The crystal structures of two triclinic polymorphs of a new tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl)]tetrapropionic acid, are reported, together with the crystal structures of two potassium-organic frameworks.
Keywords: crystal structure, pyrazine, tetrakis, carboxylate, polymorphism, hydrogen bonding, supramolecular framework, alkali metal, potassium-organic framework, Hirshfeld surface, energy framework
Abstract
Two polymorphs of the title tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid, C20H28N2O8S4, (H4L1), have been obtained, H4L1_A and H4L1_B. Each structure crystallized with half a molecule in the asymmetric unit of a triclinic P
unit cell. The whole molecules are generated by inversion symmetry, with the pyrazine rings being located about inversion centers. The crystals of H4L1_B were of poor quality, but the X-ray diffraction analysis does show the change in conformation of the –CH2—S—CH2—CH2– side chains compared to those in polymorph H4L1_A. In the crystal of H4L1_A, molecules are linked by two pairs of O—H⋯O hydrogen bonds, enclosing R
2
2(8) ring motifs forming layers parallel to plane (100), which are linked by C—H⋯O hydrogen bonds to form a supramolecular framework. In the crystal of H4L1_B, molecules are also linked by two pairs of O—H⋯O hydrogen bonds enclosing R
2
2(8) ring motifs, however here, chains are formed propagating in the [001] direction and stacking up the a-axis. Reaction of H4L1 with Hg(NO3)2 in the presence of a potassium acetate buffer did not produce the expected binuclear complex, instead crystals of a potassium–organic framework were obtained, poly[(μ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium], [K(C20H27N2O8S4)]n (KH3L1). The organic mono-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. A carboxy H atom is disordered by symmetry and the charge is compensated for by a potassium ion. A similar reaction with Zn(NO3)2 resulted in the formation of crystals of a dipotassium-organic framework, poly[(μ-3,3′-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium], [K2(C20H26N2O8S4)]n (K2H2L1). Here, the organic di-anion possesses inversion symmetry with the pyrazine ring being located about an inversion center. Two symmetry-related acid groups are deprotonated and the charges are compensated for by two potassium ions.
Chemical context
The title tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl)]tetrapropionic acid (H4L1), is to the best of our knowledge, only the third pyrazine tetrakis-substituted carboxylic acid ligand to have been synthesized. The first is pyrazine-2,3,5,6-tetracarboxylic acid (pztca), which was originally synthesized by Wolff at the end of the 19th century (Wolff, 1887 ▸, 1893 ▸), while the second is 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetrayl)tetrabenzoic acid (pztba), which was first synthesized by Jiang et al. (2017 ▸). Pztca (Fig. 1 ▸) has been used to synthesize a number of coordination polymers, the first being poly{[(2,5-dicarboxypyrazine-3,6-dicarboxylato)transdiaquairon(II) dihydrate]} (Marioni et al., 1986 ▸), while pztba (Fig. 1 ▸) has been shown to form a series of metal–organic frameworks (Jiang et al., 2017 ▸; Wang et al., 2019 ▸).
Figure 1.
Chemical diagrams for pyrazine-2,3,5,6-tetracarboxylic acid (pztca), 4,4′,4′′,4′′′-(pyrazine-2,3,5,6-tetrayl)tetrabenzoic acid (pztba), pyrazine-2,3-dicarboxylic acid (pzdca) and pyridine-2,6-dicarboxylic acid (pydca).
The title ligand was synthesized to study its coordination behaviour with various transition metal ions (Pacifico, 2003 ▸). Potentially the ligand can coordinate in a bis-pentadentate manner, as was shown to be the case for a similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrakis(ethan-1-amine) (H4L2), for which two nickel(II) binuclear complexes, I and II, were synthesized (Pacifico, 2003 ▸; Pacifico & Stoeckli-Evans, 2020 ▸); see Fig. 2 ▸.
Figure 2.
Chemical diagram for 2,2′,2′′,2′′′-[(pyrazine-2,3,5,6-tetrayltetrakis(methylene)tetrakis(sulfanediyl)]tetrakis(ethan-1-amine) (H4L2) and two nickel(II) binuclear complexes, I and II (Pacifico & Stoeckli-Evans, 2020 ▸).
Structural commentary
The title tetrakis-substituted pyrazine carboxylic acid, 3,3′,3′′,3′′′-[(pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl)]tetrapropionic acid (H4L1_A), crystallized with half a molecule in the asymmetric unit (Fig. 3 ▸). The whole molecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center.
Figure 3.
The molecular structure of H4L1_A, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by symmetry operator −x + 2, −y + 1, −z + 1.
In an attempt to form a co-crystal, equimolar amounts of H4L1 and terephthalic acid were mixed in methanol. On slow evaporation of the solvent, colourless plate-like crystals were obtained. X-ray diffraction analysis revealed their structure to be that of a second triclinic P
polymorph, H4L1_B (Fig. 4 ▸). It crystallized with half a molecule in the asymmetric unit and the whole molecule is generated by inversion symmetry, with the pyrazine ring being located about an inversion center. The crystals were of poor quality with one CH2—CH2—CO2H side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B) of the centrosymmetric molecule being positionally disordered (Fig. 4 ▸
b). The difference in the two polymorphs is essentially in the orientation of the –CH2—S—CH2—CH2—C– side arms, as shown in Fig. 5 ▸
a and b. Selected torsion angles are given in Table 1 ▸.
Figure 4.
(a) The molecular structure of H4L1_B, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. (b) A view of the molecular structure of H4L1_B with the symmetry-related disordered side chains (C8/C8B, C9/C9B, C10/C10B, O3/O3B and O4/O4B) shown with dashed bonds. Unlabelled atoms are related to labelled atoms by symmetry operator −x + 2, −y + 1, −z + 1.
Figure 5.
A comparison of the orientation of the –CH2—S—CH2—CH2– side chains in (a) polymorph H4L1_A, (b) for the major disordered component of polymorph H4L1_B, (c) KH3L1 and (d) K2H2L1 [see Table 1 ▸ for further details; symmetry codes: (i) = (ii) −x + 2, −y + 1, −z + 1; (iii) −x +
, −y +
, −z; (iv) −x +
, −y +
, −z + 1].
Table 1. Selected torsion angles (°) along the Car—CH2—S—CH2—CH2—CO2H side chains in compounds H4L1_A, H4L1_B, KH3L1 and K2H2L1 .
| Torsion angle | H4L1_A | H4L1_B | KH3L1 | K2H2L1 |
|---|---|---|---|---|
| C1—C3—S1—C4 | 174.1 (2) | −72.6 (4) | −72.32) | −65.81 (15) |
| C3—S1—C4—C5 | −155.3 (2) | −86.7 (4) | −90.3 (2) | −87.72 (15) |
| S1—C4—C5—C6 | −167.9 (2) | −65.0 (6) | −76.4 (3) | −73.19 (18) |
| C2—C7—S2—C8 | 57.6 (2) | −66.8 (4) | −62.3 (2) | −67.34 (15) |
| C7—S2—C8—C9 | 65.7 (2) | −178.1 (5) | −77.5 (2) | 97.89 (15) |
| S2—C8—C9—C10 | 174.8 (2) | −172.5 (5) | −173.8 (2) | 174.51 (12) |
Reaction of H4L1 with Hg(NO3)2 in the presence a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a potassium–organic framework (KH3L1); see Fig. 6 ▸. The asymmetric unit consists of half a mono-deprotonated ligand molecule located about an inversion center, and half a potassium ion located on an inversion center. The carboxy H atom is disordered by symmetry. The K+ ion is linked to the O atoms of the acid groups and has a coordination number of eight (KO8) and a distorted dodecahedral geometry (Fig. 7 ▸ a). The K⋯O bond lengths vary between 2.682 (2) and 3.069 (3) Å (Table 2 ▸). Interestingly, here there is a significant difference between the K⋯O(C=O) and K⋯O(O−) distances: 2.6823 (2) and 2.828 (2) Å compared to 3.056 (3) and 3.069 (3) Å, respectively.
Figure 6.
The molecular structure of complex KH3L1, with labels for the atoms in the asymmetric unit of the organic anion. Unlabelled atoms are related to labelled atoms by symmetry operator (i) −x +
, −y +
, −z. Displacement ellipsoids are drawn at the 50% probability level. [Further symmetry codes are: (ii) −x + 1, −y, −z: (iii) x, y + 1, z; (iv) x, y, z + 1; (v) −x +
, −y +
, −z − 1; (vi) x −
, y +
, z; (vii) −x +
, −y −
, −z.]
Figure 7.
(a) Views of the coordination sphere of the potassium ion in KH3L1 [symmetry code: (i) −x + 1, y, −z −
] and (b) views of the coordination sphere of the potassium ions in K2H2L1 [symmetry codes: (i) −x, y, −z +
; (ii) x, y − 1, z; (iii) x, y + 1, z; (iv) −x, y + 1, −z +
].
Table 2. Selected bond lengths (Å) for KH3L1 .
| K1—O1 | 2.828 (2) | K1—O3ii | 2.682 (2) |
| K1—O2i | 3.056 (3) | K1—O4iii | 3.069 (3) |
Symmetry codes: (i) x, -y, z-{\script{1\over 2}}; (ii) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}; (iii) x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}.
Reaction of H4L1 with Zn(NO3)2 in the presence of a 1 M potassium acetate buffer led to the formation of colourless crystals that proved to be a dipotassium–organic framework (K2H2L1); see Fig. 8 ▸. The asymmetric unit consists of half a di-deprotonated ligand molecule located about an inversion center, and two half potassium ions located on inversion centers. The K+ ions are linked to the O atoms of the acid groups and both K+ ions have a coordination number of six (KO6) and have edge-sharing bipyramidal geometries. The K+ ions are bridged by atoms O1 and O3, forming chains propagating along the b-axis direction (Fig. 7 ▸ b). The K⋯O bond lengths vary between 2.6682 (12) and 2.8099 (14) Å (Table 3 ▸). Here, the difference between the K⋯O(C=O) and K⋯O(O−) bond lengths is much less significant (Table 3 ▸).
Figure 8.
The molecular structure of complex K2H2L1, with labels for the atoms in the asymmetric unit of the organic dianion. Unlabelled atoms are related to labelled atoms by symmetry operator (i) −x +
, −y +
, −z + 1. Displacement ellipsoids are drawn at the 50% probability level. [Further symmetry codes are: (ii) −x, −y + 2, −z + 1; (iii) x, y + 1, z; (iv) x +
, y +
, z; (v) −x +
, −y +
, −z + 1; (vi) x +
, y +
, z.]
Table 3. Selected bond lengths (Å) for K2H2L1 .
| K1—O1i | 2.7084 (14) | K2—O1 | 2.7132 (13) |
| K1—O2 | 2.6682 (12) | K2—O3iii | 2.6682 (13) |
| K1—O3ii | 2.8099 (14) | K2—O4ii | 2.7209 (12) |
Symmetry codes: (i) x, -y+2, z+{\script{1\over 2}}; (ii) x-{\script{1\over 2}}, y-{\script{1\over 2}}, z; (iii) -x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1.
The K⋯O bond lengths in the KH3L1 and K2H2L1 frameworks are close to those observed for similar compounds; see §6 Database survey. The conformation of one of the –CH2—S—CH2—CH2– side chains (involving atom S1) of the organic anion are similar, and similar to that in H4L1_B (Fig. 5 ▸ b), while the conformation of the second (involving atom S2) differs significantly (Fig. 5 ▸ c and d, and Table 1 ▸).
Supramolecular features
In the crystal of H4L1_A, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming classical carboxylic acid inversion dimers enclosing
(8) loops (Fig. 9 ▸ and Table 4 ▸). These interactions lead to the formation of layers lying parallel to the bc plane. The layers are linked by C—H⋯O hydrogen bonds (Table 4 ▸), forming a supramolecular framework.
Figure 9.
A view along the a axis of the crystal packing of H4L1_A. The hydrogen bonds are shown as dashed lines (see Table 4 ▸).
Table 4. Hydrogen-bond geometry (Å, °) for H4L1_A .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2O⋯O1i | 0.87 (2) | 1.80 (2) | 2.667 (3) | 172 (5) |
| O4—H4O⋯O3ii | 0.83 (2) | 1.85 (2) | 2.673 (3) | 175 (5) |
| C5—H5A⋯O3iii | 0.97 | 2.55 | 3.405 (4) | 147 |
| C8—H8A⋯O4iv | 0.97 | 2.40 | 3.308 (4) | 156 |
Symmetry codes: (i) -x-1, -y, -z; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) x+1, y, z.
In the crystal of H4L1_B, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction and enclosing
(8) loops (Fig. 10 ▸ and Table 5 ▸). There are no other significant directional contacts present in the crystal.
Figure 10.
A view along the a-axis of the crystal packing of H4L1_B. Only atoms of the major component are shown. The hydrogen bonds are shown as dashed lines (see Table 5 ▸).
Table 5. Hydrogen-bond geometry (Å, °) for H4L1_B .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2O⋯O3i | 0.82 | 1.94 | 2.66 (1) | 146 |
| O2—H2O⋯O3B i | 0.82 | 2.20 | 2.77 (3) | 127 |
| O4—H4O⋯O1ii | 0.82 | 1.88 | 2.66 (1) | 158 |
| O4B—H4OB⋯O1ii | 0.82 | 1.86 | 2.67 (4) | 170 |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1.
In both KH3L1 and K2H2L1, the organic anions are arranged as rungs of parallel ladders, so forming the framework structures, as shown in Figs. 11 ▸ and 12 ▸, respectively. The frameworks are reinforced by O—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds (Tables 6 ▸ and 7 ▸, respectively).
Figure 11.
A view along the b axis of the crystal packing of complex KH3L1. For clarity, the H atoms have been omitted.
Figure 12.
A view along the b axis of the crystal packing of complex K2H2L1. For clarity, the H atoms have been omitted.
Table 6. Hydrogen-bond geometry (Å, °) for KH3L1 .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O4—H4O⋯O1iv | 0.80 (5) | 1.86 (5) | 2.661 (3) | 180 (7) |
| O2—H20⋯O2v | 1.24 (1) | 1.24 (1) | 2.436 (3) | 159 (7) |
| C4—H4A⋯N1 | 0.99 | 2.52 | 3.340 (4) | 140 |
| C4—H4B⋯O3vi | 0.99 | 2.49 | 3.114 (4) | 121 |
| C5—H5B⋯O2i | 0.99 | 2.60 | 3.467 (4) | 146 |
| C7—H7B⋯N1vii | 0.99 | 2.60 | 3.454 (4) | 144 |
| C9—H9A⋯O3vii | 0.99 | 2.58 | 3.465 (4) | 149 |
Symmetry codes: (i) x, -y, z-{\script{1\over 2}}; (iv) x-{\script{1\over 2}}, y+{\script{1\over 2}}, z; (v) -x+1, y, -z+{\script{1\over 2}}; (vi) -x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z; (vii) x, -y, z+{\script{1\over 2}}.
Table 7. Hydrogen-bond geometry (Å, °) for K2H2L1 .
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O4—H4O⋯O2iv | 0.85 (2) | 1.61 (2) | 2.4637 (16) | 177 (3) |
| C4—H4A⋯N1 | 0.99 | 2.44 | 3.266 (2) | 141 |
| C8—H8A⋯O3v | 0.99 | 2.53 | 3.436 (2) | 151 |
Symmetry codes: (iv) x+{\script{1\over 2}}, y+{\script{1\over 2}}, z; (v) x, -y+2, z-{\script{1\over 2}}.
Hirshfeld surface analysis and two-dimensional fingerprint plots for H4L1_A, and H4L1_B
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007 ▸) were performed with CrystalExplorer17 (Turner et al., 2017 ▸) following the protocol of Tiekink and collaborators (Tan et al., 2019 ▸).
The Hirshfeld surfaces are colour-mapped with the normalized contact distance, d norm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of H4L1_A, and H4L1_B mapped over d norm are given in Fig. 13 ▸. The most significant short contacts in the crystal structures of the two polymorphs are given in Table 8 ▸. The large red spots in Fig. 13 ▸ a and b concern the O—H⋯O hydrogen bonds in the crystal structures of both compounds.
Figure 13.
The Hirshfeld surfaces of compounds (a) H4L1_A and (b) H4L1_B, mapped over d norm in the colour ranges of −0.7146 to 1.2167 and −0.6847 to 1.3548 au., respectively.
Table 8. Short contacts (Å) in the crystal structures of H4L1_A and H4L1_B a .
| Atom 1 | Atom 2 | Length | Length − VdW | Symm. op. 1 | Symm. op. 2 |
|---|---|---|---|---|---|
| H4L1_A | |||||
| O1 | H2O | 1.798 | −0.922 | x, y, z | −1 − x, −y, −z |
| O3 | H4O | 1.843 | −0.877 | x, y, z | 1 − x, 1 − y, −z |
| O1 | O2 | 2.667 | −0.373 | x, y, z | −1 − x, −y, −z |
| O3 | O4 | 2.673 | −0.367 | x, y, z | 1 − x, 1 − y, −z |
| O4 | H8A | 2.399 | −0.321 | x, y, z | −1 + x, y, z |
| O2 | O4 | 3.015 | −0.025 | x, y, z | −x, 1 − y, −z |
| C6 | H2O | 2.667 | −0.233 | x, y, z | −1 − x, −y, −z |
| C10 | H4O | 2.668 | −0.232 | x, y, z | 1 − x, 1 − y, −z |
| H5A | O3 | 2.549 | −0.171 | x, y, z | −1 + x, y, z |
| H4O | H4O | 2.371 | −0.029 | x, y, z | 1 − x, 1 − y, −z |
| H2O | H2O | 2.389 | −0.011 | x, y, z | −1 − x, −y, −z |
| N1 | H3A | 2.807 | 0.057 | x, y, z | 1 − x, 1 − y, 1 − z |
| O4 | C8 | 3.308 | 0.088 | x, y, z | −1 + x, y, z |
| O2 | H8A | 2.820 | 0.100 | x, y, z | 1 − x, 1 − y, −z |
| H4L1_Ba | |||||
| H4O | O1 | 1.879 | −0.841 | x, y, z | x, y, −1 + z |
| O4 | O1 | 2.658 | −0.382 | x, y, z | x, y, −1 + z |
| O3 | O2 | 2.663 | −0.377 | x, y, z | x, y, −1 + z |
| H4O | C6 | 2.580 | −0.320 | x, y, z | x, y, −1 + z |
| O4 | O2 | 2.799 | −0.241 | x, y, z | −1 + x, y, −1 + z |
| H4O | H2O | 2.173 | −0.227 | x, y, z | x, y, −1 + z |
| O1 | O2 | 2.982 | −0.058 | x, y, z | −1 + x, y, z |
| S1 | H3A | 2.951 | −0.049 | x, y, z | −1 + x, y, z |
| S1 | S2 | 3.590 | −0.010 | x, y, z | 1 − x, −y, 1 − z |
| O4 | O3 | 3.041 | 0.001 | x, y, z | −1 + x, y, z |
| S2 | S2 | 3.613 | 0.013 | x, y, z | 1 − x, −y, 1 − z |
| H8A | O3 | 2.749 | 0.029 | x, y, z | −1 + x, y, z |
| S1 | H5A | 3.047 | 0.047 | x, y, z | −1 + x, y, z |
| H4O | O2 | 2.775 | 0.055 | x, y, z | −1 + x, y, −1 + z |
| O4 | H2O | 2.776 | 0.056 | x, y, z | −1 + x, y, −1 + z |
| C10 | H2O | 2.960 | 0.060 | x, y, z | 2 − x, −y, 1 − z |
| O3 | H2O | 2.796 | 0.076 | x, y, z | 2 − x, −y, 1 − z |
| H7B | C3 | 2.974 | 0.074 | x, y, z | −1 + x, y, z |
| S2 | H7B | 3.082 | 0.082 | x, y, z | 1 − x, −y, 1 − z |
| O2 | H5B | 2.802 | 0.082 | 2 − x, 1 − y, 1 − z | −1 + x, y, −1 + z |
| S1 | H9A | 3.085 | 0.085 | x, y, z | 1 − x, −y, 1 − z |
Note: (a) major component of H4L1_B.
The percentage contributions of inter-atomic contacts to the HS for both compounds are compared in Table 9 ▸. The two-dimensional fingerprint plots for compounds H4L1_A, and H4L1_B are shown in Fig. 14 ▸. They reveal that the principal contributions to the overall HS involve H⋯H contacts at 37.2 and 36.3%, respectively, and O⋯H/H⋯O contacts at, respectively, 37.7 and 32.2%.
Table 9. Percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of H4L1_A and H4L1_Ba .
| Contact | % contribution | % contribution |
|---|---|---|
| H4L1_A | H4L1_B a | |
| H⋯H | 37.2 | 36.3 |
| O⋯H/H⋯O | 37.7 | 32.2 |
| S⋯H/H⋯S | 13.4 | 16.1 |
| C⋯H/H⋯C | 4.5 | 4.9 |
| N⋯H/H⋯N | 3.0 | 2.5 |
| C⋯N | 0 | 0.8 |
| C⋯O | 1.0 | 0.7 |
| C⋯S | 1.2 | 0 |
| N⋯S | 0.4 | 0.4 |
| O⋯O | 1.3 | 4.9 |
| O⋯S | 0.2 | 0 |
| S⋯S | 0.2 | 1.2 |
Note: (a) major component of H4L1_B.
Figure 14.
The full two-dimensional fingerprint plots for compounds (a) H4L1_A and (b) H4L1_B, and those delineated into H⋯H, O⋯H/H⋯O and S⋯H/H⋯S contacts.
The third most important contribution to the HS is from the S⋯H/H⋯S contacts at 13.4 and 16.1%, for H4L1_A, and H4L1_B, respectively. These are followed by C⋯H/H⋯H contacts at, respectively, 4.5 and 4.9%. The N⋯H/H⋯N contacts contribute, respectively, 3.0 and 2.5%.
Energies frameworks for H4L1_A, and H4L1_B
The colour-coded interaction mappings within a radius of 6 Å of a central reference molecule for H4L1_A, and H4L1_B, are given in Fig. 15 ▸. Full details of the various contributions to the total energy (E tot) are also included there; see Tan et al. (2019 ▸) for an explanation of the various parameters.
Figure 15.
The colour-coded interaction mappings within a radius of 6 Å of a central reference molecule for (a) H4L1_A and (b) H4L1_B.
A comparison of the energy frameworks calculated for H4L1_A, and H4L1_B, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (Etot), are shown in Fig. 16 ▸. The energies were obtained by using the wave function at the HF/3-21G level of theory. The cylindrical radii are proportional to the relative strength of the corresponding energies (Turner et al., 2017 ▸; Tan et al., 2019 ▸). They have been adjusted to the same scale factor of 80 with a cut-off value of 5 kJ mol−1 within a radius of 6 Å of a central reference molecule. It can be seen that for both polymorphs the major contribution to the intermolecular interactions is from electrostatic potential forces (E ele), reflecting the presence of the classical O—H⋯O hydrogen bonds.
Figure 16.
The energy frameworks calculated for (a) H4L1_A and (b) H4L1_B, both viewed along the b-axis direction, showing the electrostatic potential forces (E ele), the dispersion forces (E dis) and the total energy diagrams (E tot).
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update February 2021; Groom et al., 2016 ▸) for tetrakis-substituted pyrazine carboxylic acids gave results for only two such ligands, viz. 2,3,5,6-pyrazinetetracarboxylic acid (pztca) and 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (pztba). Ligand pztba has been shown to be extremely successful in forming metal–organic frameworks (Jiang et al., 2017 ▸; Wang et al., 2019 ▸).
Potassium salts of carboxylic acids are relatively common. A search for potassium salts of purely organic carboxylic acids and excluding hydrates, yielded over 200 hits. The potassium salt of pztca has been reported, viz. catena-[(μ4-3,5,6-tricarboxypyrazine-2-carboxylato)potassium] (CSD refcode UBUPAK; Masci et al., 2010 ▸). The structure of UBUPAK is that of a potassium–organic framework (Fig. 17 ▸ a). The asymmetric unit consists of half a mono-deprotonated ligand molecule located about an inversion center, and half a potassium ion. The carboxy H atom is disordered by symmetry, similar to the situation in the structure of KH3L1. Here the K⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å. The K+ cation has a coordination number of 8 (KO8) and a distorted dodecahedral geometry as in KH3L1 (Fig. 7 ▸ a and 11).
Figure 17.
(a) A view along the a axis of the potassium–organic framework of UBUPAK (Masci et al., 2010 ▸) and (b) a view along the c axis of the potassium–organic framework of MUMPIW (Li et al., 2020 ▸).
The structure of the potassium salt of pyrazine-2,3-dicarboxylic acid (pzdca; Fig. 1 ▸), catena-[(μ2-3-carboxypyrazine-2-carboxylato)-(μ2-pyrazine-2,3-dicarboxylic acid)diaquapotassium], has been reported (RISYIC; Tombul et al., 2008 ▸). It has a polymer chain structure with the chains linked by O—H⋯O hydrogen bonds, forming a supramolecular framework. Here the K⋯O bond lengths vary from 2.8772 (14) to 3.0898 (14) Å.
The structures of two potassium salts of 2,6-pyridine-dicarboxylic acid (pydca; Fig. 1 ▸) have been reported. They include, bis(μ2-pyridine-2,6-dicarboxylic acid-N,O,O′:O′)-hexaaquabis(6-carboxypyridine-2-carboxylato-O)dipotassium (HAMBEE; Santra et al., 2011 ▸; HAMBEE01; Hayati et al., 2017 ▸), and catena-[(μ-6-carboxypyridine-2-carboxylato)potassium] (MUMPIW; Li et al., 2020 ▸). HAMBEE is a binuclear complex, which is linked by O—H⋯O hydrogen bonds to form supramolecular chains. The K⋯O bond lengths vary from 2.721 (2) to 3.054 (3) Å.
The structure of MUMPIW is that of a potassium-organic framework (Fig. 17 ▸ b), with the K⋯O bonds lengths varying from 2.8197 (14) to 3.0449 (15) Å. The K+ ion has a coordination number of seven (KO6N) and has an edge-sharing pentagonal antiprism geometry, forming chains (Fig. 17 ▸ b). This structure can be compared to that of K2H2L1 where the two independent K+ ions, each with a coordination number of six (KO6), have edge-sharing bipyramidal geometries, also forming chains (Fig. 7 ▸ b and 12).
Synthesis and crystallization
The synthesis and crystal structure of the reagent tetra-2,3,5,6-bromomethyl-pyrazine (TBr) have been reported (Ferigo et al., 1994 ▸; Assoumatine & Stoeckli-Evans, 2014 ▸ [CSD refcode: TOJXUN]).
Synthesis of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrapropionic acid (H4L1):
Mercaptopropionic acid (1.8795 g, 1.77 mol, 4 eq) was dissolved in 50 ml THF. A minimum amount of water (a few ml) was added to dissolve 1.4166 g (3.54 mol, 8 eq) of NaOH. The volume of the mixture was increased to 100 ml by adding THF and the reaction was stirred under reflux for 1 h. Then TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml THF was added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After drying under vacuum, the residue was dissolved in 50 ml of deionized water, and HCl puriss. was added dropwise until a clearly acid pH was obtained. This mixture was stirred at room temperature for 1–2 h. The yellow precipitate that formed was filtered off and washed with a minimum amount of water and then CHCl3. It was then dried under vacuum conditions. Recrystallization carried out with methanol gave pale-yellow crystals of H4L1 (yield 88%, m.p. 466 K) that X-ray diffraction analysis indicated to be triclinic polymorph H4L1_A.
The presence of terephthalic acid in an equimolar quantity with H4L1 in methanol gave colourless crystals of rather poor quality. However, X-ray diffraction analysis indicated that a second triclinic (P
) polymorph, H4L1_B, had been obtained.
Spectroscopic and elemental analyses:
R f: 0.77 (solvent: CH3OH).
1H NMR (CD3OD, 400 MHz), δ(ppm): 4.03 (s, 8H, H2), 2.78 (t, 8H, 3 J (3,4) = 7.0, H3), 2.62 (t, 8H, 3 J (4,3) = 7.0, H4).
13C NMR (CD3OD, 50 MHz), δ(ppm): 174.54 (4C, C5), 150.12 (4C, C1), 34.29 (4C, C4), 33.64 (4C, C2), 26.65 (4C, C3).
Elemental Analysis for C20H28N2O8S4, M w = 552.71 g mol−1: Calculated: C 43.46, H 5.11, N 5.07%. Found: C 43.40, H 5.17, N 4.87%.
ESI–MS, m/z: 591.04 [M + K]+; 575.06 [M + Na]+; 553.08 [M + H]+; 471.07; 449.09.
IR (KBr disc, cm−1) ν: 2926(s), 2666(m), 2590(s), 1693(s), 1429(s), 1406(s), 1340(m), 1270(s), 1200(s), 1163(m), 1134(s), 1107(m), 1055(w), 918(s), 658(m), 489(m).
Synthesis of poly[(μ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoate)potassium] (KH3L1):
Hg(NO3)2 (45.0 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1 eq) were mixed together in 20 ml of a 1 M potassium acetate buffer. The mixture was left at 323 K under stirring and nitrogen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks. Colourless plate-like crystals were obtained, which were shown to be a potassium–organic framework.
IR (KBr disc, cm−1) ν: 3422(m), 2922(m), 1713(m), 1580(s), 1399(s), 1247(m), 1190(m), 1152(m), 1114(m), 811(m), 787(m).
Synthesis of poly[(μ-3,3′-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1):
Zn(NO3)2 (28.4 mg, 0.109 mmol, 2 eq) and H4L1 (30 mg, 0.054 mmol, 1eq) were mixed together in 20 ml of a 1M potassium acetate buffer. The mixture was left at 323 K under stirring and nitrogen for 1 h. The mixture was then filtered and left to evaporate in air for 6 weeks. Colourless plate-like crystals were obtained, which proved to be a dipotassium-organic framework.
IR (KBr disc, cm−1) ν: 3401(m), 1579(s), 1401(s), 1303(m).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 10 ▸.
Table 10. Experimental details.
| H4L1_A | H4L1_B | KH3L1 | K2H2L1 | |
|---|---|---|---|---|
| Crystal data | ||||
| Chemical formula | C20H28N2O8S4 | C20H28N2O8S4 | [K(C20H27N2O8S4)] | [K2(C20H26N2O8S4)] |
| M r | 552.68 | 552.68 | 590.77 | 628.87 |
| Crystal system, space group | Triclinic, P\overline{1} | Triclinic, P\overline{1} | Monoclinic, C2/c | Monoclinic, C2/c |
| Temperature (K) | 293 | 293 | 153 | 153 |
| a, b, c (Å) | 5.5843 (8), 9.0061 (14), 12.739 (2) | 4.9424 (17), 8.993 (3), 14.190 (6) | 30.080 (4), 8.4716 (10), 9.5908 (12) | 27.908 (2), 8.2916 (6), 11.3035 (9) |
| α, β, γ (°) | 101.537 (18), 94.313 (18), 103.701 (17) | 96.96 (3), 97.14 (3), 100.72 (3) | 90, 94.717 (11), 90 | 90, 94.753 (6), 90 |
| V (Å3) | 604.80 (17) | 608.1 (4) | 2435.7 (6) | 2606.7 (3) |
| Z | 1 | 1 | 4 | 4 |
| Radiation type | Mo Kα | Mo Kα | Mo Kα | Mo Kα |
| μ (mm−1) | 0.44 | 0.44 | 0.61 | 0.73 |
| Crystal size (mm) | 0.35 × 0.30 × 0.05 | 0.50 × 0.50 × 0.05 | 0.50 × 0.50 × 0.10 | 0.50 × 0.50 × 0.05 |
| Data collection | ||||
| Diffractometer | Stoe IPDS 1 | Stoe IPDS 2 | Stoe IPDS 2 | Stoe IPDS 2 |
| Absorption correction | Empirical (using intensity measurements) (ShxAbs; Spek, 2020 ▸) | Empirical (using intensity measurements) (ShxAbs; Spek, 2020 ▸) | Multi-scan (MULABS; Spek, 2020 ▸) | Empirical (using intensity measurements) (ShxAbs; Spek, 2020 ▸) |
| T min, T max | 0.647, 0.897 | 0.144, 0.616 | 0.640, 1.000 | 0.416, 0.803 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 4709, 2194, 1452 | 4152, 2201, 1537 | 10309, 2084, 1646 | 19423, 3646, 3175 |
| R int | 0.058 | 0.080 | 0.064 | 0.042 |
| (sin θ/λ)max (Å−1) | 0.615 | 0.617 | 0.590 | 0.695 |
| Refinement | ||||
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.041, 0.097, 0.88 | 0.071, 0.208, 1.05 | 0.039, 0.106, 1.02 | 0.037, 0.103, 1.05 |
| No. of reflections | 2194 | 2201 | 2084 | 3646 |
| No. of parameters | 162 | 173 | 165 | 167 |
| No. of restraints | 2 | 6 | 0 | 1 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.35, −0.28 | 0.47, −0.39 | 0.26, −0.36 | 0.76, −0.51 |
For H4L1_A, KH3L1 and K2H2L1, the various –CO2H H atoms were located in difference-Fourier maps and freely refined. For H4L1_B, the –CO2H H atoms were difficult to locate, probably due to the poor quality of the crystal and the disorder in the side chain (atoms C8/C8B, C9/C9B, C10/C10B, O3/O3B, O4/O4B; Fig. 4 ▸ b). They were therefore included in calculated positions assuming the formation of carboxylic acid dimers; O—H = 0.82 Å and refined as riding with U iso(H) = 1.5U eq(O).
As in the K+ salt of pyrazine tetracarboxylic acid (UBUPAK; Masci et al., 2010 ▸), the carboxy H atom in KH3L1 is disordered by symmetry, hence the H atom on O3 was given an occupancy factor of 0.5 to balance the charges.
For all four compounds, the C-bound H atoms were included in calculated positions and treated as riding on their parent C atom with C—H = 0.97 Å and U iso(H) = 1.2U eq(C).
For H4L1_A and H4L1_B, the alert _diffrn_reflns_point_group_measured_fraction_full value (0.94 and 0.93, respectively) below minimum (0.95) was given. For H4L1_A it involves 131 random reflections out of a total of 2180, viz. 6.0%, while for H4L1_B it involves 158 random reflections out of a total of 2184, viz. 7.2%.
For H4L1_A, H4L1_B and K2H2L1 the multiplicity of reflections was 2 or less and so an empirical absorption correction was applied.
Supplementary Material
Crystal structure: contains datablock(s) H4L1A, H4L1B, KH3L1, K2H2L1, Global. DOI: 10.1107/S2056989021003479/pk2656sup1.cif
Structure factors: contains datablock(s) H4L1A. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup2.hkl
Structure factors: contains datablock(s) H4L1B. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup3.hkl
Structure factors: contains datablock(s) KH3L1. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup4.hkl
Structure factors: contains datablock(s) K2H2L1. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup5.hkl
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup6.cml
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup7.cml
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup8.cml
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup9.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
HSE is grateful to the University of Neuchâtel for their support over the years.
supplementary crystallographic information
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Crystal data
| C20H28N2O8S4 | Z = 1 |
| Mr = 552.68 | F(000) = 290 |
| Triclinic, P1 | Dx = 1.517 Mg m−3 |
| a = 5.5843 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 9.0061 (14) Å | Cell parameters from 3225 reflections |
| c = 12.739 (2) Å | θ = 2.4–25.9° |
| α = 101.537 (18)° | µ = 0.44 mm−1 |
| β = 94.313 (18)° | T = 293 K |
| γ = 103.701 (17)° | Plate, pale-yellow |
| V = 604.80 (17) Å3 | 0.35 × 0.30 × 0.05 mm |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Data collection
| STOE IPDS 1 diffractometer | 2194 independent reflections |
| Radiation source: fine-focus sealed tube | 1452 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.058 |
| φ rotation scans | θmax = 25.9°, θmin = 2.4° |
| Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −6→6 |
| Tmin = 0.647, Tmax = 0.897 | k = −11→11 |
| 4709 measured reflections | l = −14→15 |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
| wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
| S = 0.88 | w = 1/[σ2(Fo2) + (0.0478P)2] where P = (Fo2 + 2Fc2)/3 |
| 2194 reflections | (Δ/σ)max < 0.001 |
| 162 parameters | Δρmax = 0.35 e Å−3 |
| 2 restraints | Δρmin = −0.28 e Å−3 |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.40170 (15) | 0.39121 (9) | 0.29698 (6) | 0.0312 (2) | |
| S2 | 1.27548 (15) | 0.86290 (9) | 0.37908 (6) | 0.0288 (2) | |
| O1 | −0.3381 (5) | 0.0716 (3) | 0.12207 (17) | 0.0435 (6) | |
| O2 | −0.2098 (5) | 0.1064 (3) | −0.03567 (17) | 0.0409 (6) | |
| H2O | −0.363 (5) | 0.052 (5) | −0.059 (4) | 0.098 (19)* | |
| O3 | 0.7761 (4) | 0.5277 (3) | 0.08084 (16) | 0.0379 (6) | |
| O4 | 0.5045 (5) | 0.6736 (3) | 0.09232 (19) | 0.0422 (6) | |
| H4O | 0.422 (8) | 0.607 (4) | 0.039 (3) | 0.087 (17)* | |
| N1 | 0.8353 (4) | 0.5540 (3) | 0.44074 (17) | 0.0198 (5) | |
| C1 | 0.7859 (5) | 0.4024 (3) | 0.4451 (2) | 0.0194 (6) | |
| C2 | 1.0447 (5) | 0.6523 (3) | 0.4952 (2) | 0.0183 (6) | |
| C3 | 0.5460 (5) | 0.2957 (3) | 0.3850 (2) | 0.0248 (6) | |
| H3A | 0.434405 | 0.264980 | 0.436177 | 0.030* | |
| H3B | 0.577409 | 0.201607 | 0.342827 | 0.030* | |
| C4 | 0.1473 (6) | 0.2234 (4) | 0.2308 (2) | 0.0328 (7) | |
| H4A | 0.202811 | 0.128008 | 0.222673 | 0.039* | |
| H4B | 0.011542 | 0.214305 | 0.274306 | 0.039* | |
| C5 | 0.0600 (6) | 0.2449 (4) | 0.1219 (2) | 0.0347 (8) | |
| H5A | 0.041788 | 0.350865 | 0.129466 | 0.042* | |
| H5B | 0.186183 | 0.233148 | 0.074799 | 0.042* | |
| C6 | −0.1807 (6) | 0.1321 (3) | 0.0698 (2) | 0.0291 (7) | |
| C7 | 1.0877 (6) | 0.8196 (3) | 0.4857 (2) | 0.0239 (6) | |
| H7A | 1.170302 | 0.887935 | 0.554088 | 0.029* | |
| H7B | 0.928434 | 0.841937 | 0.471163 | 0.029* | |
| C8 | 1.0935 (6) | 0.7220 (4) | 0.2615 (2) | 0.0277 (7) | |
| H8A | 1.187763 | 0.725553 | 0.200717 | 0.033* | |
| H8B | 1.068152 | 0.617707 | 0.275367 | 0.033* | |
| C9 | 0.8427 (6) | 0.7491 (3) | 0.2307 (2) | 0.0290 (7) | |
| H9A | 0.742172 | 0.735720 | 0.288698 | 0.035* | |
| H9B | 0.866452 | 0.856524 | 0.223186 | 0.035* | |
| C10 | 0.7046 (6) | 0.6407 (4) | 0.1277 (2) | 0.0283 (7) |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0292 (5) | 0.0246 (4) | 0.0348 (4) | −0.0018 (3) | −0.0101 (3) | 0.0109 (3) |
| S2 | 0.0243 (5) | 0.0241 (4) | 0.0376 (4) | −0.0013 (3) | 0.0027 (3) | 0.0156 (3) |
| O1 | 0.0333 (15) | 0.0501 (14) | 0.0362 (13) | −0.0022 (12) | −0.0093 (10) | 0.0054 (11) |
| O2 | 0.0322 (16) | 0.0486 (14) | 0.0345 (13) | 0.0001 (13) | −0.0099 (10) | 0.0099 (10) |
| O3 | 0.0400 (15) | 0.0425 (13) | 0.0341 (12) | 0.0216 (12) | −0.0002 (10) | 0.0039 (10) |
| O4 | 0.0345 (15) | 0.0519 (15) | 0.0396 (13) | 0.0217 (13) | −0.0064 (11) | 0.0004 (12) |
| N1 | 0.0182 (14) | 0.0159 (11) | 0.0242 (11) | 0.0010 (10) | −0.0009 (9) | 0.0072 (9) |
| C1 | 0.0184 (16) | 0.0158 (13) | 0.0222 (13) | 0.0006 (12) | 0.0005 (10) | 0.0055 (10) |
| C2 | 0.0182 (16) | 0.0125 (12) | 0.0226 (13) | 0.0011 (12) | 0.0009 (10) | 0.0047 (10) |
| C3 | 0.0191 (17) | 0.0189 (14) | 0.0327 (15) | −0.0025 (13) | −0.0028 (11) | 0.0085 (11) |
| C4 | 0.0259 (19) | 0.0290 (16) | 0.0359 (16) | −0.0069 (14) | −0.0053 (13) | 0.0097 (13) |
| C5 | 0.032 (2) | 0.0279 (16) | 0.0404 (18) | 0.0008 (15) | −0.0080 (14) | 0.0114 (13) |
| C6 | 0.0228 (19) | 0.0264 (16) | 0.0360 (17) | 0.0048 (15) | −0.0074 (13) | 0.0083 (13) |
| C7 | 0.0251 (18) | 0.0155 (13) | 0.0313 (15) | 0.0028 (13) | 0.0021 (12) | 0.0088 (11) |
| C8 | 0.0263 (18) | 0.0316 (16) | 0.0293 (15) | 0.0092 (14) | 0.0066 (12) | 0.0132 (12) |
| C9 | 0.0281 (19) | 0.0276 (16) | 0.0324 (16) | 0.0074 (15) | 0.0008 (12) | 0.0097 (12) |
| C10 | 0.0262 (18) | 0.0385 (17) | 0.0254 (15) | 0.0125 (15) | 0.0068 (12) | 0.0129 (13) |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Geometric parameters (Å, º)
| S1—C3 | 1.796 (3) | C3—H3B | 0.9700 |
| S1—C4 | 1.818 (3) | C4—C5 | 1.500 (4) |
| S2—C8 | 1.813 (3) | C4—H4A | 0.9700 |
| S2—C7 | 1.825 (3) | C4—H4B | 0.9700 |
| O1—C6 | 1.233 (4) | C5—C6 | 1.493 (4) |
| O2—C6 | 1.307 (4) | C5—H5A | 0.9700 |
| O2—H2O | 0.87 (2) | C5—H5B | 0.9700 |
| O3—C10 | 1.240 (4) | C7—H7A | 0.9700 |
| O4—C10 | 1.294 (4) | C7—H7B | 0.9700 |
| O4—H4O | 0.830 (19) | C8—C9 | 1.514 (4) |
| N1—C2 | 1.332 (3) | C8—H8A | 0.9700 |
| N1—C1 | 1.341 (3) | C8—H8B | 0.9700 |
| C1—C2i | 1.406 (3) | C9—C10 | 1.499 (4) |
| C1—C3 | 1.499 (4) | C9—H9A | 0.9700 |
| C2—C7 | 1.500 (3) | C9—H9B | 0.9700 |
| C3—H3A | 0.9700 | ||
| C3—S1—C4 | 97.53 (13) | C4—C5—H5B | 108.8 |
| C8—S2—C7 | 101.68 (14) | H5A—C5—H5B | 107.7 |
| C6—O2—H2O | 108 (3) | O1—C6—O2 | 123.6 (3) |
| C10—O4—H4O | 113 (3) | O1—C6—C5 | 122.7 (3) |
| C2—N1—C1 | 119.1 (2) | O2—C6—C5 | 113.7 (3) |
| N1—C1—C2i | 120.3 (2) | C2—C7—S2 | 112.8 (2) |
| N1—C1—C3 | 117.7 (2) | C2—C7—H7A | 109.0 |
| C2i—C1—C3 | 122.0 (2) | S2—C7—H7A | 109.0 |
| N1—C2—C1i | 120.6 (2) | C2—C7—H7B | 109.0 |
| N1—C2—C7 | 115.9 (2) | S2—C7—H7B | 109.0 |
| C1i—C2—C7 | 123.4 (2) | H7A—C7—H7B | 107.8 |
| C1—C3—S1 | 110.88 (18) | C9—C8—S2 | 114.2 (2) |
| C1—C3—H3A | 109.5 | C9—C8—H8A | 108.7 |
| S1—C3—H3A | 109.5 | S2—C8—H8A | 108.7 |
| C1—C3—H3B | 109.5 | C9—C8—H8B | 108.7 |
| S1—C3—H3B | 109.5 | S2—C8—H8B | 108.7 |
| H3A—C3—H3B | 108.1 | H8A—C8—H8B | 107.6 |
| C5—C4—S1 | 109.2 (2) | C10—C9—C8 | 113.5 (2) |
| C5—C4—H4A | 109.8 | C10—C9—H9A | 108.9 |
| S1—C4—H4A | 109.8 | C8—C9—H9A | 108.9 |
| C5—C4—H4B | 109.8 | C10—C9—H9B | 108.9 |
| S1—C4—H4B | 109.8 | C8—C9—H9B | 108.9 |
| H4A—C4—H4B | 108.3 | H9A—C9—H9B | 107.7 |
| C6—C5—C4 | 113.8 (3) | O3—C10—O4 | 122.8 (3) |
| C6—C5—H5A | 108.8 | O3—C10—C9 | 122.4 (3) |
| C4—C5—H5A | 108.8 | O4—C10—C9 | 114.8 (3) |
| C6—C5—H5B | 108.8 | ||
| C2—N1—C1—C2i | −1.2 (4) | C4—C5—C6—O1 | 26.8 (4) |
| C2—N1—C1—C3 | 178.6 (2) | C4—C5—C6—O2 | −154.4 (3) |
| C1—N1—C2—C1i | 1.2 (4) | N1—C2—C7—S2 | −94.0 (3) |
| C1—N1—C2—C7 | 179.6 (2) | C1i—C2—C7—S2 | 84.3 (3) |
| N1—C1—C3—S1 | 11.3 (3) | C8—S2—C7—C2 | 57.6 (2) |
| C2i—C1—C3—S1 | −168.8 (2) | C7—S2—C8—C9 | 65.7 (2) |
| C4—S1—C3—C1 | 174.1 (2) | S2—C8—C9—C10 | 174.8 (2) |
| C3—S1—C4—C5 | −155.3 (2) | C8—C9—C10—O3 | 8.8 (4) |
| S1—C4—C5—C6 | −167.9 (2) | C8—C9—C10—O4 | −171.8 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1.
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1A). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2O···O1ii | 0.87 (2) | 1.80 (2) | 2.667 (3) | 172 (5) |
| O4—H4O···O3iii | 0.83 (2) | 1.85 (2) | 2.673 (3) | 175 (5) |
| C5—H5A···O3iv | 0.97 | 2.55 | 3.405 (4) | 147 |
| C8—H8A···O4v | 0.97 | 2.40 | 3.308 (4) | 156 |
Symmetry codes: (ii) −x−1, −y, −z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) x+1, y, z.
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Crystal data
| C20H28N2O8S4 | Z = 1 |
| Mr = 552.68 | F(000) = 290 |
| Triclinic, P1 | Dx = 1.509 Mg m−3 |
| a = 4.9424 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 8.993 (3) Å | Cell parameters from 5563 reflections |
| c = 14.190 (6) Å | θ = 2.4–25.5° |
| α = 96.96 (3)° | µ = 0.44 mm−1 |
| β = 97.14 (3)° | T = 293 K |
| γ = 100.72 (3)° | Plate, colourless |
| V = 608.1 (4) Å3 | 0.50 × 0.50 × 0.05 mm |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Data collection
| STOE IPDS 2 diffractometer | 2201 independent reflections |
| Radiation source: fine-focus sealed tube | 1537 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.080 |
| φ + ω scans | θmax = 26.0°, θmin = 2.3° |
| Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −5→5 |
| Tmin = 0.144, Tmax = 0.616 | k = −11→9 |
| 4152 measured reflections | l = −17→17 |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.071 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.208 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.1049P)2 + 0.4241P] where P = (Fo2 + 2Fc2)/3 |
| 2201 reflections | (Δ/σ)max = 0.001 |
| 173 parameters | Δρmax = 0.47 e Å−3 |
| 6 restraints | Δρmin = −0.39 e Å−3 |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| S1 | 0.7886 (3) | 0.28919 (12) | 0.71512 (9) | 0.0583 (4) | |
| S2 | 0.6227 (3) | 0.07568 (12) | 0.39724 (10) | 0.0682 (5) | |
| N1 | 1.2114 (8) | 0.5110 (4) | 0.5754 (3) | 0.0500 (9) | |
| C1 | 0.9965 (9) | 0.3908 (4) | 0.5566 (3) | 0.0467 (10) | |
| C2 | 0.7852 (9) | 0.3796 (4) | 0.4821 (3) | 0.0469 (10) | |
| C3 | 1.0020 (10) | 0.2707 (4) | 0.6214 (3) | 0.0537 (11) | |
| H3A | 1.192760 | 0.277226 | 0.650755 | 0.064* | |
| H3B | 0.937959 | 0.170470 | 0.583113 | 0.064* | |
| C4 | 0.9971 (12) | 0.4560 (5) | 0.7916 (4) | 0.0644 (13) | |
| H4A | 1.087916 | 0.524956 | 0.752231 | 0.077* | |
| H4B | 0.876729 | 0.509027 | 0.826037 | 0.077* | |
| C5 | 1.2177 (12) | 0.4158 (6) | 0.8638 (4) | 0.0682 (14) | |
| H5A | 1.332589 | 0.358948 | 0.829232 | 0.082* | |
| H5B | 1.337009 | 0.509683 | 0.898069 | 0.082* | |
| C6 | 1.0984 (14) | 0.3238 (6) | 0.9345 (4) | 0.0728 (15) | |
| O1 | 0.8532 (10) | 0.3158 (5) | 0.9473 (3) | 0.0828 (12) | |
| O2 | 1.2630 (12) | 0.2603 (9) | 0.9826 (5) | 0.136 (2) | |
| H2O | 1.173990 | 0.186783 | 1.001978 | 0.204* | |
| C7 | 0.5410 (10) | 0.2468 (5) | 0.4572 (4) | 0.0559 (11) | |
| H7A | 0.394220 | 0.276430 | 0.416093 | 0.067* | |
| H7B | 0.470023 | 0.224151 | 0.515671 | 0.067* | |
| C8 | 0.6926 (16) | 0.1494 (6) | 0.2872 (5) | 0.0604 (17) | 0.821 (6) |
| H8A | 0.530565 | 0.183752 | 0.258819 | 0.072* | 0.821 (6) |
| H8B | 0.847467 | 0.236521 | 0.301719 | 0.072* | 0.821 (6) |
| C9 | 0.7607 (15) | 0.0292 (6) | 0.2173 (5) | 0.0657 (16) | 0.821 (6) |
| H9A | 0.597449 | −0.051856 | 0.196091 | 0.079* | 0.821 (6) |
| H9B | 0.906849 | −0.014697 | 0.248293 | 0.079* | 0.821 (6) |
| C10 | 0.8546 (16) | 0.0963 (7) | 0.1325 (5) | 0.0622 (15) | 0.821 (6) |
| O3 | 1.0881 (16) | 0.0900 (11) | 0.1127 (6) | 0.132 (3) | 0.821 (6) |
| O4 | 0.6974 (19) | 0.1598 (10) | 0.0858 (6) | 0.117 (3) | 0.821 (6) |
| H4O | 0.785351 | 0.212989 | 0.052298 | 0.175* | 0.821 (6) |
| C8B | 0.834 (7) | 0.112 (3) | 0.3062 (18) | 0.0604 (17) | 0.179 (6) |
| H8B1 | 0.957385 | 0.212176 | 0.321614 | 0.072* | 0.179 (6) |
| H8B2 | 0.941870 | 0.034250 | 0.294752 | 0.072* | 0.179 (6) |
| C9B | 0.609 (6) | 0.106 (3) | 0.2219 (19) | 0.0657 (16) | 0.179 (6) |
| H9B1 | 0.490282 | 0.005115 | 0.207464 | 0.079* | 0.179 (6) |
| H9B2 | 0.494650 | 0.179949 | 0.237286 | 0.079* | 0.179 (6) |
| C10B | 0.748 (6) | 0.143 (4) | 0.137 (2) | 0.0622 (15) | 0.179 (6) |
| O3B | 0.998 (6) | 0.188 (6) | 0.137 (3) | 0.132 (3) | 0.179 (6) |
| O4B | 0.576 (9) | 0.176 (6) | 0.073 (3) | 0.117 (3) | 0.179 (6) |
| H4OB | 0.660348 | 0.228397 | 0.038152 | 0.175* | 0.179 (6) |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0546 (9) | 0.0462 (6) | 0.0762 (8) | 0.0041 (5) | 0.0158 (6) | 0.0205 (5) |
| S2 | 0.0868 (11) | 0.0329 (5) | 0.0834 (9) | −0.0047 (5) | 0.0293 (7) | 0.0119 (5) |
| N1 | 0.045 (2) | 0.0322 (16) | 0.075 (2) | 0.0074 (14) | 0.0141 (17) | 0.0146 (15) |
| C1 | 0.048 (3) | 0.0259 (16) | 0.071 (3) | 0.0081 (15) | 0.017 (2) | 0.0160 (16) |
| C2 | 0.045 (3) | 0.0292 (17) | 0.070 (3) | 0.0054 (15) | 0.017 (2) | 0.0152 (16) |
| C3 | 0.051 (3) | 0.0350 (19) | 0.080 (3) | 0.0097 (17) | 0.015 (2) | 0.0220 (19) |
| C4 | 0.073 (4) | 0.043 (2) | 0.083 (3) | 0.009 (2) | 0.026 (3) | 0.022 (2) |
| C5 | 0.063 (4) | 0.061 (3) | 0.077 (3) | −0.001 (2) | 0.015 (3) | 0.017 (2) |
| C6 | 0.064 (4) | 0.066 (3) | 0.090 (4) | 0.003 (2) | 0.013 (3) | 0.033 (3) |
| O1 | 0.079 (3) | 0.086 (3) | 0.093 (3) | 0.019 (2) | 0.029 (2) | 0.034 (2) |
| O2 | 0.085 (4) | 0.190 (6) | 0.162 (5) | 0.031 (4) | 0.031 (3) | 0.122 (5) |
| C7 | 0.051 (3) | 0.042 (2) | 0.073 (3) | −0.0032 (18) | 0.012 (2) | 0.0155 (19) |
| C8 | 0.078 (5) | 0.034 (3) | 0.074 (4) | 0.010 (2) | 0.023 (3) | 0.017 (2) |
| C9 | 0.084 (5) | 0.040 (3) | 0.079 (4) | 0.011 (3) | 0.026 (3) | 0.022 (3) |
| C10 | 0.068 (5) | 0.048 (3) | 0.080 (4) | 0.019 (3) | 0.024 (3) | 0.020 (3) |
| O3 | 0.096 (5) | 0.194 (8) | 0.145 (6) | 0.052 (5) | 0.052 (4) | 0.113 (6) |
| O4 | 0.132 (8) | 0.140 (5) | 0.131 (5) | 0.087 (5) | 0.067 (5) | 0.090 (4) |
| C8B | 0.078 (5) | 0.034 (3) | 0.074 (4) | 0.010 (2) | 0.023 (3) | 0.017 (2) |
| C9B | 0.084 (5) | 0.040 (3) | 0.079 (4) | 0.011 (3) | 0.026 (3) | 0.022 (3) |
| C10B | 0.068 (5) | 0.048 (3) | 0.080 (4) | 0.019 (3) | 0.024 (3) | 0.020 (3) |
| O3B | 0.096 (5) | 0.194 (8) | 0.145 (6) | 0.052 (5) | 0.052 (4) | 0.113 (6) |
| O4B | 0.132 (8) | 0.140 (5) | 0.131 (5) | 0.087 (5) | 0.067 (5) | 0.090 (4) |
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Geometric parameters (Å, º)
| S1—C4 | 1.801 (5) | C7—H7A | 0.9700 |
| S1—C3 | 1.808 (5) | C7—H7B | 0.9700 |
| S2—C8B | 1.78 (3) | C8—C9 | 1.490 (8) |
| S2—C7 | 1.804 (5) | C8—H8A | 0.9700 |
| S2—C8 | 1.816 (6) | C8—H8B | 0.9700 |
| N1—C1 | 1.342 (5) | C9—C10 | 1.496 (8) |
| N1—C2i | 1.351 (5) | C9—H9A | 0.9700 |
| C1—C2 | 1.371 (6) | C9—H9B | 0.9700 |
| C1—C3 | 1.503 (5) | C10—O4 | 1.224 (8) |
| C2—C7 | 1.504 (6) | C10—O3 | 1.231 (9) |
| C3—H3A | 0.9700 | O4—H4O | 0.8200 |
| C3—H3B | 0.9700 | C8B—C9B | 1.516 (19) |
| C4—C5 | 1.526 (8) | C8B—H8B1 | 0.9700 |
| C4—H4A | 0.9700 | C8B—H8B2 | 0.9700 |
| C4—H4B | 0.9700 | C9B—C10B | 1.505 (19) |
| C5—C6 | 1.485 (7) | C9B—H9B1 | 0.9700 |
| C5—H5A | 0.9700 | C9B—H9B2 | 0.9700 |
| C5—H5B | 0.9700 | C10B—O3B | 1.226 (19) |
| C6—O1 | 1.238 (7) | C10B—O4B | 1.265 (19) |
| C6—O2 | 1.258 (8) | O4B—H4OB | 0.8200 |
| O2—H2O | 0.8200 | ||
| C4—S1—C3 | 100.2 (2) | C2—C7—H7B | 108.8 |
| C8B—S2—C7 | 112.9 (9) | S2—C7—H7B | 108.8 |
| C7—S2—C8 | 96.8 (2) | H7A—C7—H7B | 107.7 |
| C1—N1—C2i | 117.9 (4) | C9—C8—S2 | 110.8 (4) |
| N1—C1—C2 | 121.2 (4) | C9—C8—H8A | 109.5 |
| N1—C1—C3 | 116.3 (4) | S2—C8—H8A | 109.5 |
| C2—C1—C3 | 122.5 (4) | C9—C8—H8B | 109.5 |
| N1i—C2—C1 | 120.9 (4) | S2—C8—H8B | 109.5 |
| N1i—C2—C7 | 115.7 (4) | H8A—C8—H8B | 108.1 |
| C1—C2—C7 | 123.5 (4) | C8—C9—C10 | 110.3 (5) |
| C1—C3—S1 | 113.3 (3) | C8—C9—H9A | 109.6 |
| C1—C3—H3A | 108.9 | C10—C9—H9A | 109.6 |
| S1—C3—H3A | 108.9 | C8—C9—H9B | 109.6 |
| C1—C3—H3B | 108.9 | C10—C9—H9B | 109.6 |
| S1—C3—H3B | 108.9 | H9A—C9—H9B | 108.1 |
| H3A—C3—H3B | 107.7 | O4—C10—O3 | 121.6 (7) |
| C5—C4—S1 | 112.3 (3) | O4—C10—C9 | 118.5 (7) |
| C5—C4—H4A | 109.2 | O3—C10—C9 | 119.8 (6) |
| S1—C4—H4A | 109.2 | C10—O4—H4O | 109.5 |
| C5—C4—H4B | 109.2 | C9B—C8B—S2 | 99.9 (19) |
| S1—C4—H4B | 109.2 | C9B—C8B—H8B1 | 111.8 |
| H4A—C4—H4B | 107.9 | S2—C8B—H8B1 | 111.8 |
| C6—C5—C4 | 113.3 (5) | C9B—C8B—H8B2 | 111.8 |
| C6—C5—H5A | 108.9 | S2—C8B—H8B2 | 111.8 |
| C4—C5—H5A | 108.9 | H8B1—C8B—H8B2 | 109.5 |
| C6—C5—H5B | 108.9 | C10B—C9B—C8B | 108 (2) |
| C4—C5—H5B | 108.9 | C10B—C9B—H9B1 | 110.0 |
| H5A—C5—H5B | 107.7 | C8B—C9B—H9B1 | 110.0 |
| O1—C6—O2 | 122.4 (5) | C10B—C9B—H9B2 | 110.0 |
| O1—C6—C5 | 121.3 (5) | C8B—C9B—H9B2 | 110.0 |
| O2—C6—C5 | 116.3 (6) | H9B1—C9B—H9B2 | 108.4 |
| C6—O2—H2O | 109.5 | O3B—C10B—O4B | 119 (3) |
| C2—C7—S2 | 113.8 (3) | O3B—C10B—C9B | 126 (3) |
| C2—C7—H7A | 108.8 | O4B—C10B—C9B | 110 (3) |
| S2—C7—H7A | 108.8 | C10B—O4B—H4OB | 109.5 |
| C2i—N1—C1—C2 | −0.6 (6) | N1i—C2—C7—S2 | 103.4 (4) |
| C2i—N1—C1—C3 | 179.3 (4) | C1—C2—C7—S2 | −75.4 (5) |
| N1—C1—C2—N1i | 0.6 (7) | C8B—S2—C7—C2 | −43.7 (10) |
| C3—C1—C2—N1i | −179.3 (4) | C8—S2—C7—C2 | −66.8 (4) |
| N1—C1—C2—C7 | 179.3 (4) | C7—S2—C8—C9 | −178.1 (5) |
| C3—C1—C2—C7 | −0.6 (6) | S2—C8—C9—C10 | −172.5 (5) |
| N1—C1—C3—S1 | 98.8 (4) | C8—C9—C10—O4 | −57.8 (10) |
| C2—C1—C3—S1 | −81.3 (5) | C8—C9—C10—O3 | 120.5 (9) |
| C4—S1—C3—C1 | −72.6 (4) | C7—S2—C8B—C9B | −87.0 (16) |
| C3—S1—C4—C5 | −86.7 (4) | S2—C8B—C9B—C10B | 177 (2) |
| S1—C4—C5—C6 | −65.0 (6) | C8B—C9B—C10B—O3B | −8 (5) |
| C4—C5—C6—O1 | −17.0 (8) | C8B—C9B—C10B—O4B | −164 (3) |
| C4—C5—C6—O2 | 165.7 (6) |
Symmetry code: (i) −x+2, −y+1, −z+1.
3,3',3'',3'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene))tetrakis(sulfanediyl]}tetrapropionic acid (H4L1B). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2O···O3ii | 0.82 | 1.94 | 2.66 (1) | 146 |
| O2—H2O···O3Bii | 0.82 | 2.20 | 2.77 (3) | 127 |
| O4—H4O···O1iii | 0.82 | 1.88 | 2.66 (1) | 158 |
| O4B—H4OB···O1iii | 0.82 | 1.86 | 2.67 (4) | 170 |
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1.
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Crystal data
| [K(C20H27N2O8S4)] | F(000) = 1232 |
| Mr = 590.77 | Dx = 1.611 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 30.080 (4) Å | Cell parameters from 7965 reflections |
| b = 8.4716 (10) Å | θ = 1.4–25.0° |
| c = 9.5908 (12) Å | µ = 0.61 mm−1 |
| β = 94.717 (11)° | T = 153 K |
| V = 2435.7 (6) Å3 | Plate, colourless |
| Z = 4 | 0.50 × 0.50 × 0.10 mm |
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Data collection
| STOE IPDS 2 diffractometer | 2084 independent reflections |
| Radiation source: fine-focus sealed tube | 1646 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.064 |
| φ + ω scans | θmax = 24.8°, θmin = 2.5° |
| Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −35→35 |
| Tmin = 0.640, Tmax = 1.000 | k = −9→9 |
| 10309 measured reflections | l = −11→11 |
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: mixed |
| wR(F2) = 0.106 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0648P)2 + 1.5958P] where P = (Fo2 + 2Fc2)/3 |
| 2084 reflections | (Δ/σ)max = 0.002 |
| 165 parameters | Δρmax = 0.26 e Å−3 |
| 0 restraints | Δρmin = −0.36 e Å−3 |
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| K1 | 0.500000 | −0.28423 (13) | −0.250000 | 0.0357 (3) | |
| S1 | 0.34409 (2) | −0.03261 (9) | 0.17646 (7) | 0.0305 (2) | |
| S2 | 0.18978 (2) | −0.11089 (9) | 0.16606 (8) | 0.0342 (2) | |
| O1 | 0.46781 (7) | −0.2235 (3) | 0.0136 (2) | 0.0404 (5) | |
| O2 | 0.46330 (7) | −0.0466 (3) | 0.1860 (2) | 0.0402 (6) | |
| H20 | 0.500000 | −0.073 (9) | 0.250000 | 0.12 (3)* | |
| O3 | 0.06245 (6) | 0.1153 (3) | −0.0544 (2) | 0.0363 (5) | |
| O4 | 0.03178 (7) | 0.1057 (3) | 0.1493 (2) | 0.0472 (7) | |
| H4O | 0.0125 (17) | 0.157 (7) | 0.109 (5) | 0.097 (19)* | |
| N1 | 0.28457 (7) | 0.2024 (3) | −0.0774 (2) | 0.0240 (5) | |
| C1 | 0.27160 (8) | 0.1117 (3) | 0.0267 (3) | 0.0240 (6) | |
| C2 | 0.23661 (8) | 0.1606 (3) | 0.1047 (3) | 0.0229 (6) | |
| C3 | 0.29578 (8) | −0.0422 (3) | 0.0500 (3) | 0.0280 (6) | |
| H3A | 0.305554 | −0.079313 | −0.040443 | 0.034* | |
| H3B | 0.274689 | −0.121452 | 0.082227 | 0.034* | |
| C4 | 0.38202 (9) | 0.0765 (4) | 0.0748 (3) | 0.0352 (7) | |
| H4A | 0.364384 | 0.148969 | 0.010857 | 0.042* | |
| H4B | 0.401718 | 0.141946 | 0.139218 | 0.042* | |
| C5 | 0.41100 (9) | −0.0265 (4) | −0.0116 (3) | 0.0335 (7) | |
| H5A | 0.391756 | −0.108161 | −0.059355 | 0.040* | |
| H5B | 0.422744 | 0.040143 | −0.084955 | 0.040* | |
| C6 | 0.44979 (9) | −0.1079 (4) | 0.0676 (3) | 0.0326 (7) | |
| C7 | 0.22055 (9) | 0.0650 (3) | 0.2220 (3) | 0.0283 (6) | |
| H7A | 0.201211 | 0.132352 | 0.275893 | 0.034* | |
| H7B | 0.246620 | 0.033583 | 0.285664 | 0.034* | |
| C8 | 0.14217 (9) | −0.0295 (4) | 0.0628 (3) | 0.0329 (7) | |
| H8A | 0.152427 | 0.055219 | 0.002031 | 0.039* | |
| H8B | 0.128312 | −0.113189 | 0.001607 | 0.039* | |
| C9 | 0.10744 (9) | 0.0371 (4) | 0.1528 (3) | 0.0350 (7) | |
| H9A | 0.099826 | −0.044379 | 0.220895 | 0.042* | |
| H9B | 0.120475 | 0.128185 | 0.206358 | 0.042* | |
| C10 | 0.06542 (9) | 0.0895 (4) | 0.0702 (3) | 0.0307 (7) |
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| K1 | 0.0254 (4) | 0.0547 (6) | 0.0267 (5) | 0.000 | −0.0009 (3) | 0.000 |
| S1 | 0.0189 (3) | 0.0428 (5) | 0.0297 (4) | 0.0034 (3) | 0.0011 (3) | 0.0042 (3) |
| S2 | 0.0224 (4) | 0.0335 (4) | 0.0466 (5) | −0.0003 (3) | 0.0027 (3) | 0.0034 (3) |
| O1 | 0.0302 (11) | 0.0590 (15) | 0.0320 (11) | 0.0130 (10) | 0.0022 (9) | −0.0023 (10) |
| O2 | 0.0246 (10) | 0.0633 (15) | 0.0319 (11) | 0.0051 (10) | −0.0024 (9) | −0.0077 (10) |
| O3 | 0.0259 (10) | 0.0554 (15) | 0.0278 (11) | 0.0021 (9) | 0.0032 (8) | 0.0038 (9) |
| O4 | 0.0266 (12) | 0.0804 (19) | 0.0356 (13) | 0.0138 (12) | 0.0085 (10) | 0.0044 (12) |
| N1 | 0.0156 (10) | 0.0304 (13) | 0.0255 (12) | −0.0007 (9) | −0.0019 (9) | −0.0021 (10) |
| C1 | 0.0152 (12) | 0.0299 (16) | 0.0256 (14) | 0.0007 (11) | −0.0048 (10) | −0.0038 (11) |
| C2 | 0.0159 (11) | 0.0278 (15) | 0.0239 (14) | −0.0009 (11) | −0.0036 (10) | −0.0026 (11) |
| C3 | 0.0187 (13) | 0.0317 (16) | 0.0331 (15) | 0.0022 (11) | −0.0012 (11) | −0.0003 (12) |
| C4 | 0.0210 (13) | 0.0424 (19) | 0.0421 (18) | −0.0024 (13) | 0.0018 (12) | 0.0070 (14) |
| C5 | 0.0213 (13) | 0.051 (2) | 0.0280 (15) | −0.0009 (12) | 0.0017 (12) | 0.0039 (13) |
| C6 | 0.0185 (13) | 0.053 (2) | 0.0268 (15) | −0.0019 (13) | 0.0047 (11) | 0.0024 (14) |
| C7 | 0.0229 (14) | 0.0366 (16) | 0.0251 (14) | −0.0005 (12) | 0.0013 (11) | 0.0024 (12) |
| C8 | 0.0224 (14) | 0.0422 (19) | 0.0338 (16) | −0.0034 (12) | 0.0011 (12) | −0.0009 (13) |
| C9 | 0.0208 (14) | 0.056 (2) | 0.0280 (15) | 0.0017 (13) | 0.0037 (12) | 0.0032 (14) |
| C10 | 0.0217 (13) | 0.0388 (18) | 0.0321 (16) | −0.0033 (12) | 0.0052 (12) | −0.0013 (13) |
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Geometric parameters (Å, º)
| K1—O1 | 2.828 (2) | C1—C2 | 1.403 (4) |
| K1—O1i | 2.828 (2) | C1—C3 | 1.501 (4) |
| K1—O2ii | 3.056 (3) | C2—C7 | 1.498 (4) |
| K1—O2iii | 3.056 (3) | C3—H3A | 0.9900 |
| K1—O3iv | 2.682 (2) | C3—H3B | 0.9900 |
| K1—O3v | 2.682 (2) | C4—C5 | 1.525 (4) |
| K1—O4vi | 3.069 (3) | C4—H4A | 0.9900 |
| K1—O4vii | 3.069 (3) | C4—H4B | 0.9900 |
| S1—C4 | 1.814 (3) | C5—C6 | 1.506 (4) |
| S1—C3 | 1.816 (3) | C5—H5A | 0.9900 |
| S2—C8 | 1.809 (3) | C5—H5B | 0.9900 |
| S2—C7 | 1.812 (3) | C7—H7A | 0.9900 |
| O1—C6 | 1.252 (4) | C7—H7B | 0.9900 |
| O2—C6 | 1.284 (4) | C8—C9 | 1.517 (4) |
| O2—H20 | 1.239 (15) | C8—H8A | 0.9900 |
| O3—C10 | 1.211 (3) | C8—H8B | 0.9900 |
| O4—C10 | 1.321 (3) | C9—C10 | 1.502 (4) |
| O4—H4O | 0.80 (5) | C9—H9A | 0.9900 |
| N1—C2viii | 1.339 (4) | C9—H9B | 0.9900 |
| N1—C1 | 1.343 (4) | ||
| O3iv—K1—O3v | 143.00 (11) | C1—C2—C7 | 122.9 (3) |
| O3iv—K1—O1 | 114.30 (6) | C1—C3—S1 | 114.31 (19) |
| O3v—K1—O1 | 72.78 (6) | C1—C3—H3A | 108.7 |
| O3iv—K1—O1i | 72.78 (6) | S1—C3—H3A | 108.7 |
| O3v—K1—O1i | 114.30 (6) | C1—C3—H3B | 108.7 |
| O1—K1—O1i | 159.05 (11) | S1—C3—H3B | 108.7 |
| O3iv—K1—O2ii | 130.71 (7) | H3A—C3—H3B | 107.6 |
| O3v—K1—O2ii | 85.98 (6) | C5—C4—S1 | 114.4 (2) |
| O1—K1—O2ii | 78.37 (7) | C5—C4—H4A | 108.7 |
| O1i—K1—O2ii | 82.42 (6) | S1—C4—H4A | 108.7 |
| O3iv—K1—O2iii | 85.98 (6) | C5—C4—H4B | 108.7 |
| O3v—K1—O2iii | 130.71 (7) | S1—C4—H4B | 108.7 |
| O1—K1—O2iii | 82.42 (6) | H4A—C4—H4B | 107.6 |
| O1i—K1—O2iii | 78.37 (7) | C6—C5—C4 | 116.2 (2) |
| O2ii—K1—O2iii | 46.99 (8) | C6—C5—H5A | 108.2 |
| O3iv—K1—O4vi | 73.54 (7) | C4—C5—H5A | 108.2 |
| O3v—K1—O4vi | 73.75 (7) | C6—C5—H5B | 108.2 |
| O1—K1—O4vi | 125.54 (7) | C4—C5—H5B | 108.2 |
| O1i—K1—O4vi | 75.02 (7) | H5A—C5—H5B | 107.4 |
| O2ii—K1—O4vi | 139.50 (6) | O1—C6—O2 | 124.5 (3) |
| O2iii—K1—O4vi | 150.17 (6) | O1—C6—C5 | 119.6 (3) |
| O3iv—K1—O4vii | 73.75 (7) | O2—C6—C5 | 115.9 (3) |
| O3v—K1—O4vii | 73.54 (7) | C2—C7—S2 | 114.24 (19) |
| O1—K1—O4vii | 75.02 (7) | C2—C7—H7A | 108.7 |
| O1i—K1—O4vii | 125.54 (7) | S2—C7—H7A | 108.7 |
| O2ii—K1—O4vii | 150.17 (6) | C2—C7—H7B | 108.7 |
| O2iii—K1—O4vii | 139.50 (6) | S2—C7—H7B | 108.7 |
| O4vi—K1—O4vii | 54.87 (9) | H7A—C7—H7B | 107.6 |
| C4—S1—C3 | 99.68 (14) | C9—C8—S2 | 112.4 (2) |
| C8—S2—C7 | 102.17 (14) | C9—C8—H8A | 109.1 |
| C6—O1—K1 | 134.73 (19) | S2—C8—H8A | 109.1 |
| C6—O2—K1ii | 129.17 (19) | C9—C8—H8B | 109.1 |
| C6—O2—H20 | 125 (2) | S2—C8—H8B | 109.1 |
| K1ii—O2—H20 | 77 (4) | H8A—C8—H8B | 107.9 |
| C10—O3—K1ix | 137.58 (18) | C10—C9—C8 | 113.5 (2) |
| C10—O4—K1vii | 111.2 (2) | C10—C9—H9A | 108.9 |
| C10—O4—H4O | 110 (4) | C8—C9—H9A | 108.9 |
| K1vii—O4—H4O | 114 (4) | C10—C9—H9B | 108.9 |
| C2viii—N1—C1 | 118.6 (2) | C8—C9—H9B | 108.9 |
| N1—C1—C2 | 120.3 (2) | H9A—C9—H9B | 107.7 |
| N1—C1—C3 | 116.2 (2) | O3—C10—O4 | 123.4 (3) |
| C2—C1—C3 | 123.5 (2) | O3—C10—C9 | 124.3 (2) |
| N1viii—C2—C1 | 121.1 (2) | O4—C10—C9 | 112.3 (2) |
| N1viii—C2—C7 | 116.0 (2) | ||
| C2viii—N1—C1—C2 | −0.1 (4) | K1ii—O2—C6—C5 | −60.6 (3) |
| C2viii—N1—C1—C3 | 178.5 (2) | C4—C5—C6—O1 | 161.6 (3) |
| N1—C1—C2—N1viii | 0.1 (4) | C4—C5—C6—O2 | −21.4 (4) |
| C3—C1—C2—N1viii | −178.4 (2) | N1viii—C2—C7—S2 | 107.9 (2) |
| N1—C1—C2—C7 | 180.0 (2) | C1—C2—C7—S2 | −72.0 (3) |
| C3—C1—C2—C7 | 1.5 (4) | C8—S2—C7—C2 | −62.3 (2) |
| N1—C1—C3—S1 | 91.6 (3) | C7—S2—C8—C9 | −77.5 (2) |
| C2—C1—C3—S1 | −89.8 (3) | S2—C8—C9—C10 | −173.8 (2) |
| C4—S1—C3—C1 | −72.3 (2) | K1ix—O3—C10—O4 | 1.7 (5) |
| C3—S1—C4—C5 | −90.3 (2) | K1ix—O3—C10—C9 | −177.7 (2) |
| S1—C4—C5—C6 | −76.4 (3) | K1vii—O4—C10—O3 | 110.5 (3) |
| K1—O1—C6—O2 | −127.8 (3) | K1vii—O4—C10—C9 | −70.0 (3) |
| K1—O1—C6—C5 | 48.8 (4) | C8—C9—C10—O3 | −17.9 (5) |
| K1ii—O2—C6—O1 | 116.1 (3) | C8—C9—C10—O4 | 162.6 (3) |
Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+1, −y, −z; (iii) x, −y, z−1/2; (iv) −x+1/2, y−1/2, −z−1/2; (v) x+1/2, y−1/2, z; (vi) x+1/2, −y−1/2, z−1/2; (vii) −x+1/2, −y−1/2, −z; (viii) −x+1/2, −y+1/2, −z; (ix) x−1/2, y+1/2, z.
Poly[(µ-3-{[(3,5,6-tris{[(2-carboxyethyl)sulfanyl]methyl}pyrazin-2-yl)methyl]sulfanyl}propanoato)potassium] (KH3L1). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O4—H4O···O1ix | 0.80 (5) | 1.86 (5) | 2.661 (3) | 180 (7) |
| O2—H20···O2x | 1.24 (1) | 1.24 (1) | 2.436 (3) | 159 (7) |
| C4—H4A···N1 | 0.99 | 2.52 | 3.340 (4) | 140 |
| C4—H4B···O3viii | 0.99 | 2.49 | 3.114 (4) | 121 |
| C5—H5B···O2iii | 0.99 | 2.60 | 3.467 (4) | 146 |
| C7—H7B···N1xi | 0.99 | 2.60 | 3.454 (4) | 144 |
| C9—H9A···O3xi | 0.99 | 2.58 | 3.465 (4) | 149 |
Symmetry codes: (iii) x, −y, z−1/2; (viii) −x+1/2, −y+1/2, −z; (ix) x−1/2, y+1/2, z; (x) −x+1, y, −z+1/2; (xi) x, −y, z+1/2.
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Crystal data
| [K2(C20H26N2O8S4)] | F(000) = 1304 |
| Mr = 628.87 | Dx = 1.602 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 27.908 (2) Å | Cell parameters from 20250 reflections |
| b = 8.2916 (6) Å | θ = 1.8–29.6° |
| c = 11.3035 (9) Å | µ = 0.73 mm−1 |
| β = 94.753 (6)° | T = 153 K |
| V = 2606.7 (3) Å3 | Plate, colourless |
| Z = 4 | 0.50 × 0.50 × 0.05 mm |
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Data collection
| STOE IPDS 2 diffractometer | 3646 independent reflections |
| Radiation source: fine-focus sealed tube | 3175 reflections with I > 2σ(I) |
| Plane graphite monochromator | Rint = 0.042 |
| φ + ω scans | θmax = 29.6°, θmin = 2.6° |
| Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −38→38 |
| Tmin = 0.416, Tmax = 0.803 | k = −11→11 |
| 19423 measured reflections | l = −15→15 |
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: mixed |
| wR(F2) = 0.103 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0541P)2 + 3.5192P] where P = (Fo2 + 2Fc2)/3 |
| 3646 reflections | (Δ/σ)max < 0.001 |
| 167 parameters | Δρmax = 0.76 e Å−3 |
| 1 restraint | Δρmin = −0.51 e Å−3 |
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| K1 | 0.000000 | 0.82906 (7) | 0.750000 | 0.02908 (13) | |
| K2 | 0.000000 | 0.64758 (6) | 0.250000 | 0.02585 (12) | |
| S1 | 0.15530 (2) | 0.94369 (6) | 0.36528 (5) | 0.03200 (12) | |
| S2 | 0.31454 (2) | 0.91861 (6) | 0.30731 (4) | 0.02972 (12) | |
| O1 | 0.03202 (5) | 0.90961 (16) | 0.37679 (12) | 0.0288 (3) | |
| O2 | 0.03173 (4) | 0.75961 (15) | 0.53962 (10) | 0.0251 (2) | |
| O3 | 0.44445 (5) | 1.07891 (16) | 0.64145 (11) | 0.0264 (3) | |
| O4 | 0.45504 (4) | 1.14483 (16) | 0.45457 (11) | 0.0246 (2) | |
| H4O | 0.4811 (7) | 1.187 (3) | 0.485 (2) | 0.037* | |
| N1 | 0.22122 (5) | 1.18192 (18) | 0.58094 (13) | 0.0226 (3) | |
| C1 | 0.23166 (6) | 1.10103 (19) | 0.48370 (15) | 0.0214 (3) | |
| C2 | 0.26072 (6) | 1.1694 (2) | 0.40166 (14) | 0.0214 (3) | |
| C3 | 0.20952 (6) | 0.9373 (2) | 0.46641 (17) | 0.0261 (3) | |
| H3A | 0.201509 | 0.894439 | 0.544105 | 0.031* | |
| H3B | 0.233073 | 0.863252 | 0.434300 | 0.031* | |
| C4 | 0.11775 (7) | 1.0635 (2) | 0.4543 (2) | 0.0344 (4) | |
| H4A | 0.138286 | 1.142471 | 0.500499 | 0.041* | |
| H4B | 0.094632 | 1.125024 | 0.400576 | 0.041* | |
| C5 | 0.08989 (6) | 0.9666 (2) | 0.53952 (18) | 0.0301 (4) | |
| H5A | 0.112007 | 0.889825 | 0.583250 | 0.036* | |
| H5B | 0.077277 | 1.040676 | 0.598231 | 0.036* | |
| C6 | 0.04848 (6) | 0.8740 (2) | 0.47738 (14) | 0.0215 (3) | |
| C7 | 0.27238 (6) | 1.0859 (2) | 0.28997 (15) | 0.0260 (3) | |
| H7A | 0.285609 | 1.166910 | 0.237196 | 0.031* | |
| H7B | 0.241998 | 1.045256 | 0.249183 | 0.031* | |
| C8 | 0.37036 (6) | 1.0182 (3) | 0.35882 (16) | 0.0295 (4) | |
| H8A | 0.397073 | 0.966995 | 0.320275 | 0.035* | |
| H8B | 0.368597 | 1.132425 | 0.333262 | 0.035* | |
| C9 | 0.38174 (6) | 1.0126 (2) | 0.49202 (15) | 0.0243 (3) | |
| H9A | 0.380284 | 0.899037 | 0.518480 | 0.029* | |
| H9B | 0.356583 | 1.073093 | 0.530128 | 0.029* | |
| C10 | 0.43036 (6) | 1.08130 (19) | 0.53492 (14) | 0.0216 (3) |
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| K1 | 0.0442 (3) | 0.0240 (2) | 0.0186 (2) | 0.000 | −0.0001 (2) | 0.000 |
| K2 | 0.0356 (3) | 0.0230 (2) | 0.0189 (2) | 0.000 | 0.00191 (18) | 0.000 |
| S1 | 0.0250 (2) | 0.0304 (2) | 0.0399 (3) | −0.00503 (16) | −0.00202 (17) | −0.00557 (18) |
| S2 | 0.0236 (2) | 0.0297 (2) | 0.0355 (2) | −0.00158 (16) | 0.00042 (16) | −0.00746 (17) |
| O1 | 0.0311 (6) | 0.0272 (6) | 0.0269 (6) | −0.0064 (5) | −0.0040 (5) | 0.0023 (5) |
| O2 | 0.0235 (5) | 0.0282 (6) | 0.0233 (5) | −0.0027 (5) | 0.0009 (4) | 0.0005 (5) |
| O3 | 0.0276 (6) | 0.0300 (6) | 0.0217 (5) | −0.0011 (5) | 0.0019 (4) | 0.0021 (5) |
| O4 | 0.0228 (5) | 0.0299 (6) | 0.0212 (5) | −0.0051 (5) | 0.0024 (4) | 0.0004 (5) |
| N1 | 0.0196 (6) | 0.0235 (6) | 0.0242 (6) | −0.0010 (5) | −0.0004 (5) | 0.0030 (5) |
| C1 | 0.0173 (6) | 0.0206 (7) | 0.0256 (7) | −0.0002 (5) | −0.0027 (5) | 0.0020 (6) |
| C2 | 0.0183 (7) | 0.0230 (7) | 0.0223 (7) | 0.0002 (5) | −0.0022 (5) | 0.0019 (6) |
| C3 | 0.0214 (7) | 0.0213 (7) | 0.0353 (9) | −0.0017 (6) | 0.0007 (6) | 0.0016 (6) |
| C4 | 0.0220 (8) | 0.0231 (8) | 0.0576 (12) | −0.0023 (6) | −0.0009 (8) | −0.0060 (8) |
| C5 | 0.0230 (8) | 0.0295 (9) | 0.0368 (9) | −0.0023 (6) | −0.0035 (7) | −0.0092 (7) |
| C6 | 0.0180 (7) | 0.0212 (7) | 0.0250 (7) | 0.0004 (5) | 0.0006 (5) | −0.0046 (6) |
| C7 | 0.0250 (8) | 0.0290 (8) | 0.0237 (7) | −0.0007 (6) | −0.0005 (6) | −0.0005 (6) |
| C8 | 0.0211 (7) | 0.0402 (10) | 0.0271 (8) | −0.0049 (7) | 0.0021 (6) | −0.0020 (7) |
| C9 | 0.0218 (7) | 0.0250 (8) | 0.0261 (7) | −0.0017 (6) | 0.0025 (6) | −0.0010 (6) |
| C10 | 0.0224 (7) | 0.0205 (7) | 0.0220 (7) | 0.0019 (5) | 0.0031 (6) | −0.0003 (5) |
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Geometric parameters (Å, º)
| K1—O1i | 2.7084 (14) | O1—C6 | 1.227 (2) |
| K1—O1ii | 2.7084 (14) | O4—C10 | 1.296 (2) |
| K1—O2 | 2.6682 (12) | O4—H4O | 0.855 (16) |
| K1—O2iii | 2.6683 (12) | O3—C10 | 1.236 (2) |
| K1—O3iv | 2.8099 (14) | N1—C1 | 1.340 (2) |
| K1—O3v | 2.8099 (13) | N1—C2xi | 1.341 (2) |
| K1—C6iii | 3.4864 (17) | C1—C2 | 1.401 (2) |
| K1—C6 | 3.4865 (17) | C1—C3 | 1.498 (2) |
| K1—K2vi | 3.9521 (8) | C2—C7 | 1.499 (2) |
| K1—K2ii | 4.3395 (8) | C3—H3A | 0.9900 |
| K2—O1vii | 2.7131 (13) | C3—H3B | 0.9900 |
| K2—O1 | 2.7132 (13) | C4—C5 | 1.518 (3) |
| K2—O3viii | 2.6683 (13) | C4—H4A | 0.9900 |
| K2—O3ix | 2.6682 (13) | C4—H4B | 0.9900 |
| K2—O4x | 2.7209 (12) | C5—C6 | 1.511 (2) |
| K2—O4iv | 2.7209 (12) | C5—H5A | 0.9900 |
| K2—C6vii | 3.3739 (16) | C5—H5B | 0.9900 |
| K2—C6 | 3.3739 (16) | C7—H7A | 0.9900 |
| K2—C10viii | 3.5364 (16) | C7—H7B | 0.9900 |
| K2—C10ix | 3.5364 (16) | C8—C9 | 1.513 (2) |
| S1—C4 | 1.809 (2) | C8—H8A | 0.9900 |
| S1—C3 | 1.8200 (18) | C8—H8B | 0.9900 |
| S2—C8 | 1.8159 (18) | C9—C10 | 1.514 (2) |
| S2—C7 | 1.8190 (19) | C9—H9A | 0.9900 |
| O2—C6 | 1.291 (2) | C9—H9B | 0.9900 |
| O2—K1—O2iii | 155.07 (6) | O3ix—K2—K1vi | 45.27 (3) |
| O2—K1—O1i | 121.67 (4) | O1vii—K2—K1vi | 143.21 (3) |
| O2iii—K1—O1i | 79.65 (4) | O1—K2—K1vi | 143.21 (3) |
| O2—K1—O1ii | 79.65 (4) | O4x—K2—K1vi | 89.52 (3) |
| O2iii—K1—O1ii | 121.67 (4) | O4iv—K2—K1vi | 89.52 (3) |
| O1i—K1—O1ii | 73.73 (6) | C6vii—K2—K1vi | 123.80 (3) |
| O2—K1—O3iv | 70.32 (4) | C6—K2—K1vi | 123.80 (3) |
| O2iii—K1—O3iv | 91.03 (4) | C10viii—K2—K1vi | 57.55 (3) |
| O1i—K1—O3iv | 165.36 (4) | C10ix—K2—K1vi | 57.55 (3) |
| O1ii—K1—O3iv | 102.33 (4) | O3viii—K2—K1ii | 134.73 (3) |
| O2—K1—O3v | 91.03 (4) | O3ix—K2—K1ii | 134.73 (3) |
| O2iii—K1—O3v | 70.32 (4) | O1vii—K2—K1ii | 36.79 (3) |
| O1i—K1—O3v | 102.33 (4) | O1—K2—K1ii | 36.79 (3) |
| O1ii—K1—O3v | 165.36 (4) | O4x—K2—K1ii | 90.48 (3) |
| O3iv—K1—O3v | 84.85 (5) | O4iv—K2—K1ii | 90.48 (3) |
| O2—K1—C6iii | 172.97 (4) | C6vii—K2—K1ii | 56.20 (3) |
| O2iii—K1—C6iii | 18.84 (4) | C6—K2—K1ii | 56.20 (3) |
| O1i—K1—C6iii | 65.30 (4) | C10viii—K2—K1ii | 122.45 (3) |
| O1ii—K1—C6iii | 104.31 (4) | C10ix—K2—K1ii | 122.45 (3) |
| O3iv—K1—C6iii | 102.96 (4) | K1vi—K2—K1ii | 180.0 |
| O3v—K1—C6iii | 86.17 (4) | C4—S1—C3 | 99.00 (9) |
| O2—K1—C6 | 18.84 (4) | C8—S2—C7 | 102.58 (9) |
| O2iii—K1—C6 | 172.97 (4) | C6—O2—K1 | 119.28 (10) |
| O1i—K1—C6 | 104.31 (4) | C6—O1—K1ii | 139.92 (11) |
| O1ii—K1—C6 | 65.30 (4) | C6—O1—K2 | 112.22 (11) |
| O3iv—K1—C6 | 86.17 (4) | K1ii—O1—K2 | 106.34 (4) |
| O3v—K1—C6 | 102.96 (4) | C10—O4—K2xii | 155.24 (11) |
| C6iii—K1—C6 | 167.74 (6) | C10—O4—H4O | 111.3 (17) |
| O2—K1—K2vi | 77.54 (3) | K2xii—O4—H4O | 84.7 (17) |
| O2iii—K1—K2vi | 77.54 (3) | C10—O3—K2ix | 125.83 (11) |
| O1i—K1—K2vi | 143.13 (3) | C10—O3—K1xii | 122.23 (11) |
| O1ii—K1—K2vi | 143.13 (3) | K2ix—O3—K1xii | 92.31 (4) |
| O3iv—K1—K2vi | 42.42 (3) | C1—N1—C2xi | 118.43 (14) |
| O3v—K1—K2vi | 42.42 (3) | N1—C1—C2 | 121.17 (15) |
| C6iii—K1—K2vi | 96.13 (3) | N1—C1—C3 | 116.44 (15) |
| C6—K1—K2vi | 96.13 (3) | C2—C1—C3 | 122.37 (15) |
| O2—K1—K2ii | 102.46 (3) | N1xi—C2—C1 | 120.40 (15) |
| O2iii—K1—K2ii | 102.46 (3) | N1xi—C2—C7 | 116.30 (15) |
| O1i—K1—K2ii | 36.87 (3) | C1—C2—C7 | 123.28 (15) |
| O1ii—K1—K2ii | 36.87 (3) | C1—C3—S1 | 111.60 (12) |
| O3iv—K1—K2ii | 137.58 (3) | C1—C3—H3A | 109.3 |
| O3v—K1—K2ii | 137.58 (3) | S1—C3—H3A | 109.3 |
| C6iii—K1—K2ii | 83.87 (3) | C1—C3—H3B | 109.3 |
| C6—K1—K2ii | 83.87 (3) | S1—C3—H3B | 109.3 |
| K2vi—K1—K2ii | 180.0 | H3A—C3—H3B | 108.0 |
| O3viii—K2—O3ix | 90.54 (6) | C5—C4—S1 | 114.41 (14) |
| O3viii—K2—O1vii | 99.63 (4) | C5—C4—H4A | 108.7 |
| O3ix—K2—O1vii | 163.72 (4) | S1—C4—H4A | 108.7 |
| O3viii—K2—O1 | 163.72 (4) | C5—C4—H4B | 108.7 |
| O3ix—K2—O1 | 99.63 (4) | S1—C4—H4B | 108.7 |
| O1vii—K2—O1 | 73.59 (6) | H4A—C4—H4B | 107.6 |
| O3viii—K2—O4x | 83.95 (4) | C6—C5—C4 | 112.73 (16) |
| O3ix—K2—O4x | 95.38 (4) | C6—C5—H5A | 109.0 |
| O1vii—K2—O4x | 73.30 (4) | C4—C5—H5A | 109.0 |
| O1—K2—O4x | 107.50 (4) | C6—C5—H5B | 109.0 |
| O3viii—K2—O4iv | 95.38 (4) | C4—C5—H5B | 109.0 |
| O3ix—K2—O4iv | 83.95 (4) | H5A—C5—H5B | 107.8 |
| O1vii—K2—O4iv | 107.50 (4) | O1—C6—O2 | 123.88 (15) |
| O1—K2—O4iv | 73.30 (4) | O1—C6—C5 | 121.42 (16) |
| O4x—K2—O4iv | 179.04 (6) | O2—C6—C5 | 114.67 (15) |
| O3viii—K2—C6vii | 81.96 (4) | O1—C6—K2 | 48.11 (8) |
| O3ix—K2—C6vii | 157.35 (4) | O2—C6—K2 | 82.31 (9) |
| O1vii—K2—C6vii | 19.67 (4) | C5—C6—K2 | 151.60 (11) |
| O1—K2—C6vii | 92.90 (4) | O1—C6—K1 | 134.60 (11) |
| O4x—K2—C6vii | 62.69 (4) | O2—C6—K1 | 41.88 (8) |
| O4iv—K2—C6vii | 117.91 (4) | C5—C6—K1 | 88.93 (10) |
| O3viii—K2—C6 | 157.35 (4) | K2—C6—K1 | 116.96 (5) |
| O3ix—K2—C6 | 81.96 (4) | C2—C7—S2 | 116.42 (12) |
| O1vii—K2—C6 | 92.90 (4) | C2—C7—H7A | 108.2 |
| O1—K2—C6 | 19.67 (4) | S2—C7—H7A | 108.2 |
| O4x—K2—C6 | 117.91 (4) | C2—C7—H7B | 108.2 |
| O4iv—K2—C6 | 62.69 (4) | S2—C7—H7B | 108.2 |
| C6vii—K2—C6 | 112.40 (6) | H7A—C7—H7B | 107.3 |
| O3viii—K2—C10viii | 16.46 (4) | C9—C8—S2 | 114.13 (13) |
| O3ix—K2—C10viii | 101.75 (4) | C9—C8—H8A | 108.7 |
| O1vii—K2—C10viii | 85.89 (4) | S2—C8—H8A | 108.7 |
| O1—K2—C10viii | 158.61 (4) | C9—C8—H8B | 108.7 |
| O4x—K2—C10viii | 71.16 (4) | S2—C8—H8B | 108.7 |
| O4iv—K2—C10viii | 108.29 (4) | H8A—C8—H8B | 107.6 |
| C6vii—K2—C10viii | 67.17 (4) | C8—C9—C10 | 114.57 (14) |
| C6—K2—C10viii | 170.09 (4) | C8—C9—H9A | 108.6 |
| O3viii—K2—C10ix | 101.75 (4) | C10—C9—H9A | 108.6 |
| O3ix—K2—C10ix | 16.46 (4) | C8—C9—H9B | 108.6 |
| O1vii—K2—C10ix | 158.61 (4) | C10—C9—H9B | 108.6 |
| O1—K2—C10ix | 85.89 (4) | H9A—C9—H9B | 107.6 |
| O4x—K2—C10ix | 108.29 (4) | O3—C10—O4 | 122.99 (16) |
| O4iv—K2—C10ix | 71.16 (4) | O3—C10—C9 | 120.71 (15) |
| C6vii—K2—C10ix | 170.09 (4) | O4—C10—C9 | 116.27 (14) |
| C6—K2—C10ix | 67.17 (4) | O3—C10—K2ix | 37.72 (8) |
| C10viii—K2—C10ix | 115.09 (5) | O4—C10—K2ix | 113.96 (10) |
| O3viii—K2—K1vi | 45.27 (3) | C9—C10—K2ix | 116.44 (10) |
| C2xi—N1—C1—C2 | 0.0 (2) | C4—C5—C6—O1 | −18.7 (2) |
| C2xi—N1—C1—C3 | −178.32 (14) | C4—C5—C6—O2 | 162.94 (15) |
| N1—C1—C2—N1xi | 0.0 (3) | C4—C5—C6—K2 | 40.3 (3) |
| C3—C1—C2—N1xi | 178.22 (14) | C4—C5—C6—K1 | −162.96 (14) |
| N1—C1—C2—C7 | −178.30 (15) | N1xi—C2—C7—S2 | 108.63 (15) |
| C3—C1—C2—C7 | −0.1 (2) | C1—C2—C7—S2 | −72.98 (19) |
| N1—C1—C3—S1 | 97.64 (16) | C8—S2—C7—C2 | −67.34 (15) |
| C2—C1—C3—S1 | −80.62 (18) | C7—S2—C8—C9 | 97.89 (15) |
| C4—S1—C3—C1 | −65.81 (15) | S2—C8—C9—C10 | 174.51 (12) |
| C3—S1—C4—C5 | −87.72 (15) | K2ix—O3—C10—O4 | −87.24 (18) |
| S1—C4—C5—C6 | −73.29 (18) | K1xii—O3—C10—O4 | 33.7 (2) |
| K1ii—O1—C6—O2 | 128.23 (16) | K2ix—O3—C10—C9 | 94.51 (17) |
| K2—O1—C6—O2 | −35.0 (2) | K1xii—O3—C10—C9 | −144.57 (12) |
| K1ii—O1—C6—C5 | −49.9 (3) | K1xii—O3—C10—K2ix | 120.92 (16) |
| K2—O1—C6—C5 | 146.80 (13) | K2xii—O4—C10—O3 | 125.1 (2) |
| K1ii—O1—C6—K2 | 163.2 (2) | K2xii—O4—C10—C9 | −56.6 (3) |
| K1ii—O1—C6—K1 | 74.9 (2) | K2xii—O4—C10—K2ix | 83.1 (3) |
| K2—O1—C6—K1 | −88.34 (15) | C8—C9—C10—O3 | −177.68 (16) |
| K1—O2—C6—O1 | −121.20 (15) | C8—C9—C10—O4 | 3.9 (2) |
| K1—O2—C6—C5 | 57.09 (17) | C8—C9—C10—K2ix | −134.75 (13) |
| K1—O2—C6—K2 | −146.73 (7) |
Symmetry codes: (i) x, −y+2, z+1/2; (ii) −x, −y+2, −z+1; (iii) −x, y, −z+3/2; (iv) x−1/2, y−1/2, z; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1; (vii) −x, y, −z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) −x+1/2, −y+3/2, −z+1; (x) −x+1/2, y−1/2, −z+1/2; (xi) −x+1/2, −y+5/2, −z+1; (xii) x+1/2, y+1/2, z.
Poly[(µ-3,3'-{[(3,6-bis{[(2-carboxyethyl)sulfanyl]methyl}pyrazine-2,5-diyl)bis(methylene)]bis(sulfanediyl)}dipropionato)dipotassium] (K2H2L1). Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O4—H4O···O2xii | 0.85 (2) | 1.61 (2) | 2.4637 (16) | 177 (3) |
| C4—H4A···N1 | 0.99 | 2.44 | 3.266 (2) | 141 |
| C8—H8A···O3xiii | 0.99 | 2.53 | 3.436 (2) | 151 |
Symmetry codes: (xii) x+1/2, y+1/2, z; (xiii) x, −y+2, z−1/2.
Funding Statement
This work was funded by Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung grant . Université de Neuchâtel grant .
References
- Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. [DOI] [PMC free article] [PubMed]
- Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hayati, P., Rezvani, A. R., Morsali, A. & Retailleau, P. (2017). Ultrason. Sonochem. 34, 195–205. [DOI] [PubMed]
- Jiang, Y., Sun, L., Du, J., Liu, Y., Shi, H., Liang, Z. & Li, J. (2017). Cryst. Growth Des. 17, 2090–2096.
- Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874. [DOI] [PubMed]
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004–1011.
- Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. [DOI] [PubMed]
- Pacifico, J. (2003). PhD Thesis, University of Neuchâtel, Switzerland.
- Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications (CCDC 2036276, 2041654 and 2041655). CCDC, Cambridge, England.
- Santra, S., Das, B. & Baruah, J. B. (2011). J. Chem. Crystallogr. 41, 1981–1987.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.
- Stoe & Cie. (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
- Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
- Wang, L., Zou, R., Guo, W., Gao, S., Meng, W., Yang, J., Chen, X. & Zou, R. (2019). Inorg. Chem. Commun. 104, 78–82.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wolff, L. (1887). Ber. Dtsch. Chem. Ges. 20, 425–433.
- Wolff, L. (1893). Ber. Dtsch. Chem. Ges. 26, 721–725.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) H4L1A, H4L1B, KH3L1, K2H2L1, Global. DOI: 10.1107/S2056989021003479/pk2656sup1.cif
Structure factors: contains datablock(s) H4L1A. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup2.hkl
Structure factors: contains datablock(s) H4L1B. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup3.hkl
Structure factors: contains datablock(s) KH3L1. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup4.hkl
Structure factors: contains datablock(s) K2H2L1. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup5.hkl
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Asup6.cml
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656H4L1Bsup7.cml
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656KH3L1sup8.cml
Supporting information file. DOI: 10.1107/S2056989021003479/pk2656K2H2L1sup9.cml
Additional supporting information: crystallographic information; 3D view; checkCIF report

















