figure 1.

Figure 1

Chemical diagrams for pyrazine-2,3,5,6-tetra­carb­oxy­lic acid (pztca), 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetra­yl)tetra­benzoic acid (pztba), pyrazine-2,3-di­carb­oxy­lic acid (pzdca) and pyridine-2,6-di­carb­oxy­lic acid (pydca).

The title ligand was synthesized to study its coordination behaviour with various transition metal ions (Pacifico, 2003). Potentially the ligand can coordinate in a bis-penta­dentate manner, as was shown to be the case for a similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­kis­(ethan-1-amine) (H4L2), for which two nickel(II) binuclear complexes, I and II, were synthesized (Pacifico, 2003; Pacifico & Stoeckli-Evans, 2020); see Fig. 2.

Figure 2.

Figure 2

Chemical diagram for 2,2′,2′′,2′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)tetra­kis­(sulfanedi­yl)]tetra­kis­(ethan-1-amine) (H4L2) and two nickel(II) binuclear complexes, I and II (Pacifico & Stoeckli-Evans, 2020).

Structural commentary  

The title tetra­kis-substituted pyrazine carb­oxy­lic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene))tetra­kis­(sulfanedi­yl)]tetra­propionic acid (H4L1_A), crystallized with half a mol­ecule in the asymmetric unit (Fig. 3). The whole mol­ecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center.

Figure 3.

Figure 3

The mol­ecular structure of H4L1_A, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by symmetry operator −x + 2, −y + 1, −z + 1.

In an attempt to form a co-crystal, equimolar amounts of H4L1 and terephthalic acid were mixed in methanol. On slow evaporation of the solvent, colourless plate-like crystals were obtained. X-ray diffraction analysis revealed their structure to be that of a second triclinic P Inline graphic polymorph, H4L1_B (Fig. 4). It crystallized with half a mol­ecule in the asymmetric unit and the whole mol­ecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center. The crystals were of poor quality with one CH2—CH2—CO2H side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B) of the centrosymmetric mol­ecule being positionally disordered (Fig. 4 b). The difference in the two polymorphs is essentially in the orientation of the –CH2—S—CH2—CH2—C– side arms, as shown in Fig. 5 a and b. Selected torsion angles are given in Table 1.

Figure 4.

Figure 4

(a) The mol­ecular structure of H4L1_B, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. (b) A view of the mol­ecular structure of H4L1_B with the symmetry-related disordered side chains (C8/C8B, C9/C9B, C10/C10B, O3/O3B and O4/O4B) shown with dashed bonds. Unlabelled atoms are related to labelled atoms by symmetry operator −x + 2, −y + 1, −z + 1.

Figure 5.

Figure 5

A comparison of the orientation of the –CH2—S—CH2—CH2– side chains in (a) polymorph H4L1_A, (b) for the major disordered component of polymorph H4L1_B, (c) KH3L1 and (d) K2H2L1 [see Table 1 for further details; symmetry codes: (i) = (ii) −x + 2, −y + 1, −z + 1; (iii) −x + Inline graphic, −y + Inline graphic, −z; (iv) −x + Inline graphic, −y + Inline graphic, −z + 1].

Table 1. Selected torsion angles (°) along the Car—CH2—S—CH2—CH2—CO2H side chains in compounds H4L1_A, H4L1_B, KH3L1 and K2H2L1 .

Torsion angle H4L1_A H4L1_B KH3L1 K2H2L1
C1—C3—S1—C4 174.1 (2) −72.6 (4) −72.32) −65.81 (15)
C3—S1—C4—C5 −155.3 (2) −86.7 (4) −90.3 (2) −87.72 (15)
S1—C4—C5—C6 −167.9 (2) −65.0 (6) −76.4 (3) −73.19 (18)
C2—C7—S2—C8 57.6 (2) −66.8 (4) −62.3 (2) −67.34 (15)
C7—S2—C8—C9 65.7 (2) −178.1 (5) −77.5 (2) 97.89 (15)
S2—C8—C9—C10 174.8 (2) −172.5 (5) −173.8 (2) 174.51 (12)

Reaction of H4L1 with Hg(NO3)2 in the presence a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a potassium–organic framework (KH3L1); see Fig. 6. The asymmetric unit consists of half a mono-deprotonated ligand mol­ecule located about an inversion center, and half a potassium ion located on an inversion center. The carb­oxy H atom is disordered by symmetry. The K+ ion is linked to the O atoms of the acid groups and has a coordination number of eight (KO8) and a distorted dodeca­hedral geometry (Fig. 7 a). The K⋯O bond lengths vary between 2.682 (2) and 3.069 (3) Å (Table 2). Inter­estingly, here there is a significant difference between the K⋯O(C=O) and K⋯O(O) distances: 2.6823 (2) and 2.828 (2) Å compared to 3.056 (3) and 3.069 (3) Å, respectively.

Figure 6.

Figure 6

The mol­ecular structure of complex KH3L1, with labels for the atoms in the asymmetric unit of the organic anion. Unlabelled atoms are related to labelled atoms by symmetry operator (i) −x + Inline graphic, −y + Inline graphic, −z. Displacement ellipsoids are drawn at the 50% probability level. [Further symmetry codes are: (ii) −x + 1, −y, −z: (iii) x, y + 1, z; (iv) x, y, z + 1; (v) −x + Inline graphic, −y + Inline graphic, −z − 1; (vi) x − Inline graphic, y + Inline graphic, z; (vii) −x + Inline graphic, −y − Inline graphic, −z.]

Figure 7.

Figure 7

(a) Views of the coordination sphere of the potassium ion in KH3L1 [symmetry code: (i) −x + 1, y, −z − Inline graphic] and (b) views of the coordination sphere of the potassium ions in K2H2L1 [symmetry codes: (i) −x, y, −z + Inline graphic; (ii) x, y − 1, z; (iii) x, y + 1, z; (iv) −x, y + 1, −z + Inline graphic].

Table 2. Selected bond lengths (Å) for KH3L1 .

K1—O1 2.828 (2) K1—O3ii 2.682 (2)
K1—O2i 3.056 (3) K1—O4iii 3.069 (3)

Symmetry codes: (i) x, -y, z-{\script{1\over 2}}; (ii) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}; (iii) x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}.

Reaction of H4L1 with Zn(NO3)2 in the presence of a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a dipotassium–organic framework (K2H2L1); see Fig. 8. The asymmetric unit consists of half a di-deprotonated ligand mol­ecule located about an inversion center, and two half potassium ions located on inversion centers. The K+ ions are linked to the O atoms of the acid groups and both K+ ions have a coordination number of six (KO6) and have edge-sharing bipyramidal geometries. The K+ ions are bridged by atoms O1 and O3, forming chains propagating along the b-axis direction (Fig. 7 b). The K⋯O bond lengths vary between 2.6682 (12) and 2.8099 (14) Å (Table 3). Here, the difference between the K⋯O(C=O) and K⋯O(O) bond lengths is much less significant (Table 3).

Figure 8.

Figure 8

The mol­ecular structure of complex K2H2L1, with labels for the atoms in the asymmetric unit of the organic dianion. Unlabelled atoms are related to labelled atoms by symmetry operator (i) −x + Inline graphic, −y + Inline graphic, −z + 1. Displacement ellipsoids are drawn at the 50% probability level. [Further symmetry codes are: (ii) −x, −y + 2, −z + 1; (iii) x, y + 1, z; (iv) x + Inline graphic, y + Inline graphic, z; (v) −x + Inline graphic, −y + Inline graphic, −z + 1; (vi) x + Inline graphic, y + Inline graphic, z.]

Table 3. Selected bond lengths (Å) for K2H2L1 .

K1—O1i 2.7084 (14) K2—O1 2.7132 (13)
K1—O2 2.6682 (12) K2—O3iii 2.6682 (13)
K1—O3ii 2.8099 (14) K2—O4ii 2.7209 (12)

Symmetry codes: (i) x, -y+2, z+{\script{1\over 2}}; (ii) x-{\script{1\over 2}}, y-{\script{1\over 2}}, z; (iii) -x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1.

The K⋯O bond lengths in the KH3L1 and K2H2L1 frameworks are close to those observed for similar compounds; see §6 Database survey. The conformation of one of the –CH2—S—CH2—CH2– side chains (involving atom S1) of the organic anion are similar, and similar to that in H4L1_B (Fig. 5 b), while the conformation of the second (involving atom S2) differs significantly (Fig. 5 c and d, and Table 1).

Supra­molecular features  

In the crystal of H4L1_A, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carb­oxy­lic acid inversion dimers enclosing Inline graphic(8) loops (Fig. 9 and Table 4). These inter­actions lead to the formation of layers lying parallel to the bc plane. The layers are linked by C—H⋯O hydrogen bonds (Table 4), forming a supra­molecular framework.

Figure 9.

Figure 9

A view along the a axis of the crystal packing of H4L1_A. The hydrogen bonds are shown as dashed lines (see Table 4).

Table 4. Hydrogen-bond geometry (Å, °) for H4L1_A .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.87 (2) 1.80 (2) 2.667 (3) 172 (5)
O4—H4O⋯O3ii 0.83 (2) 1.85 (2) 2.673 (3) 175 (5)
C5—H5A⋯O3iii 0.97 2.55 3.405 (4) 147
C8—H8A⋯O4iv 0.97 2.40 3.308 (4) 156

Symmetry codes: (i) -x-1, -y, -z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) x+1, y, z.

In the crystal of H4L1_B, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction and enclosing Inline graphic(8) loops (Fig. 10 and Table 5). There are no other significant directional contacts present in the crystal.

Figure 10.

Figure 10

A view along the a-axis of the crystal packing of H4L1_B. Only atoms of the major component are shown. The hydrogen bonds are shown as dashed lines (see Table 5).

Table 5. Hydrogen-bond geometry (Å, °) for H4L1_B .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.82 1.94 2.66 (1) 146
O2—H2O⋯O3B i 0.82 2.20 2.77 (3) 127
O4—H4O⋯O1ii 0.82 1.88 2.66 (1) 158
O4B—H4OB⋯O1ii 0.82 1.86 2.67 (4) 170

Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.

In both KH3L1 and K2H2L1, the organic anions are arranged as rungs of parallel ladders, so forming the framework structures, as shown in Figs. 11 and 12, respectively. The frameworks are reinforced by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds (Tables 6 and 7, respectively).

Figure 11.

Figure 11

A view along the b axis of the crystal packing of complex KH3L1. For clarity, the H atoms have been omitted.

Figure 12.

Figure 12

A view along the b axis of the crystal packing of complex K2H2L1. For clarity, the H atoms have been omitted.

Table 6. Hydrogen-bond geometry (Å, °) for KH3L1 .

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O1iv 0.80 (5) 1.86 (5) 2.661 (3) 180 (7)
O2—H20⋯O2v 1.24 (1) 1.24 (1) 2.436 (3) 159 (7)
C4—H4A⋯N1 0.99 2.52 3.340 (4) 140
C4—H4B⋯O3vi 0.99 2.49 3.114 (4) 121
C5—H5B⋯O2i 0.99 2.60 3.467 (4) 146
C7—H7B⋯N1vii 0.99 2.60 3.454 (4) 144
C9—H9A⋯O3vii 0.99 2.58 3.465 (4) 149

Symmetry codes: (i) x, -y, z-{\script{1\over 2}}; (iv) x-{\script{1\over 2}}, y+{\script{1\over 2}}, z; (v) -x+1, y, -z+{\script{1\over 2}}; (vi) -x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z; (vii) x, -y, z+{\script{1\over 2}}.

Table 7. Hydrogen-bond geometry (Å, °) for K2H2L1 .

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O2iv 0.85 (2) 1.61 (2) 2.4637 (16) 177 (3)
C4—H4A⋯N1 0.99 2.44 3.266 (2) 141
C8—H8A⋯O3v 0.99 2.53 3.436 (2) 151

Symmetry codes: (iv) x+{\script{1\over 2}}, y+{\script{1\over 2}}, z; (v) x, -y+2, z-{\script{1\over 2}}.

Hirshfeld surface analysis and two-dimensional fingerprint plots for H4L1_A, and H4L1_B  

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017) following the protocol of Tiekink and collaborators (Tan et al., 2019).

The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of H4L1_A, and H4L1_B mapped over d norm are given in Fig. 13. The most significant short contacts in the crystal structures of the two polymorphs are given in Table 8. The large red spots in Fig. 13 a and b concern the O—H⋯O hydrogen bonds in the crystal structures of both compounds.

Figure 13.

Figure 13

The Hirshfeld surfaces of compounds (a) H4L1_A and (b) H4L1_B, mapped over d norm in the colour ranges of −0.7146 to 1.2167 and −0.6847 to 1.3548 au., respectively.

Table 8. Short contacts (Å) in the crystal structures of H4L1_A and H4L1_B a .

Atom 1 Atom 2 Length Length − VdW Symm. op. 1 Symm. op. 2
H4L1_A          
O1 H2O 1.798 −0.922 x, y, z −1 − x, −y, −z
O3 H4O 1.843 −0.877 x, y, z 1 − x, 1 − y, −z
O1 O2 2.667 −0.373 x, y, z −1 − x, −y, −z
O3 O4 2.673 −0.367 x, y, z 1 − x, 1 − y, −z
O4 H8A 2.399 −0.321 x, y, z −1 + x, y, z
O2 O4 3.015 −0.025 x, y, z x, 1 − y, −z
C6 H2O 2.667 −0.233 x, y, z −1 − x, −y, −z
C10 H4O 2.668 −0.232 x, y, z 1 − x, 1 − y, −z
H5A O3 2.549 −0.171 x, y, z −1 + x, y, z
H4O H4O 2.371 −0.029 x, y, z 1 − x, 1 − y, −z
H2O H2O 2.389 −0.011 x, y, z −1 − x, −y, −z
N1 H3A 2.807 0.057 x, y, z 1 − x, 1 − y, 1 − z
O4 C8 3.308 0.088 x, y, z −1 + x, y, z
O2 H8A 2.820 0.100 x, y, z 1 − x, 1 − y, −z
           
H4L1_Ba          
H4O O1 1.879 −0.841 x, y, z x, y, −1 + z
O4 O1 2.658 −0.382 x, y, z x, y, −1 + z
O3 O2 2.663 −0.377 x, y, z x, y, −1 + z
H4O C6 2.580 −0.320 x, y, z x, y, −1 + z
O4 O2 2.799 −0.241 x, y, z −1 + x, y, −1 + z
H4O H2O 2.173 −0.227 x, y, z x, y, −1 + z
O1 O2 2.982 −0.058 x, y, z −1 + x, y, z
S1 H3A 2.951 −0.049 x, y, z −1 + x, y, z
S1 S2 3.590 −0.010 x, y, z 1 − x, −y, 1 − z
O4 O3 3.041 0.001 x, y, z −1 + x, y, z
S2 S2 3.613 0.013 x, y, z 1 − x, −y, 1 − z
H8A O3 2.749 0.029 x, y, z −1 + x, y, z
S1 H5A 3.047 0.047 x, y, z −1 + x, y, z
H4O O2 2.775 0.055 x, y, z −1 + x, y, −1 + z
O4 H2O 2.776 0.056 x, y, z −1 + x, y, −1 + z
C10 H2O 2.960 0.060 x, y, z 2 − x, −y, 1 − z
O3 H2O 2.796 0.076 x, y, z 2 − x, −y, 1 − z
H7B C3 2.974 0.074 x, y, z −1 + x, y, z
S2 H7B 3.082 0.082 x, y, z 1 − x, −y, 1 − z
O2 H5B 2.802 0.082 2 − x, 1 − y, 1 − z −1 + x, y, −1 + z
S1 H9A 3.085 0.085 x, y, z 1 − x, −y, 1 − z

Note: (a) major component of H4L1_B.

The percentage contributions of inter-atomic contacts to the HS for both compounds are compared in Table 9. The two-dimensional fingerprint plots for compounds H4L1_A, and H4L1_B are shown in Fig. 14. They reveal that the principal contributions to the overall HS involve H⋯H contacts at 37.2 and 36.3%, respectively, and O⋯H/H⋯O contacts at, respectively, 37.7 and 32.2%.

Table 9. Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of H4L1_A and H4L1_Ba .

Contact % contribution % contribution
  H4L1_A H4L1_B a
H⋯H 37.2 36.3
O⋯H/H⋯O 37.7 32.2
S⋯H/H⋯S 13.4 16.1
C⋯H/H⋯C 4.5 4.9
N⋯H/H⋯N 3.0 2.5
C⋯N 0 0.8
C⋯O 1.0 0.7
C⋯S 1.2 0
N⋯S 0.4 0.4
O⋯O 1.3 4.9
O⋯S 0.2 0
S⋯S 0.2 1.2

Note: (a) major component of H4L1_B.

Figure 14.

Figure 14

The full two-dimensional fingerprint plots for compounds (a) H4L1_A and (b) H4L1_B, and those delineated into H⋯H, O⋯H/H⋯O and S⋯H/H⋯S contacts.

The third most important contribution to the HS is from the S⋯H/H⋯S contacts at 13.4 and 16.1%, for H4L1_A, and H4L1_B, respectively. These are followed by C⋯H/H⋯H contacts at, respectively, 4.5 and 4.9%. The N⋯H/H⋯N contacts contribute, respectively, 3.0 and 2.5%.

Energies frameworks for H4L1_A, and H4L1_B  

The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule for H4L1_A, and H4L1_B, are given in Fig. 15. Full details of the various contributions to the total energy (E tot) are also included there; see Tan et al. (2019) for an explanation of the various parameters.

Figure 15.

Figure 15

The colour-coded inter­action mappings within a radius of 6 Å of a central reference mol­ecule for (a) H4L1_A and (b) H4L1_B.

A comparison of the energy frameworks calculated for H4L1_A, and H4L1_B, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (Etot), are shown in Fig. 16. The energies were obtained by using the wave function at the HF/3-21G level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Turner et al., 2017; Tan et al., 2019). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference mol­ecule. It can be seen that for both polymorphs the major contribution to the inter­molecular inter­actions is from electrostatic potential forces (E ele), reflecting the presence of the classical O—H⋯O hydrogen bonds.

Figure 16.

Figure 16

The energy frameworks calculated for (a) H4L1_A and (b) H4L1_B, both viewed along the b-axis direction, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot).

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016) for tetrakis-substituted pyrazine carb­oxy­lic acids gave results for only two such ligands, viz. 2,3,5,6-pyrazine­tetra­carb­oxy­lic acid (pztca) and 2,3,5,6-tetra­kis­(4-carb­oxy­phen­yl)pyrazine (pztba). Ligand pztba has been shown to be extremely successful in forming metal–organic frameworks (Jiang et al., 2017; Wang et al., 2019).

Potassium salts of carb­oxy­lic acids are relatively common. A search for potassium salts of purely organic carb­oxy­lic acids and excluding hydrates, yielded over 200 hits. The potassium salt of pztca has been reported, viz. catena-[(μ4-3,5,6-tri­carb­oxy­pyrazine-2-carboxyl­ato)potassium] (CSD refcode UBUPAK; Masci et al., 2010). The structure of UBUPAK is that of a potassium–organic framework (Fig. 17 a). The asymmetric unit consists of half a mono-deprotonated ligand mol­ecule located about an inversion center, and half a potassium ion. The carb­oxy H atom is disordered by symmetry, similar to the situation in the structure of KH3L1. Here the K⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å. The K+ cation has a coordination number of 8 (KO8) and a distorted dodeca­hedral geometry as in KH3L1 (Fig. 7 a and 11).

Figure 17.

Figure 17

(a) A view along the a axis of the potassium–organic framework of UBUPAK (Masci et al., 2010) and (b) a view along the c axis of the potassium–organic framework of MUMPIW (Li et al., 2020).

The structure of the potassium salt of pyrazine-2,3-di­carb­oxy­lic acid (pzdca; Fig. 1), catena-[(μ2-3-carb­oxy­pyrazine-2-carboxyl­ato)-(μ2-pyrazine-2,3-di­carb­oxy­lic acid)di­aqua­potassium], has been reported (RISYIC; Tombul et al., 2008). It has a polymer chain structure with the chains linked by O—H⋯O hydrogen bonds, forming a supra­molecular framework. Here the K⋯O bond lengths vary from 2.8772 (14) to 3.0898 (14) Å.

The structures of two potassium salts of 2,6-pyridine-di­carb­oxy­lic acid (pydca; Fig. 1) have been reported. They include, bis­(μ2-pyridine-2,6-di­carb­oxy­lic acid-N,O,O′:O′)-hexa­aqua­bis­(6-carb­oxy­pyridine-2-carboxyl­ato-O)dipotassium (HAMBEE; Santra et al., 2011; HAMBEE01; Hayati et al., 2017), and catena-[(μ-6-carb­oxy­pyridine-2-carboxyl­ato)potassium] (MUMPIW; Li et al., 2020). HAMBEE is a binuclear complex, which is linked by O—H⋯O hydrogen bonds to form supra­molecular chains. The K⋯O bond lengths vary from 2.721 (2) to 3.054 (3) Å.

The structure of MUMPIW is that of a potassium-organic framework (Fig. 17 b), with the K⋯O bonds lengths varying from 2.8197 (14) to 3.0449 (15) Å. The K+ ion has a coordination number of seven (KO6N) and has an edge-sharing penta­gonal anti­prism geometry, forming chains (Fig. 17 b). This structure can be compared to that of K2H2L1 where the two independent K+ ions, each with a coordination number of six (KO6), have edge-sharing bipyramidal geometries, also forming chains (Fig. 7 b and 12).

Synthesis and crystallization  

The synthesis and crystal structure of the reagent tetra-2,3,5,6-bromo­methyl-pyrazine (TBr) have been reported (Ferigo et al., 1994; Assoumatine & Stoeckli-Evans, 2014 [CSD refcode: TOJXUN]).

Synthesis of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid (H4L1):

Mercaptopropionic acid (1.8795 g, 1.77 mol, 4 eq) was dissolved in 50 ml THF. A minimum amount of water (a few ml) was added to dissolve 1.4166 g (3.54 mol, 8 eq) of NaOH. The volume of the mixture was increased to 100 ml by adding THF and the reaction was stirred under reflux for 1 h. Then TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml THF was added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After drying under vacuum, the residue was dissolved in 50 ml of deionized water, and HCl puriss. was added dropwise until a clearly acid pH was obtained. This mixture was stirred at room temperature for 1–2 h. The yellow precipitate that formed was filtered off and washed with a minimum amount of water and then CHCl3. It was then dried under vacuum conditions. Recrystallization carried out with methanol gave pale-yellow crystals of H4L1 (yield 88%, m.p. 466 K) that X-ray diffraction analysis indicated to be triclinic polymorph H4L1_A.

The presence of terephthalic acid in an equimolar qu­antity with H4L1 in methanol gave colourless crystals of rather poor quality. However, X-ray diffraction analysis indicated that a second triclinic (P Inline graphic) polymorph, H4L1_B, had been obtained.

Spectroscopic and elemental analyses:

R f: 0.77 (solvent: CH3OH).

1H NMR (CD3OD, 400 MHz), δ(ppm): 4.03 (s, 8H, H2), 2.78 (t, 8H, 3 J (3,4) = 7.0, H3), 2.62 (t, 8H, 3 J (4,3) = 7.0, H4).

13C NMR (CD3OD, 50 MHz), δ(ppm): 174.54 (4C, C5), 150.12 (4C, C1), 34.29 (4C, C4), 33.64 (4C, C2), 26.65 (4C, C3).

Elemental Analysis for C20H28N2O8S4, M w = 552.71 g mol−1: Calculated: C 43.46, H 5.11, N 5.07%. Found: C 43.40, H 5.17, N 4.87%.

ESI–MS, m/z: 591.04 [M + K]+; 575.06 [M + Na]+; 553.08 [M + H]+; 471.07; 449.09.

IR (KBr disc, cm−1) ν: 2926(s), 2666(m), 2590(s), 1693(s), 1429(s), 1406(s), 1340(m), 1270(s), 1200(s), 1163(m), 1134(s), 1107(m), 1055(w), 918(s), 658(m), 489(m).

Synthesis of poly[(μ-3-{[(3,5,6-tris­{[(2-carb­oxy­eth­yl)sulfan­yl]meth­yl}pyrazin-2-yl)meth­yl]sulfan­yl}propano­ate)potas­sium] (KH3L1):

Hg(NO3)2 (45.0 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1 eq) were mixed together in 20 ml of a 1 M potassium acetate buffer. The mixture was left at 323 K under stirring and nitro­gen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks. Colourless plate-like crystals were obtained, which were shown to be a potassium–organic framework.

IR (KBr disc, cm−1) ν: 3422(m), 2922(m), 1713(m), 1580(s), 1399(s), 1247(m), 1190(m), 1152(m), 1114(m), 811(m), 787(m).

Synthesis of poly[(μ-3,3′-{[(3,6-bis­{[(2-carb­oxy­eth­yl)sulf­an­yl]meth­yl}pyrazine-2,5-di­yl)bis­(methyl­ene)]bis­(sulfanedi­yl)}dipropionato)dipotassium] (K2H2L1):

Zn(NO3)2 (28.4 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1eq) were mixed together in 20 ml of a 1M potassium acetate buffer. The mixture was left at 323 K under stirring and nitro­gen for 1 h. The mixture was then filtered and left to evaporate in air for 6 weeks. Colourless plate-like crystals were obtained, which proved to be a dipotassium-organic framework.

IR (KBr disc, cm−1) ν: 3401(m), 1579(s), 1401(s), 1303(m).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 10.

Table 10. Experimental details.

  H4L1_A H4L1_B KH3L1 K2H2L1
Crystal data
Chemical formula C20H28N2O8S4 C20H28N2O8S4 [K(C20H27N2O8S4)] [K2(C20H26N2O8S4)]
M r 552.68 552.68 590.77 628.87
Crystal system, space group Triclinic, P\overline{1} Triclinic, P\overline{1} Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 293 293 153 153
a, b, c (Å) 5.5843 (8), 9.0061 (14), 12.739 (2) 4.9424 (17), 8.993 (3), 14.190 (6) 30.080 (4), 8.4716 (10), 9.5908 (12) 27.908 (2), 8.2916 (6), 11.3035 (9)
α, β, γ (°) 101.537 (18), 94.313 (18), 103.701 (17) 96.96 (3), 97.14 (3), 100.72 (3) 90, 94.717 (11), 90 90, 94.753 (6), 90
V3) 604.80 (17) 608.1 (4) 2435.7 (6) 2606.7 (3)
Z 1 1 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.44 0.44 0.61 0.73
Crystal size (mm) 0.35 × 0.30 × 0.05 0.50 × 0.50 × 0.05 0.50 × 0.50 × 0.10 0.50 × 0.50 × 0.05
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2
Absorption correction Empirical (using intensity measurements) (ShxAbs; Spek, 2020) Empirical (using intensity measurements) (ShxAbs; Spek, 2020) Multi-scan (MULABS; Spek, 2020) Empirical (using intensity measurements) (ShxAbs; Spek, 2020)
T min, T max 0.647, 0.897 0.144, 0.616 0.640, 1.000 0.416, 0.803
No. of measured, independent and observed [I > 2σ(I)] reflections 4709, 2194, 1452 4152, 2201, 1537 10309, 2084, 1646 19423, 3646, 3175
R int 0.058 0.080 0.064 0.042
(sin θ/λ)max−1) 0.615 0.617 0.590 0.695
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.097, 0.88 0.071, 0.208, 1.05 0.039, 0.106, 1.02 0.037, 0.103, 1.05
No. of reflections 2194 2201 2084 3646
No. of parameters 162 173 165 167
No. of restraints 2 6 0 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.28 0.47, −0.39 0.26, −0.36 0.76, −0.51

Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2000), X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

For H4L1_A, KH3L1 and K2H2L1, the various –CO2H H atoms were located in difference-Fourier maps and freely refined. For H4L1_B, the –CO2H H atoms were difficult to locate, probably due to the poor quality of the crystal and the disorder in the side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B; Fig. 4 b). They were therefore included in calculated positions assuming the formation of carb­oxy­lic acid dimers; O—H = 0.82 Å and refined as riding with U iso(H) = 1.5U eq(O).

As in the K+ salt of pyrazine tetra­carb­oxy­lic acid (UBUPAK; Masci et al., 2010), the carb­oxy H atom in KH3L1 is disordered by symmetry, hence the H atom on O3 was given an occupancy factor of 0.5 to balance the charges.

For all four compounds, the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom with C—H = 0.97 Å and U iso(H) = 1.2U eq(C).

For H4L1_A and H4L1_B, the alert _diffrn_reflns_point_group_measured_fraction_full value (0.94 and 0.93, respectively) below minimum (0.95) was given. For H4L1_A it involves 131 random reflections out of a total of 2180, viz. 6.0%, while for H4L1_B it involves 158 random reflections out of a total of 2184, viz. 7.2%.

For H4L1_A, H4L1_B and K2H2L1 the multiplicity of reflections was 2 or less and so an empirical absorption correction was applied.

Supplementary Material

Crystal structure: contains datablock(s) H4L1A, H4L1B, KH3L1, K2H2L1, Global. DOI: 10.1107/S2056989021003479/pk2656sup1.cif

e-77-00480-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) H4L1A. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup2.hkl

e-77-00480-H4L1Asup2.hkl (175.9KB, hkl)

Structure factors: contains datablock(s) H4L1B. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup3.hkl

e-77-00480-H4L1Bsup3.hkl (176.5KB, hkl)

Structure factors: contains datablock(s) KH3L1. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup4.hkl

e-77-00480-KH3L1sup4.hkl (167.7KB, hkl)

Structure factors: contains datablock(s) K2H2L1. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup5.hkl

e-77-00480-K2H2L1sup5.hkl (291.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup6.cml

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup7.cml

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup8.cml

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup9.cml

CCDC references: 2074770, 2074769, 2074768, 2074767

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE is grateful to the University of Neuchâtel for their support over the years.

supplementary crystallographic information

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Crystal data

C20H28N2O8S4 Z = 1
Mr = 552.68 F(000) = 290
Triclinic, P1 Dx = 1.517 Mg m3
a = 5.5843 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.0061 (14) Å Cell parameters from 3225 reflections
c = 12.739 (2) Å θ = 2.4–25.9°
α = 101.537 (18)° µ = 0.44 mm1
β = 94.313 (18)° T = 293 K
γ = 103.701 (17)° Plate, pale-yellow
V = 604.80 (17) Å3 0.35 × 0.30 × 0.05 mm

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Data collection

STOE IPDS 1 diffractometer 2194 independent reflections
Radiation source: fine-focus sealed tube 1452 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.058
φ rotation scans θmax = 25.9°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) h = −6→6
Tmin = 0.647, Tmax = 0.897 k = −11→11
4709 measured reflections l = −14→15

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: mixed
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0478P)2] where P = (Fo2 + 2Fc2)/3
2194 reflections (Δ/σ)max < 0.001
162 parameters Δρmax = 0.35 e Å3
2 restraints Δρmin = −0.28 e Å3

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.40170 (15) 0.39121 (9) 0.29698 (6) 0.0312 (2)
S2 1.27548 (15) 0.86290 (9) 0.37908 (6) 0.0288 (2)
O1 −0.3381 (5) 0.0716 (3) 0.12207 (17) 0.0435 (6)
O2 −0.2098 (5) 0.1064 (3) −0.03567 (17) 0.0409 (6)
H2O −0.363 (5) 0.052 (5) −0.059 (4) 0.098 (19)*
O3 0.7761 (4) 0.5277 (3) 0.08084 (16) 0.0379 (6)
O4 0.5045 (5) 0.6736 (3) 0.09232 (19) 0.0422 (6)
H4O 0.422 (8) 0.607 (4) 0.039 (3) 0.087 (17)*
N1 0.8353 (4) 0.5540 (3) 0.44074 (17) 0.0198 (5)
C1 0.7859 (5) 0.4024 (3) 0.4451 (2) 0.0194 (6)
C2 1.0447 (5) 0.6523 (3) 0.4952 (2) 0.0183 (6)
C3 0.5460 (5) 0.2957 (3) 0.3850 (2) 0.0248 (6)
H3A 0.434405 0.264980 0.436177 0.030*
H3B 0.577409 0.201607 0.342827 0.030*
C4 0.1473 (6) 0.2234 (4) 0.2308 (2) 0.0328 (7)
H4A 0.202811 0.128008 0.222673 0.039*
H4B 0.011542 0.214305 0.274306 0.039*
C5 0.0600 (6) 0.2449 (4) 0.1219 (2) 0.0347 (8)
H5A 0.041788 0.350865 0.129466 0.042*
H5B 0.186183 0.233148 0.074799 0.042*
C6 −0.1807 (6) 0.1321 (3) 0.0698 (2) 0.0291 (7)
C7 1.0877 (6) 0.8196 (3) 0.4857 (2) 0.0239 (6)
H7A 1.170302 0.887935 0.554088 0.029*
H7B 0.928434 0.841937 0.471163 0.029*
C8 1.0935 (6) 0.7220 (4) 0.2615 (2) 0.0277 (7)
H8A 1.187763 0.725553 0.200717 0.033*
H8B 1.068152 0.617707 0.275367 0.033*
C9 0.8427 (6) 0.7491 (3) 0.2307 (2) 0.0290 (7)
H9A 0.742172 0.735720 0.288698 0.035*
H9B 0.866452 0.856524 0.223186 0.035*
C10 0.7046 (6) 0.6407 (4) 0.1277 (2) 0.0283 (7)

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0292 (5) 0.0246 (4) 0.0348 (4) −0.0018 (3) −0.0101 (3) 0.0109 (3)
S2 0.0243 (5) 0.0241 (4) 0.0376 (4) −0.0013 (3) 0.0027 (3) 0.0156 (3)
O1 0.0333 (15) 0.0501 (14) 0.0362 (13) −0.0022 (12) −0.0093 (10) 0.0054 (11)
O2 0.0322 (16) 0.0486 (14) 0.0345 (13) 0.0001 (13) −0.0099 (10) 0.0099 (10)
O3 0.0400 (15) 0.0425 (13) 0.0341 (12) 0.0216 (12) −0.0002 (10) 0.0039 (10)
O4 0.0345 (15) 0.0519 (15) 0.0396 (13) 0.0217 (13) −0.0064 (11) 0.0004 (12)
N1 0.0182 (14) 0.0159 (11) 0.0242 (11) 0.0010 (10) −0.0009 (9) 0.0072 (9)
C1 0.0184 (16) 0.0158 (13) 0.0222 (13) 0.0006 (12) 0.0005 (10) 0.0055 (10)
C2 0.0182 (16) 0.0125 (12) 0.0226 (13) 0.0011 (12) 0.0009 (10) 0.0047 (10)
C3 0.0191 (17) 0.0189 (14) 0.0327 (15) −0.0025 (13) −0.0028 (11) 0.0085 (11)
C4 0.0259 (19) 0.0290 (16) 0.0359 (16) −0.0069 (14) −0.0053 (13) 0.0097 (13)
C5 0.032 (2) 0.0279 (16) 0.0404 (18) 0.0008 (15) −0.0080 (14) 0.0114 (13)
C6 0.0228 (19) 0.0264 (16) 0.0360 (17) 0.0048 (15) −0.0074 (13) 0.0083 (13)
C7 0.0251 (18) 0.0155 (13) 0.0313 (15) 0.0028 (13) 0.0021 (12) 0.0088 (11)
C8 0.0263 (18) 0.0316 (16) 0.0293 (15) 0.0092 (14) 0.0066 (12) 0.0132 (12)
C9 0.0281 (19) 0.0276 (16) 0.0324 (16) 0.0074 (15) 0.0008 (12) 0.0097 (12)
C10 0.0262 (18) 0.0385 (17) 0.0254 (15) 0.0125 (15) 0.0068 (12) 0.0129 (13)

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Geometric parameters (Å, º)

S1—C3 1.796 (3) C3—H3B 0.9700
S1—C4 1.818 (3) C4—C5 1.500 (4)
S2—C8 1.813 (3) C4—H4A 0.9700
S2—C7 1.825 (3) C4—H4B 0.9700
O1—C6 1.233 (4) C5—C6 1.493 (4)
O2—C6 1.307 (4) C5—H5A 0.9700
O2—H2O 0.87 (2) C5—H5B 0.9700
O3—C10 1.240 (4) C7—H7A 0.9700
O4—C10 1.294 (4) C7—H7B 0.9700
O4—H4O 0.830 (19) C8—C9 1.514 (4)
N1—C2 1.332 (3) C8—H8A 0.9700
N1—C1 1.341 (3) C8—H8B 0.9700
C1—C2i 1.406 (3) C9—C10 1.499 (4)
C1—C3 1.499 (4) C9—H9A 0.9700
C2—C7 1.500 (3) C9—H9B 0.9700
C3—H3A 0.9700
C3—S1—C4 97.53 (13) C4—C5—H5B 108.8
C8—S2—C7 101.68 (14) H5A—C5—H5B 107.7
C6—O2—H2O 108 (3) O1—C6—O2 123.6 (3)
C10—O4—H4O 113 (3) O1—C6—C5 122.7 (3)
C2—N1—C1 119.1 (2) O2—C6—C5 113.7 (3)
N1—C1—C2i 120.3 (2) C2—C7—S2 112.8 (2)
N1—C1—C3 117.7 (2) C2—C7—H7A 109.0
C2i—C1—C3 122.0 (2) S2—C7—H7A 109.0
N1—C2—C1i 120.6 (2) C2—C7—H7B 109.0
N1—C2—C7 115.9 (2) S2—C7—H7B 109.0
C1i—C2—C7 123.4 (2) H7A—C7—H7B 107.8
C1—C3—S1 110.88 (18) C9—C8—S2 114.2 (2)
C1—C3—H3A 109.5 C9—C8—H8A 108.7
S1—C3—H3A 109.5 S2—C8—H8A 108.7
C1—C3—H3B 109.5 C9—C8—H8B 108.7
S1—C3—H3B 109.5 S2—C8—H8B 108.7
H3A—C3—H3B 108.1 H8A—C8—H8B 107.6
C5—C4—S1 109.2 (2) C10—C9—C8 113.5 (2)
C5—C4—H4A 109.8 C10—C9—H9A 108.9
S1—C4—H4A 109.8 C8—C9—H9A 108.9
C5—C4—H4B 109.8 C10—C9—H9B 108.9
S1—C4—H4B 109.8 C8—C9—H9B 108.9
H4A—C4—H4B 108.3 H9A—C9—H9B 107.7
C6—C5—C4 113.8 (3) O3—C10—O4 122.8 (3)
C6—C5—H5A 108.8 O3—C10—C9 122.4 (3)
C4—C5—H5A 108.8 O4—C10—C9 114.8 (3)
C6—C5—H5B 108.8
C2—N1—C1—C2i −1.2 (4) C4—C5—C6—O1 26.8 (4)
C2—N1—C1—C3 178.6 (2) C4—C5—C6—O2 −154.4 (3)
C1—N1—C2—C1i 1.2 (4) N1—C2—C7—S2 −94.0 (3)
C1—N1—C2—C7 179.6 (2) C1i—C2—C7—S2 84.3 (3)
N1—C1—C3—S1 11.3 (3) C8—S2—C7—C2 57.6 (2)
C2i—C1—C3—S1 −168.8 (2) C7—S2—C8—C9 65.7 (2)
C4—S1—C3—C1 174.1 (2) S2—C8—C9—C10 174.8 (2)
C3—S1—C4—C5 −155.3 (2) C8—C9—C10—O3 8.8 (4)
S1—C4—C5—C6 −167.9 (2) C8—C9—C10—O4 −171.8 (3)

Symmetry code: (i) −x+2, −y+1, −z+1.

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1ii 0.87 (2) 1.80 (2) 2.667 (3) 172 (5)
O4—H4O···O3iii 0.83 (2) 1.85 (2) 2.673 (3) 175 (5)
C5—H5A···O3iv 0.97 2.55 3.405 (4) 147
C8—H8A···O4v 0.97 2.40 3.308 (4) 156

Symmetry codes: (ii) −x−1, −y, −z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) x+1, y, z.

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Crystal data

C20H28N2O8S4 Z = 1
Mr = 552.68 F(000) = 290
Triclinic, P1 Dx = 1.509 Mg m3
a = 4.9424 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.993 (3) Å Cell parameters from 5563 reflections
c = 14.190 (6) Å θ = 2.4–25.5°
α = 96.96 (3)° µ = 0.44 mm1
β = 97.14 (3)° T = 293 K
γ = 100.72 (3)° Plate, colourless
V = 608.1 (4) Å3 0.50 × 0.50 × 0.05 mm

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Data collection

STOE IPDS 2 diffractometer 2201 independent reflections
Radiation source: fine-focus sealed tube 1537 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.080
φ + ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) h = −5→5
Tmin = 0.144, Tmax = 0.616 k = −11→9
4152 measured reflections l = −17→17

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1049P)2 + 0.4241P] where P = (Fo2 + 2Fc2)/3
2201 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.47 e Å3
6 restraints Δρmin = −0.39 e Å3

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.7886 (3) 0.28919 (12) 0.71512 (9) 0.0583 (4)
S2 0.6227 (3) 0.07568 (12) 0.39724 (10) 0.0682 (5)
N1 1.2114 (8) 0.5110 (4) 0.5754 (3) 0.0500 (9)
C1 0.9965 (9) 0.3908 (4) 0.5566 (3) 0.0467 (10)
C2 0.7852 (9) 0.3796 (4) 0.4821 (3) 0.0469 (10)
C3 1.0020 (10) 0.2707 (4) 0.6214 (3) 0.0537 (11)
H3A 1.192760 0.277226 0.650755 0.064*
H3B 0.937959 0.170470 0.583113 0.064*
C4 0.9971 (12) 0.4560 (5) 0.7916 (4) 0.0644 (13)
H4A 1.087916 0.524956 0.752231 0.077*
H4B 0.876729 0.509027 0.826037 0.077*
C5 1.2177 (12) 0.4158 (6) 0.8638 (4) 0.0682 (14)
H5A 1.332589 0.358948 0.829232 0.082*
H5B 1.337009 0.509683 0.898069 0.082*
C6 1.0984 (14) 0.3238 (6) 0.9345 (4) 0.0728 (15)
O1 0.8532 (10) 0.3158 (5) 0.9473 (3) 0.0828 (12)
O2 1.2630 (12) 0.2603 (9) 0.9826 (5) 0.136 (2)
H2O 1.173990 0.186783 1.001978 0.204*
C7 0.5410 (10) 0.2468 (5) 0.4572 (4) 0.0559 (11)
H7A 0.394220 0.276430 0.416093 0.067*
H7B 0.470023 0.224151 0.515671 0.067*
C8 0.6926 (16) 0.1494 (6) 0.2872 (5) 0.0604 (17) 0.821 (6)
H8A 0.530565 0.183752 0.258819 0.072* 0.821 (6)
H8B 0.847467 0.236521 0.301719 0.072* 0.821 (6)
C9 0.7607 (15) 0.0292 (6) 0.2173 (5) 0.0657 (16) 0.821 (6)
H9A 0.597449 −0.051856 0.196091 0.079* 0.821 (6)
H9B 0.906849 −0.014697 0.248293 0.079* 0.821 (6)
C10 0.8546 (16) 0.0963 (7) 0.1325 (5) 0.0622 (15) 0.821 (6)
O3 1.0881 (16) 0.0900 (11) 0.1127 (6) 0.132 (3) 0.821 (6)
O4 0.6974 (19) 0.1598 (10) 0.0858 (6) 0.117 (3) 0.821 (6)
H4O 0.785351 0.212989 0.052298 0.175* 0.821 (6)
C8B 0.834 (7) 0.112 (3) 0.3062 (18) 0.0604 (17) 0.179 (6)
H8B1 0.957385 0.212176 0.321614 0.072* 0.179 (6)
H8B2 0.941870 0.034250 0.294752 0.072* 0.179 (6)
C9B 0.609 (6) 0.106 (3) 0.2219 (19) 0.0657 (16) 0.179 (6)
H9B1 0.490282 0.005115 0.207464 0.079* 0.179 (6)
H9B2 0.494650 0.179949 0.237286 0.079* 0.179 (6)
C10B 0.748 (6) 0.143 (4) 0.137 (2) 0.0622 (15) 0.179 (6)
O3B 0.998 (6) 0.188 (6) 0.137 (3) 0.132 (3) 0.179 (6)
O4B 0.576 (9) 0.176 (6) 0.073 (3) 0.117 (3) 0.179 (6)
H4OB 0.660348 0.228397 0.038152 0.175* 0.179 (6)

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0546 (9) 0.0462 (6) 0.0762 (8) 0.0041 (5) 0.0158 (6) 0.0205 (5)
S2 0.0868 (11) 0.0329 (5) 0.0834 (9) −0.0047 (5) 0.0293 (7) 0.0119 (5)
N1 0.045 (2) 0.0322 (16) 0.075 (2) 0.0074 (14) 0.0141 (17) 0.0146 (15)
C1 0.048 (3) 0.0259 (16) 0.071 (3) 0.0081 (15) 0.017 (2) 0.0160 (16)
C2 0.045 (3) 0.0292 (17) 0.070 (3) 0.0054 (15) 0.017 (2) 0.0152 (16)
C3 0.051 (3) 0.0350 (19) 0.080 (3) 0.0097 (17) 0.015 (2) 0.0220 (19)
C4 0.073 (4) 0.043 (2) 0.083 (3) 0.009 (2) 0.026 (3) 0.022 (2)
C5 0.063 (4) 0.061 (3) 0.077 (3) −0.001 (2) 0.015 (3) 0.017 (2)
C6 0.064 (4) 0.066 (3) 0.090 (4) 0.003 (2) 0.013 (3) 0.033 (3)
O1 0.079 (3) 0.086 (3) 0.093 (3) 0.019 (2) 0.029 (2) 0.034 (2)
O2 0.085 (4) 0.190 (6) 0.162 (5) 0.031 (4) 0.031 (3) 0.122 (5)
C7 0.051 (3) 0.042 (2) 0.073 (3) −0.0032 (18) 0.012 (2) 0.0155 (19)
C8 0.078 (5) 0.034 (3) 0.074 (4) 0.010 (2) 0.023 (3) 0.017 (2)
C9 0.084 (5) 0.040 (3) 0.079 (4) 0.011 (3) 0.026 (3) 0.022 (3)
C10 0.068 (5) 0.048 (3) 0.080 (4) 0.019 (3) 0.024 (3) 0.020 (3)
O3 0.096 (5) 0.194 (8) 0.145 (6) 0.052 (5) 0.052 (4) 0.113 (6)
O4 0.132 (8) 0.140 (5) 0.131 (5) 0.087 (5) 0.067 (5) 0.090 (4)
C8B 0.078 (5) 0.034 (3) 0.074 (4) 0.010 (2) 0.023 (3) 0.017 (2)
C9B 0.084 (5) 0.040 (3) 0.079 (4) 0.011 (3) 0.026 (3) 0.022 (3)
C10B 0.068 (5) 0.048 (3) 0.080 (4) 0.019 (3) 0.024 (3) 0.020 (3)
O3B 0.096 (5) 0.194 (8) 0.145 (6) 0.052 (5) 0.052 (4) 0.113 (6)
O4B 0.132 (8) 0.140 (5) 0.131 (5) 0.087 (5) 0.067 (5) 0.090 (4)

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Geometric parameters (Å, º)

S1—C4 1.801 (5) C7—H7A 0.9700
S1—C3 1.808 (5) C7—H7B 0.9700
S2—C8B 1.78 (3) C8—C9 1.490 (8)
S2—C7 1.804 (5) C8—H8A 0.9700
S2—C8 1.816 (6) C8—H8B 0.9700
N1—C1 1.342 (5) C9—C10 1.496 (8)
N1—C2i 1.351 (5) C9—H9A 0.9700
C1—C2 1.371 (6) C9—H9B 0.9700
C1—C3 1.503 (5) C10—O4 1.224 (8)
C2—C7 1.504 (6) C10—O3 1.231 (9)
C3—H3A 0.9700 O4—H4O 0.8200
C3—H3B 0.9700 C8B—C9B 1.516 (19)
C4—C5 1.526 (8) C8B—H8B1 0.9700
C4—H4A 0.9700 C8B—H8B2 0.9700
C4—H4B 0.9700 C9B—C10B 1.505 (19)
C5—C6 1.485 (7) C9B—H9B1 0.9700
C5—H5A 0.9700 C9B—H9B2 0.9700
C5—H5B 0.9700 C10B—O3B 1.226 (19)
C6—O1 1.238 (7) C10B—O4B 1.265 (19)
C6—O2 1.258 (8) O4B—H4OB 0.8200
O2—H2O 0.8200
C4—S1—C3 100.2 (2) C2—C7—H7B 108.8
C8B—S2—C7 112.9 (9) S2—C7—H7B 108.8
C7—S2—C8 96.8 (2) H7A—C7—H7B 107.7
C1—N1—C2i 117.9 (4) C9—C8—S2 110.8 (4)
N1—C1—C2 121.2 (4) C9—C8—H8A 109.5
N1—C1—C3 116.3 (4) S2—C8—H8A 109.5
C2—C1—C3 122.5 (4) C9—C8—H8B 109.5
N1i—C2—C1 120.9 (4) S2—C8—H8B 109.5
N1i—C2—C7 115.7 (4) H8A—C8—H8B 108.1
C1—C2—C7 123.5 (4) C8—C9—C10 110.3 (5)
C1—C3—S1 113.3 (3) C8—C9—H9A 109.6
C1—C3—H3A 108.9 C10—C9—H9A 109.6
S1—C3—H3A 108.9 C8—C9—H9B 109.6
C1—C3—H3B 108.9 C10—C9—H9B 109.6
S1—C3—H3B 108.9 H9A—C9—H9B 108.1
H3A—C3—H3B 107.7 O4—C10—O3 121.6 (7)
C5—C4—S1 112.3 (3) O4—C10—C9 118.5 (7)
C5—C4—H4A 109.2 O3—C10—C9 119.8 (6)
S1—C4—H4A 109.2 C10—O4—H4O 109.5
C5—C4—H4B 109.2 C9B—C8B—S2 99.9 (19)
S1—C4—H4B 109.2 C9B—C8B—H8B1 111.8
H4A—C4—H4B 107.9 S2—C8B—H8B1 111.8
C6—C5—C4 113.3 (5) C9B—C8B—H8B2 111.8
C6—C5—H5A 108.9 S2—C8B—H8B2 111.8
C4—C5—H5A 108.9 H8B1—C8B—H8B2 109.5
C6—C5—H5B 108.9 C10B—C9B—C8B 108 (2)
C4—C5—H5B 108.9 C10B—C9B—H9B1 110.0
H5A—C5—H5B 107.7 C8B—C9B—H9B1 110.0
O1—C6—O2 122.4 (5) C10B—C9B—H9B2 110.0
O1—C6—C5 121.3 (5) C8B—C9B—H9B2 110.0
O2—C6—C5 116.3 (6) H9B1—C9B—H9B2 108.4
C6—O2—H2O 109.5 O3B—C10B—O4B 119 (3)
C2—C7—S2 113.8 (3) O3B—C10B—C9B 126 (3)
C2—C7—H7A 108.8 O4B—C10B—C9B 110 (3)
S2—C7—H7A 108.8 C10B—O4B—H4OB 109.5
C2i—N1—C1—C2 −0.6 (6) N1i—C2—C7—S2 103.4 (4)
C2i—N1—C1—C3 179.3 (4) C1—C2—C7—S2 −75.4 (5)
N1—C1—C2—N1i 0.6 (7) C8B—S2—C7—C2 −43.7 (10)
C3—C1—C2—N1i −179.3 (4) C8—S2—C7—C2 −66.8 (4)
N1—C1—C2—C7 179.3 (4) C7—S2—C8—C9 −178.1 (5)
C3—C1—C2—C7 −0.6 (6) S2—C8—C9—C10 −172.5 (5)
N1—C1—C3—S1 98.8 (4) C8—C9—C10—O4 −57.8 (10)
C2—C1—C3—S1 −81.3 (5) C8—C9—C10—O3 120.5 (9)
C4—S1—C3—C1 −72.6 (4) C7—S2—C8B—C9B −87.0 (16)
C3—S1—C4—C5 −86.7 (4) S2—C8B—C9B—C10B 177 (2)
S1—C4—C5—C6 −65.0 (6) C8B—C9B—C10B—O3B −8 (5)
C4—C5—C6—O1 −17.0 (8) C8B—C9B—C10B—O4B −164 (3)
C4—C5—C6—O2 165.7 (6)

Symmetry code: (i) −x+2, −y+1, −z+1.

3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O3ii 0.82 1.94 2.66 (1) 146
O2—H2O···O3Bii 0.82 2.20 2.77 (3) 127
O4—H4O···O1iii 0.82 1.88 2.66 (1) 158
O4B—H4OB···O1iii 0.82 1.86 2.67 (4) 170

Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1.

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Crystal data

[K(C20H27N2O8S4)] F(000) = 1232
Mr = 590.77 Dx = 1.611 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 30.080 (4) Å Cell parameters from 7965 reflections
b = 8.4716 (10) Å θ = 1.4–25.0°
c = 9.5908 (12) Å µ = 0.61 mm1
β = 94.717 (11)° T = 153 K
V = 2435.7 (6) Å3 Plate, colourless
Z = 4 0.50 × 0.50 × 0.10 mm

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Data collection

STOE IPDS 2 diffractometer 2084 independent reflections
Radiation source: fine-focus sealed tube 1646 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.064
φ + ω scans θmax = 24.8°, θmin = 2.5°
Absorption correction: multi-scan (MULABS; Spek, 2020) h = −35→35
Tmin = 0.640, Tmax = 1.000 k = −9→9
10309 measured reflections l = −11→11

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: mixed
wR(F2) = 0.106 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0648P)2 + 1.5958P] where P = (Fo2 + 2Fc2)/3
2084 reflections (Δ/σ)max = 0.002
165 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.36 e Å3

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.500000 −0.28423 (13) −0.250000 0.0357 (3)
S1 0.34409 (2) −0.03261 (9) 0.17646 (7) 0.0305 (2)
S2 0.18978 (2) −0.11089 (9) 0.16606 (8) 0.0342 (2)
O1 0.46781 (7) −0.2235 (3) 0.0136 (2) 0.0404 (5)
O2 0.46330 (7) −0.0466 (3) 0.1860 (2) 0.0402 (6)
H20 0.500000 −0.073 (9) 0.250000 0.12 (3)*
O3 0.06245 (6) 0.1153 (3) −0.0544 (2) 0.0363 (5)
O4 0.03178 (7) 0.1057 (3) 0.1493 (2) 0.0472 (7)
H4O 0.0125 (17) 0.157 (7) 0.109 (5) 0.097 (19)*
N1 0.28457 (7) 0.2024 (3) −0.0774 (2) 0.0240 (5)
C1 0.27160 (8) 0.1117 (3) 0.0267 (3) 0.0240 (6)
C2 0.23661 (8) 0.1606 (3) 0.1047 (3) 0.0229 (6)
C3 0.29578 (8) −0.0422 (3) 0.0500 (3) 0.0280 (6)
H3A 0.305554 −0.079313 −0.040443 0.034*
H3B 0.274689 −0.121452 0.082227 0.034*
C4 0.38202 (9) 0.0765 (4) 0.0748 (3) 0.0352 (7)
H4A 0.364384 0.148969 0.010857 0.042*
H4B 0.401718 0.141946 0.139218 0.042*
C5 0.41100 (9) −0.0265 (4) −0.0116 (3) 0.0335 (7)
H5A 0.391756 −0.108161 −0.059355 0.040*
H5B 0.422744 0.040143 −0.084955 0.040*
C6 0.44979 (9) −0.1079 (4) 0.0676 (3) 0.0326 (7)
C7 0.22055 (9) 0.0650 (3) 0.2220 (3) 0.0283 (6)
H7A 0.201211 0.132352 0.275893 0.034*
H7B 0.246620 0.033583 0.285664 0.034*
C8 0.14217 (9) −0.0295 (4) 0.0628 (3) 0.0329 (7)
H8A 0.152427 0.055219 0.002031 0.039*
H8B 0.128312 −0.113189 0.001607 0.039*
C9 0.10744 (9) 0.0371 (4) 0.1528 (3) 0.0350 (7)
H9A 0.099826 −0.044379 0.220895 0.042*
H9B 0.120475 0.128185 0.206358 0.042*
C10 0.06542 (9) 0.0895 (4) 0.0702 (3) 0.0307 (7)

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0254 (4) 0.0547 (6) 0.0267 (5) 0.000 −0.0009 (3) 0.000
S1 0.0189 (3) 0.0428 (5) 0.0297 (4) 0.0034 (3) 0.0011 (3) 0.0042 (3)
S2 0.0224 (4) 0.0335 (4) 0.0466 (5) −0.0003 (3) 0.0027 (3) 0.0034 (3)
O1 0.0302 (11) 0.0590 (15) 0.0320 (11) 0.0130 (10) 0.0022 (9) −0.0023 (10)
O2 0.0246 (10) 0.0633 (15) 0.0319 (11) 0.0051 (10) −0.0024 (9) −0.0077 (10)
O3 0.0259 (10) 0.0554 (15) 0.0278 (11) 0.0021 (9) 0.0032 (8) 0.0038 (9)
O4 0.0266 (12) 0.0804 (19) 0.0356 (13) 0.0138 (12) 0.0085 (10) 0.0044 (12)
N1 0.0156 (10) 0.0304 (13) 0.0255 (12) −0.0007 (9) −0.0019 (9) −0.0021 (10)
C1 0.0152 (12) 0.0299 (16) 0.0256 (14) 0.0007 (11) −0.0048 (10) −0.0038 (11)
C2 0.0159 (11) 0.0278 (15) 0.0239 (14) −0.0009 (11) −0.0036 (10) −0.0026 (11)
C3 0.0187 (13) 0.0317 (16) 0.0331 (15) 0.0022 (11) −0.0012 (11) −0.0003 (12)
C4 0.0210 (13) 0.0424 (19) 0.0421 (18) −0.0024 (13) 0.0018 (12) 0.0070 (14)
C5 0.0213 (13) 0.051 (2) 0.0280 (15) −0.0009 (12) 0.0017 (12) 0.0039 (13)
C6 0.0185 (13) 0.053 (2) 0.0268 (15) −0.0019 (13) 0.0047 (11) 0.0024 (14)
C7 0.0229 (14) 0.0366 (16) 0.0251 (14) −0.0005 (12) 0.0013 (11) 0.0024 (12)
C8 0.0224 (14) 0.0422 (19) 0.0338 (16) −0.0034 (12) 0.0011 (12) −0.0009 (13)
C9 0.0208 (14) 0.056 (2) 0.0280 (15) 0.0017 (13) 0.0037 (12) 0.0032 (14)
C10 0.0217 (13) 0.0388 (18) 0.0321 (16) −0.0033 (12) 0.0052 (12) −0.0013 (13)

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Geometric parameters (Å, º)

K1—O1 2.828 (2) C1—C2 1.403 (4)
K1—O1i 2.828 (2) C1—C3 1.501 (4)
K1—O2ii 3.056 (3) C2—C7 1.498 (4)
K1—O2iii 3.056 (3) C3—H3A 0.9900
K1—O3iv 2.682 (2) C3—H3B 0.9900
K1—O3v 2.682 (2) C4—C5 1.525 (4)
K1—O4vi 3.069 (3) C4—H4A 0.9900
K1—O4vii 3.069 (3) C4—H4B 0.9900
S1—C4 1.814 (3) C5—C6 1.506 (4)
S1—C3 1.816 (3) C5—H5A 0.9900
S2—C8 1.809 (3) C5—H5B 0.9900
S2—C7 1.812 (3) C7—H7A 0.9900
O1—C6 1.252 (4) C7—H7B 0.9900
O2—C6 1.284 (4) C8—C9 1.517 (4)
O2—H20 1.239 (15) C8—H8A 0.9900
O3—C10 1.211 (3) C8—H8B 0.9900
O4—C10 1.321 (3) C9—C10 1.502 (4)
O4—H4O 0.80 (5) C9—H9A 0.9900
N1—C2viii 1.339 (4) C9—H9B 0.9900
N1—C1 1.343 (4)
O3iv—K1—O3v 143.00 (11) C1—C2—C7 122.9 (3)
O3iv—K1—O1 114.30 (6) C1—C3—S1 114.31 (19)
O3v—K1—O1 72.78 (6) C1—C3—H3A 108.7
O3iv—K1—O1i 72.78 (6) S1—C3—H3A 108.7
O3v—K1—O1i 114.30 (6) C1—C3—H3B 108.7
O1—K1—O1i 159.05 (11) S1—C3—H3B 108.7
O3iv—K1—O2ii 130.71 (7) H3A—C3—H3B 107.6
O3v—K1—O2ii 85.98 (6) C5—C4—S1 114.4 (2)
O1—K1—O2ii 78.37 (7) C5—C4—H4A 108.7
O1i—K1—O2ii 82.42 (6) S1—C4—H4A 108.7
O3iv—K1—O2iii 85.98 (6) C5—C4—H4B 108.7
O3v—K1—O2iii 130.71 (7) S1—C4—H4B 108.7
O1—K1—O2iii 82.42 (6) H4A—C4—H4B 107.6
O1i—K1—O2iii 78.37 (7) C6—C5—C4 116.2 (2)
O2ii—K1—O2iii 46.99 (8) C6—C5—H5A 108.2
O3iv—K1—O4vi 73.54 (7) C4—C5—H5A 108.2
O3v—K1—O4vi 73.75 (7) C6—C5—H5B 108.2
O1—K1—O4vi 125.54 (7) C4—C5—H5B 108.2
O1i—K1—O4vi 75.02 (7) H5A—C5—H5B 107.4
O2ii—K1—O4vi 139.50 (6) O1—C6—O2 124.5 (3)
O2iii—K1—O4vi 150.17 (6) O1—C6—C5 119.6 (3)
O3iv—K1—O4vii 73.75 (7) O2—C6—C5 115.9 (3)
O3v—K1—O4vii 73.54 (7) C2—C7—S2 114.24 (19)
O1—K1—O4vii 75.02 (7) C2—C7—H7A 108.7
O1i—K1—O4vii 125.54 (7) S2—C7—H7A 108.7
O2ii—K1—O4vii 150.17 (6) C2—C7—H7B 108.7
O2iii—K1—O4vii 139.50 (6) S2—C7—H7B 108.7
O4vi—K1—O4vii 54.87 (9) H7A—C7—H7B 107.6
C4—S1—C3 99.68 (14) C9—C8—S2 112.4 (2)
C8—S2—C7 102.17 (14) C9—C8—H8A 109.1
C6—O1—K1 134.73 (19) S2—C8—H8A 109.1
C6—O2—K1ii 129.17 (19) C9—C8—H8B 109.1
C6—O2—H20 125 (2) S2—C8—H8B 109.1
K1ii—O2—H20 77 (4) H8A—C8—H8B 107.9
C10—O3—K1ix 137.58 (18) C10—C9—C8 113.5 (2)
C10—O4—K1vii 111.2 (2) C10—C9—H9A 108.9
C10—O4—H4O 110 (4) C8—C9—H9A 108.9
K1vii—O4—H4O 114 (4) C10—C9—H9B 108.9
C2viii—N1—C1 118.6 (2) C8—C9—H9B 108.9
N1—C1—C2 120.3 (2) H9A—C9—H9B 107.7
N1—C1—C3 116.2 (2) O3—C10—O4 123.4 (3)
C2—C1—C3 123.5 (2) O3—C10—C9 124.3 (2)
N1viii—C2—C1 121.1 (2) O4—C10—C9 112.3 (2)
N1viii—C2—C7 116.0 (2)
C2viii—N1—C1—C2 −0.1 (4) K1ii—O2—C6—C5 −60.6 (3)
C2viii—N1—C1—C3 178.5 (2) C4—C5—C6—O1 161.6 (3)
N1—C1—C2—N1viii 0.1 (4) C4—C5—C6—O2 −21.4 (4)
C3—C1—C2—N1viii −178.4 (2) N1viii—C2—C7—S2 107.9 (2)
N1—C1—C2—C7 180.0 (2) C1—C2—C7—S2 −72.0 (3)
C3—C1—C2—C7 1.5 (4) C8—S2—C7—C2 −62.3 (2)
N1—C1—C3—S1 91.6 (3) C7—S2—C8—C9 −77.5 (2)
C2—C1—C3—S1 −89.8 (3) S2—C8—C9—C10 −173.8 (2)
C4—S1—C3—C1 −72.3 (2) K1ix—O3—C10—O4 1.7 (5)
C3—S1—C4—C5 −90.3 (2) K1ix—O3—C10—C9 −177.7 (2)
S1—C4—C5—C6 −76.4 (3) K1vii—O4—C10—O3 110.5 (3)
K1—O1—C6—O2 −127.8 (3) K1vii—O4—C10—C9 −70.0 (3)
K1—O1—C6—C5 48.8 (4) C8—C9—C10—O3 −17.9 (5)
K1ii—O2—C6—O1 116.1 (3) C8—C9—C10—O4 162.6 (3)

Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y, −z; (iii) x, −y, z−1/2; (iv) −x+1/2, y−1/2, −z−1/2; (v) x+1/2, y−1/2, z; (vi) x+1/2, −y−1/2, z−1/2; (vii) −x+1/2, −y−1/2, −z; (viii) −x+1/2, −y+1/2, −z; (ix) x−1/2, y+1/2, z.

Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O1ix 0.80 (5) 1.86 (5) 2.661 (3) 180 (7)
O2—H20···O2x 1.24 (1) 1.24 (1) 2.436 (3) 159 (7)
C4—H4A···N1 0.99 2.52 3.340 (4) 140
C4—H4B···O3viii 0.99 2.49 3.114 (4) 121
C5—H5B···O2iii 0.99 2.60 3.467 (4) 146
C7—H7B···N1xi 0.99 2.60 3.454 (4) 144
C9—H9A···O3xi 0.99 2.58 3.465 (4) 149

Symmetry codes: (iii) x, −y, z−1/2; (viii) −x+1/2, −y+1/2, −z; (ix) x−1/2, y+1/2, z; (x) −x+1, y, −z+1/2; (xi) x, −y, z+1/2.

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Crystal data

[K2(C20H26N2O8S4)] F(000) = 1304
Mr = 628.87 Dx = 1.602 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 27.908 (2) Å Cell parameters from 20250 reflections
b = 8.2916 (6) Å θ = 1.8–29.6°
c = 11.3035 (9) Å µ = 0.73 mm1
β = 94.753 (6)° T = 153 K
V = 2606.7 (3) Å3 Plate, colourless
Z = 4 0.50 × 0.50 × 0.05 mm

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Data collection

STOE IPDS 2 diffractometer 3646 independent reflections
Radiation source: fine-focus sealed tube 3175 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.042
φ + ω scans θmax = 29.6°, θmin = 2.6°
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) h = −38→38
Tmin = 0.416, Tmax = 0.803 k = −11→11
19423 measured reflections l = −15→15

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0541P)2 + 3.5192P] where P = (Fo2 + 2Fc2)/3
3646 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.76 e Å3
1 restraint Δρmin = −0.51 e Å3

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.000000 0.82906 (7) 0.750000 0.02908 (13)
K2 0.000000 0.64758 (6) 0.250000 0.02585 (12)
S1 0.15530 (2) 0.94369 (6) 0.36528 (5) 0.03200 (12)
S2 0.31454 (2) 0.91861 (6) 0.30731 (4) 0.02972 (12)
O1 0.03202 (5) 0.90961 (16) 0.37679 (12) 0.0288 (3)
O2 0.03173 (4) 0.75961 (15) 0.53962 (10) 0.0251 (2)
O3 0.44445 (5) 1.07891 (16) 0.64145 (11) 0.0264 (3)
O4 0.45504 (4) 1.14483 (16) 0.45457 (11) 0.0246 (2)
H4O 0.4811 (7) 1.187 (3) 0.485 (2) 0.037*
N1 0.22122 (5) 1.18192 (18) 0.58094 (13) 0.0226 (3)
C1 0.23166 (6) 1.10103 (19) 0.48370 (15) 0.0214 (3)
C2 0.26072 (6) 1.1694 (2) 0.40166 (14) 0.0214 (3)
C3 0.20952 (6) 0.9373 (2) 0.46641 (17) 0.0261 (3)
H3A 0.201509 0.894439 0.544105 0.031*
H3B 0.233073 0.863252 0.434300 0.031*
C4 0.11775 (7) 1.0635 (2) 0.4543 (2) 0.0344 (4)
H4A 0.138286 1.142471 0.500499 0.041*
H4B 0.094632 1.125024 0.400576 0.041*
C5 0.08989 (6) 0.9666 (2) 0.53952 (18) 0.0301 (4)
H5A 0.112007 0.889825 0.583250 0.036*
H5B 0.077277 1.040676 0.598231 0.036*
C6 0.04848 (6) 0.8740 (2) 0.47738 (14) 0.0215 (3)
C7 0.27238 (6) 1.0859 (2) 0.28997 (15) 0.0260 (3)
H7A 0.285609 1.166910 0.237196 0.031*
H7B 0.241998 1.045256 0.249183 0.031*
C8 0.37036 (6) 1.0182 (3) 0.35882 (16) 0.0295 (4)
H8A 0.397073 0.966995 0.320275 0.035*
H8B 0.368597 1.132425 0.333262 0.035*
C9 0.38174 (6) 1.0126 (2) 0.49202 (15) 0.0243 (3)
H9A 0.380284 0.899037 0.518480 0.029*
H9B 0.356583 1.073093 0.530128 0.029*
C10 0.43036 (6) 1.08130 (19) 0.53492 (14) 0.0216 (3)

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0442 (3) 0.0240 (2) 0.0186 (2) 0.000 −0.0001 (2) 0.000
K2 0.0356 (3) 0.0230 (2) 0.0189 (2) 0.000 0.00191 (18) 0.000
S1 0.0250 (2) 0.0304 (2) 0.0399 (3) −0.00503 (16) −0.00202 (17) −0.00557 (18)
S2 0.0236 (2) 0.0297 (2) 0.0355 (2) −0.00158 (16) 0.00042 (16) −0.00746 (17)
O1 0.0311 (6) 0.0272 (6) 0.0269 (6) −0.0064 (5) −0.0040 (5) 0.0023 (5)
O2 0.0235 (5) 0.0282 (6) 0.0233 (5) −0.0027 (5) 0.0009 (4) 0.0005 (5)
O3 0.0276 (6) 0.0300 (6) 0.0217 (5) −0.0011 (5) 0.0019 (4) 0.0021 (5)
O4 0.0228 (5) 0.0299 (6) 0.0212 (5) −0.0051 (5) 0.0024 (4) 0.0004 (5)
N1 0.0196 (6) 0.0235 (6) 0.0242 (6) −0.0010 (5) −0.0004 (5) 0.0030 (5)
C1 0.0173 (6) 0.0206 (7) 0.0256 (7) −0.0002 (5) −0.0027 (5) 0.0020 (6)
C2 0.0183 (7) 0.0230 (7) 0.0223 (7) 0.0002 (5) −0.0022 (5) 0.0019 (6)
C3 0.0214 (7) 0.0213 (7) 0.0353 (9) −0.0017 (6) 0.0007 (6) 0.0016 (6)
C4 0.0220 (8) 0.0231 (8) 0.0576 (12) −0.0023 (6) −0.0009 (8) −0.0060 (8)
C5 0.0230 (8) 0.0295 (9) 0.0368 (9) −0.0023 (6) −0.0035 (7) −0.0092 (7)
C6 0.0180 (7) 0.0212 (7) 0.0250 (7) 0.0004 (5) 0.0006 (5) −0.0046 (6)
C7 0.0250 (8) 0.0290 (8) 0.0237 (7) −0.0007 (6) −0.0005 (6) −0.0005 (6)
C8 0.0211 (7) 0.0402 (10) 0.0271 (8) −0.0049 (7) 0.0021 (6) −0.0020 (7)
C9 0.0218 (7) 0.0250 (8) 0.0261 (7) −0.0017 (6) 0.0025 (6) −0.0010 (6)
C10 0.0224 (7) 0.0205 (7) 0.0220 (7) 0.0019 (5) 0.0031 (6) −0.0003 (5)

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Geometric parameters (Å, º)

K1—O1i 2.7084 (14) O1—C6 1.227 (2)
K1—O1ii 2.7084 (14) O4—C10 1.296 (2)
K1—O2 2.6682 (12) O4—H4O 0.855 (16)
K1—O2iii 2.6683 (12) O3—C10 1.236 (2)
K1—O3iv 2.8099 (14) N1—C1 1.340 (2)
K1—O3v 2.8099 (13) N1—C2xi 1.341 (2)
K1—C6iii 3.4864 (17) C1—C2 1.401 (2)
K1—C6 3.4865 (17) C1—C3 1.498 (2)
K1—K2vi 3.9521 (8) C2—C7 1.499 (2)
K1—K2ii 4.3395 (8) C3—H3A 0.9900
K2—O1vii 2.7131 (13) C3—H3B 0.9900
K2—O1 2.7132 (13) C4—C5 1.518 (3)
K2—O3viii 2.6683 (13) C4—H4A 0.9900
K2—O3ix 2.6682 (13) C4—H4B 0.9900
K2—O4x 2.7209 (12) C5—C6 1.511 (2)
K2—O4iv 2.7209 (12) C5—H5A 0.9900
K2—C6vii 3.3739 (16) C5—H5B 0.9900
K2—C6 3.3739 (16) C7—H7A 0.9900
K2—C10viii 3.5364 (16) C7—H7B 0.9900
K2—C10ix 3.5364 (16) C8—C9 1.513 (2)
S1—C4 1.809 (2) C8—H8A 0.9900
S1—C3 1.8200 (18) C8—H8B 0.9900
S2—C8 1.8159 (18) C9—C10 1.514 (2)
S2—C7 1.8190 (19) C9—H9A 0.9900
O2—C6 1.291 (2) C9—H9B 0.9900
O2—K1—O2iii 155.07 (6) O3ix—K2—K1vi 45.27 (3)
O2—K1—O1i 121.67 (4) O1vii—K2—K1vi 143.21 (3)
O2iii—K1—O1i 79.65 (4) O1—K2—K1vi 143.21 (3)
O2—K1—O1ii 79.65 (4) O4x—K2—K1vi 89.52 (3)
O2iii—K1—O1ii 121.67 (4) O4iv—K2—K1vi 89.52 (3)
O1i—K1—O1ii 73.73 (6) C6vii—K2—K1vi 123.80 (3)
O2—K1—O3iv 70.32 (4) C6—K2—K1vi 123.80 (3)
O2iii—K1—O3iv 91.03 (4) C10viii—K2—K1vi 57.55 (3)
O1i—K1—O3iv 165.36 (4) C10ix—K2—K1vi 57.55 (3)
O1ii—K1—O3iv 102.33 (4) O3viii—K2—K1ii 134.73 (3)
O2—K1—O3v 91.03 (4) O3ix—K2—K1ii 134.73 (3)
O2iii—K1—O3v 70.32 (4) O1vii—K2—K1ii 36.79 (3)
O1i—K1—O3v 102.33 (4) O1—K2—K1ii 36.79 (3)
O1ii—K1—O3v 165.36 (4) O4x—K2—K1ii 90.48 (3)
O3iv—K1—O3v 84.85 (5) O4iv—K2—K1ii 90.48 (3)
O2—K1—C6iii 172.97 (4) C6vii—K2—K1ii 56.20 (3)
O2iii—K1—C6iii 18.84 (4) C6—K2—K1ii 56.20 (3)
O1i—K1—C6iii 65.30 (4) C10viii—K2—K1ii 122.45 (3)
O1ii—K1—C6iii 104.31 (4) C10ix—K2—K1ii 122.45 (3)
O3iv—K1—C6iii 102.96 (4) K1vi—K2—K1ii 180.0
O3v—K1—C6iii 86.17 (4) C4—S1—C3 99.00 (9)
O2—K1—C6 18.84 (4) C8—S2—C7 102.58 (9)
O2iii—K1—C6 172.97 (4) C6—O2—K1 119.28 (10)
O1i—K1—C6 104.31 (4) C6—O1—K1ii 139.92 (11)
O1ii—K1—C6 65.30 (4) C6—O1—K2 112.22 (11)
O3iv—K1—C6 86.17 (4) K1ii—O1—K2 106.34 (4)
O3v—K1—C6 102.96 (4) C10—O4—K2xii 155.24 (11)
C6iii—K1—C6 167.74 (6) C10—O4—H4O 111.3 (17)
O2—K1—K2vi 77.54 (3) K2xii—O4—H4O 84.7 (17)
O2iii—K1—K2vi 77.54 (3) C10—O3—K2ix 125.83 (11)
O1i—K1—K2vi 143.13 (3) C10—O3—K1xii 122.23 (11)
O1ii—K1—K2vi 143.13 (3) K2ix—O3—K1xii 92.31 (4)
O3iv—K1—K2vi 42.42 (3) C1—N1—C2xi 118.43 (14)
O3v—K1—K2vi 42.42 (3) N1—C1—C2 121.17 (15)
C6iii—K1—K2vi 96.13 (3) N1—C1—C3 116.44 (15)
C6—K1—K2vi 96.13 (3) C2—C1—C3 122.37 (15)
O2—K1—K2ii 102.46 (3) N1xi—C2—C1 120.40 (15)
O2iii—K1—K2ii 102.46 (3) N1xi—C2—C7 116.30 (15)
O1i—K1—K2ii 36.87 (3) C1—C2—C7 123.28 (15)
O1ii—K1—K2ii 36.87 (3) C1—C3—S1 111.60 (12)
O3iv—K1—K2ii 137.58 (3) C1—C3—H3A 109.3
O3v—K1—K2ii 137.58 (3) S1—C3—H3A 109.3
C6iii—K1—K2ii 83.87 (3) C1—C3—H3B 109.3
C6—K1—K2ii 83.87 (3) S1—C3—H3B 109.3
K2vi—K1—K2ii 180.0 H3A—C3—H3B 108.0
O3viii—K2—O3ix 90.54 (6) C5—C4—S1 114.41 (14)
O3viii—K2—O1vii 99.63 (4) C5—C4—H4A 108.7
O3ix—K2—O1vii 163.72 (4) S1—C4—H4A 108.7
O3viii—K2—O1 163.72 (4) C5—C4—H4B 108.7
O3ix—K2—O1 99.63 (4) S1—C4—H4B 108.7
O1vii—K2—O1 73.59 (6) H4A—C4—H4B 107.6
O3viii—K2—O4x 83.95 (4) C6—C5—C4 112.73 (16)
O3ix—K2—O4x 95.38 (4) C6—C5—H5A 109.0
O1vii—K2—O4x 73.30 (4) C4—C5—H5A 109.0
O1—K2—O4x 107.50 (4) C6—C5—H5B 109.0
O3viii—K2—O4iv 95.38 (4) C4—C5—H5B 109.0
O3ix—K2—O4iv 83.95 (4) H5A—C5—H5B 107.8
O1vii—K2—O4iv 107.50 (4) O1—C6—O2 123.88 (15)
O1—K2—O4iv 73.30 (4) O1—C6—C5 121.42 (16)
O4x—K2—O4iv 179.04 (6) O2—C6—C5 114.67 (15)
O3viii—K2—C6vii 81.96 (4) O1—C6—K2 48.11 (8)
O3ix—K2—C6vii 157.35 (4) O2—C6—K2 82.31 (9)
O1vii—K2—C6vii 19.67 (4) C5—C6—K2 151.60 (11)
O1—K2—C6vii 92.90 (4) O1—C6—K1 134.60 (11)
O4x—K2—C6vii 62.69 (4) O2—C6—K1 41.88 (8)
O4iv—K2—C6vii 117.91 (4) C5—C6—K1 88.93 (10)
O3viii—K2—C6 157.35 (4) K2—C6—K1 116.96 (5)
O3ix—K2—C6 81.96 (4) C2—C7—S2 116.42 (12)
O1vii—K2—C6 92.90 (4) C2—C7—H7A 108.2
O1—K2—C6 19.67 (4) S2—C7—H7A 108.2
O4x—K2—C6 117.91 (4) C2—C7—H7B 108.2
O4iv—K2—C6 62.69 (4) S2—C7—H7B 108.2
C6vii—K2—C6 112.40 (6) H7A—C7—H7B 107.3
O3viii—K2—C10viii 16.46 (4) C9—C8—S2 114.13 (13)
O3ix—K2—C10viii 101.75 (4) C9—C8—H8A 108.7
O1vii—K2—C10viii 85.89 (4) S2—C8—H8A 108.7
O1—K2—C10viii 158.61 (4) C9—C8—H8B 108.7
O4x—K2—C10viii 71.16 (4) S2—C8—H8B 108.7
O4iv—K2—C10viii 108.29 (4) H8A—C8—H8B 107.6
C6vii—K2—C10viii 67.17 (4) C8—C9—C10 114.57 (14)
C6—K2—C10viii 170.09 (4) C8—C9—H9A 108.6
O3viii—K2—C10ix 101.75 (4) C10—C9—H9A 108.6
O3ix—K2—C10ix 16.46 (4) C8—C9—H9B 108.6
O1vii—K2—C10ix 158.61 (4) C10—C9—H9B 108.6
O1—K2—C10ix 85.89 (4) H9A—C9—H9B 107.6
O4x—K2—C10ix 108.29 (4) O3—C10—O4 122.99 (16)
O4iv—K2—C10ix 71.16 (4) O3—C10—C9 120.71 (15)
C6vii—K2—C10ix 170.09 (4) O4—C10—C9 116.27 (14)
C6—K2—C10ix 67.17 (4) O3—C10—K2ix 37.72 (8)
C10viii—K2—C10ix 115.09 (5) O4—C10—K2ix 113.96 (10)
O3viii—K2—K1vi 45.27 (3) C9—C10—K2ix 116.44 (10)
C2xi—N1—C1—C2 0.0 (2) C4—C5—C6—O1 −18.7 (2)
C2xi—N1—C1—C3 −178.32 (14) C4—C5—C6—O2 162.94 (15)
N1—C1—C2—N1xi 0.0 (3) C4—C5—C6—K2 40.3 (3)
C3—C1—C2—N1xi 178.22 (14) C4—C5—C6—K1 −162.96 (14)
N1—C1—C2—C7 −178.30 (15) N1xi—C2—C7—S2 108.63 (15)
C3—C1—C2—C7 −0.1 (2) C1—C2—C7—S2 −72.98 (19)
N1—C1—C3—S1 97.64 (16) C8—S2—C7—C2 −67.34 (15)
C2—C1—C3—S1 −80.62 (18) C7—S2—C8—C9 97.89 (15)
C4—S1—C3—C1 −65.81 (15) S2—C8—C9—C10 174.51 (12)
C3—S1—C4—C5 −87.72 (15) K2ix—O3—C10—O4 −87.24 (18)
S1—C4—C5—C6 −73.29 (18) K1xii—O3—C10—O4 33.7 (2)
K1ii—O1—C6—O2 128.23 (16) K2ix—O3—C10—C9 94.51 (17)
K2—O1—C6—O2 −35.0 (2) K1xii—O3—C10—C9 −144.57 (12)
K1ii—O1—C6—C5 −49.9 (3) K1xii—O3—C10—K2ix 120.92 (16)
K2—O1—C6—C5 146.80 (13) K2xii—O4—C10—O3 125.1 (2)
K1ii—O1—C6—K2 163.2 (2) K2xii—O4—C10—C9 −56.6 (3)
K1ii—O1—C6—K1 74.9 (2) K2xii—O4—C10—K2ix 83.1 (3)
K2—O1—C6—K1 −88.34 (15) C8—C9—C10—O3 −177.68 (16)
K1—O2—C6—O1 −121.20 (15) C8—C9—C10—O4 3.9 (2)
K1—O2—C6—C5 57.09 (17) C8—C9—C10—K2ix −134.75 (13)
K1—O2—C6—K2 −146.73 (7)

Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x, −y+2, −z+1; (iii) −x, y, −z+3/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1; (vii) −x, y, −z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) −x+1/2, −y+3/2, −z+1; (x) −x+1/2, y−1/2, −z+1/2; (xi) −x+1/2, −y+5/2, −z+1; (xii) x+1/2, y+1/2, z.

Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4O···O2xii 0.85 (2) 1.61 (2) 2.4637 (16) 177 (3)
C4—H4A···N1 0.99 2.44 3.266 (2) 141
C8—H8A···O3xiii 0.99 2.53 3.436 (2) 151

Symmetry codes: (xii) x+1/2, y+1/2, z; (xiii) x, −y+2, z−1/2.

Funding Statement

This work was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grant . Université de Neuchâtel grant .

References

  1. Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. [DOI] [PMC free article] [PubMed]
  2. Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.
  3. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  4. Hayati, P., Rezvani, A. R., Morsali, A. & Retailleau, P. (2017). Ultrason. Sonochem. 34, 195–205. [DOI] [PubMed]
  5. Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090–2096.
  6. Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874. [DOI] [PubMed]
  7. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  8. Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004–1011.
  9. Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010.
  10. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
  11. Pacifico, J. (2003). PhD Thesis, University of Neuchâtel, Switzerland.
  12. Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications (CCDC 2036276, 2041654 and 2041655). CCDC, Cambridge, England.
  13. Santra, S., Das, B. & Baruah, J. B. (2011). J. Chem. Crystallogr. 41, 1981–1987.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  16. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  17. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  18. Stoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
  19. Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  20. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  21. Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247. [DOI] [PMC free article] [PubMed]
  22. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  23. Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78–82.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Wolff, L. (1887). Ber. Dtsch. Chem. Ges. 20, 425–433.
  26. Wolff, L. (1893). Ber. Dtsch. Chem. Ges. 26, 721–725.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) H4L1A, H4L1B, KH3L1, K2H2L1, Global. DOI: 10.1107/S2056989021003479/pk2656sup1.cif

e-77-00480-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) H4L1A. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup2.hkl

e-77-00480-H4L1Asup2.hkl (175.9KB, hkl)

Structure factors: contains datablock(s) H4L1B. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup3.hkl

e-77-00480-H4L1Bsup3.hkl (176.5KB, hkl)

Structure factors: contains datablock(s) KH3L1. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup4.hkl

e-77-00480-KH3L1sup4.hkl (167.7KB, hkl)

Structure factors: contains datablock(s) K2H2L1. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup5.hkl

e-77-00480-K2H2L1sup5.hkl (291.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup6.cml

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup7.cml

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup8.cml

Supporting information file. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup9.cml

CCDC references: 2074770, 2074769, 2074768, 2074767

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES