Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Apr 27;77(Pt 5):564–568. doi: 10.1107/S2056989021004308

Structural study and Hirshfeld surface analysis of (Z)-4-(2-meth­oxy­benzyl­idene)-3-phenyl­isoxazol-5(4H)-one

Assia Benouatas a, Rima Laroum b, Noudjoud Hamdouni a,*, Wissame Zemamouche a, Abdelmadjid Debache b, Ali Boudjada a
PMCID: PMC8100271  PMID: 34026266

The asymmetric unit of the title compound contains one mol­ecule and the mol­ecule adopts a Z configuration about the C=C bond. The crystal structure features C—H⋯O and C—H⋯N hydrogen bonds together with C—H⋯π contacts and π–π stacking inter­actions. The crystal packing was further investigated by Hirshfeld surface analysis and the included surface areas from the title compound and an isomeric form were also investigated.

Keywords: crystal structure, meth­oxy­benzyl­idene, isoxazole, hydrogen bonding, π–π stacking, Hirshfeld surface analysis

Abstract

The title compound, C17H13NO3, adopts a Z configuration about the C=C bond. The isoxazole and meth­oxy­benzyl­idene rings are almost coplanar with a dihedral angle of 9.63 (7)° between them. In contrast, the phenyl substituent is twisted significantly out of the plane of the oxazole ring, with the two rings inclined to each other by 46.22 (4)°. The crystal structure features C—H⋯O, C—H⋯N and C—H⋯π hydrogen bonds and π–π contacts. An analysis of the Hirshfeld surfaces points to the importance of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H contacts. The included surface areas of the title compound were compared to those of the isomeric structure (Z)-4-(4-meth­oxy­benzyl­idene)-3-phenyl­isoxazol-5(4H)-one [Zhang et al. (2015). CrystEngComm, 17, 7316–7322].

Chemical context  

Isoxazolones are known to be inhibitors of the factorization of tumor necrosis alpha (TNF-α) (Laughlin et al., 2005), anti­microbial agents (Mazimba et al., 2014), as drugs for the treatment of cerebrovascular disorders and as muscle relaxants. In agriculture, they are used as herbicides (Guo, et al., 2020) and fungicides (Miyake et al., 2012). They undergo various chemical transformations (Batra et al., 1994) and are excellent inter­mediates in the synthesis of various heterocycles, including pyrido­pyrimidines (Tu et al., 2006), quinolines (Abbiati et al., 2003) and polycycles (Badrey & Gomha, 2014). Because of their importance, these compounds have been studied extensively and several procedures for their synthesis are described using a three-component polycondensation between an aromatic aldehyde, ethyl aceto­acetate and hydrox­ylamine hydro­chloride under different conditions (Liu et al., 2011; Fozooni et al., 2013).graphic file with name e-77-00564-scheme1.jpg

We report here on the use of K2CO3 as very inexpensive, highly available and safe catalyst in an organic medium for isoxazolone formation and we describe the synthesis, mol­ecular and crystal structures, and Hirshfeld surface analysis of the title isoxazole derivative, 1 (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a black dashed line.

Structural commentary  

The asymmetric unit contains one mol­ecule and the mol­ecule adopts a Z configuration about the C8=C10 bond. The entire (Z)-4-(2-meth­oxy­benzyl­ideneisoxazolone) segment of the mol­ecule is almost planar with an r.m.s. deviation from the mean plane through all 15 non-hydrogen atoms of the fragment of only 0.0927 Å. This conformation is supported by the formation of an intra­molecular C12—H12⋯O1 hydrogen bond (Table 1), which links the isoxazole ring and the benzene ring of the 2-meth­oxy­benzyl­idene substituent. These two rings are inclined to one another at an angle of 9.63 (7)°. The (C1–C6) phenyl substituent is twisted out of this plane, the phenyl and isoxazole rings being inclined to one another by 46.22 (4)°. Bond lengths and angles agree well with those found in the isomeric derivative 2 (Zhang et al., 2015) and also with the values observed for the related compound (4Z)-4-benzyl­idene-2-phenyl-1,3-oxazol5(4H)-one (Asiri et al., 2012).

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.53 3.463 (2) 176
C5—H5⋯O2ii 0.93 2.81 3.728 (2) 169
C10—H10⋯O3 0.93 2.26 2.7009 (18) 108
C12—H12⋯O2 0.93 2.15 2.998 (2) 151
C14—H14⋯N1iii 0.93 2.58 3.396 (2) 147
C17—H17A⋯O3iv 0.96 2.78 3.615 (2) 147
C17—H17CCg iv 0.96 2.82 3.606 (2) 139

Symmetry codes: (i) x, -y+1, z+{\script{1\over 2}}; (ii) -x+1, -y+1, -z+1; (iii) x-{\script{1\over 2}}, y-{\script{1\over 2}}, z; (iv) -x+1, y, -z+{\script{3\over 2}}.

Supra­molecular features  

In the crystal, mol­ecules stack along the b-axis direction (Fig. 2). Mol­ecules are connected by C4—H4⋯O1i and C14—H14⋯N1iii hydrogen bonds, leading to the formation of sheets in the ac plane, Fig. 3. C—H⋯π contacts between the meth­oxy­methyl group and the C1–C6 phenyl ring form double chains of mol­ecules along the a-axis direction, supported by the above-mentioned C14—H14⋯N1iii hydrogen bonds, Fig. 4. Inter­molecular H⋯O short contacts are also present [C17—H17A⋯O3iv = 2.78 Å and C5—H5⋯O2ii = 2.81 Å]. Two π–π contacts [3.7049 (9) and 3.9200 (9) Å] are found between the centroids of the isoxazolone ring and the meth­oxy-substituted benzene ring, which stack adjacent mol­ecules in an obverse fashion along b.

Figure 2.

Figure 2

Sheets of mol­ecules of 1 in the ac plane.

Figure 3.

Figure 3

Double rows of mol­ecules of 1 along the a-axis direction. Cg2 is the centroid of the C1–C6 phenyl ring, shown here as an orange sphere, with the C—H⋯π contacts drawn as orange dashed lines.

Figure 4.

Figure 4

π–π contacts for 1 stacking mol­ecules along the b-axis direction. Cg1 and Cg3 are the centroids of the N1/O2/C7–C9 isoxazole and the C11–C16 benzene rings, respectively. The two discrete π–π contacts Cg1⋯Cg3 = 3.7049 (9) and 3.9200 (9) Å are shown as green and blue dashed lines, respectively.

Analysis of the Hirshfeld surfaces  

Further details of the inter­mol­ecular inter­actions in 1 were obtained using Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) with Hirshfeld surfaces and two-dimensional fingerprint plots (McKinnon et al., 2007) generated using CrystalExplorer (Turner et al. 2017). Fig. 5 shows the Hirshfeld surfaces for opposite faces of the asymmetric unit of mol­ecule 1. The bright red circles correspond to C—H⋯N and C—H⋯O hydrogen bonds while a weaker C—H⋯π contact appears as a faint red circle. Fingerprint plots for 1 are shown in Fig. 6. As the CIF file for the isomeric mol­ecule, 2, was available from the CCD, it was of inter­est to compare and contrast contributions to the included surface areas from the two isomers as shown in Table 2. As expected, H⋯H contacts are the most prolific in both cases. Other contributions were generally very similar, the sole exception being that the C⋯O/O⋯C contacts made up almost twice the surface area for 2 as for 1. The change from the 2- to the 4-position in 2 may allow the meth­oxy substituent in 2 to contribute more substanti­ally to the surface of the mol­ecule.

Figure 5.

Figure 5

Hirshfeld surfaces for opposite faces of the mol­ecule of 1, mapped over d norm in the range −0.1701 to 1.4088 a.u.

Figure 6.

Figure 6

(a) The two-dimensional fingerprint plot for all inter­actions, together with those (b)–(h) delineated into individual contact types with included surface areas for the major individual contacts. Minor contacts contributing less than 1% to the total surface area are not shown here but, for completeness, are included in Table 2.

Table 2. Short contacts and contributions (%) to the Hirshfeld surface for 1 and 2 .

Contact 1 2
H⋯H 40.8 40.5
H⋯C/C⋯H 19.4 18.1
H⋯O/O⋯H 19.7 19.6
H⋯N/N⋯H 6.4 5.3
C⋯C 7.9 6.5
C⋯O/O⋯C 3.6 6.9
C⋯N/N⋯C 1.8 2.9
O⋯O 0.6 0.1
N⋯N 0.1  

Database survey  

A search of the Cambridge Structural Database (CSD, V3.59, last update February 2019; Groom et al., 2016) for (Z)-4-benzyl­idene-3-phenyl­soxazol-5(4H)-one yielded seventeen hits. Importantly, one of these, i.e. (Z)-4-(4-meth­oxy­benzyl­idene)-3-phenyl­isoxazol-5(4H)-one (SULZAC; Zhang et al., 2015) is an isomer (2) of the title compound with the meth­oxy substituent in the 4-position of the benzene ring. Another paper (Jiang et al., 2013) included the closely related compound (Z)-4-(4-[di­methyl­amino)benzyl­idene]-3-phenyl­isoxazol-5(4H)-one (IDIBEE) together with two other related compounds, IDIBII and IDIBOO, that exhibit large second harmonic generation effects. The search also revealed four other structures in which the configuration about the C=C bond is Z, namely 4-(2-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (AJESAK; Cheng et al., 2009), (4Z)-4-benzyl­idene-2-phenyl-1,3-oxazol-5(4H)-one (YAXMUH; Asiri et al., 2012), (Z)-4-benzyl­idene-3-methyl­isoxazol-5(4H)-one [MBYIOZ (Meunier-Piret et al., 1972) and MBYIOZ01 (Chandra et al., 2012)] and a recent addition, (Z)-4-(4-hy­droxy­benzyl­idene)-3-methyl­isoxazol-5(4H)-one (Zemamouche et al., 2018).

Synthesis and crystallization  

2-Meth­oxy­benzaldehyde (1 mmol), hy­droxy­amine hydro­chloride (1 mmol), ethyl benzoyl­acetate (1 mmol) and K2CO3 (5 mol%) were mixed in a 25 ml flask equipped with a magnetic stirrer. The mixture was refluxed in 5 ml of water for 2.5 h (the reaction was monitored by TLC). On completion of the reaction, the mixture was gradually poured into ice-cold water. Stirring was maintained for a few minutes and the resulting solid was filtered and purified by crystallization from ethanol.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 3. Experimental details.

Crystal data
Chemical formula C17H13NO3
M r 279.28
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 20.3883 (6), 7.5925 (2), 17.9858 (5)
β (°) 95.791 (1)
V3) 2769.96 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.32 × 0.23 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.98, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 35544, 2495, 1548
R int 0.12
(sin θ/λ)max−1) 0.600
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.057, 0.101, 1.00
No. of reflections 2495
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.09, −0.16

Computer programs: APEX2 and SAINT (Bruker, 2009), SIR92 (Altomare et al., 1994), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020) and WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021004308/ex2043sup1.cif

e-77-00564-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004308/ex2043Isup2.hkl

e-77-00564-Isup2.hkl (137.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021004308/ex2043Isup3.cml

CCDC reference: 2079211

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Université Ferhat Abbas Setif 1 for assistance with the data collection.

supplementary crystallographic information

Crystal data

C17H13NO3 F(000) = 1168
Mr = 279.28 Dx = 1.339 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 20.3883 (6) Å Cell parameters from 1218 reflections
b = 7.5925 (2) Å θ = 2.3–33.4°
c = 17.9858 (5) Å µ = 0.09 mm1
β = 95.791 (1)° T = 293 K
V = 2769.96 (13) Å3 Needle, white
Z = 8 0.32 × 0.23 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 1548 reflections with I > 2σ(I)
φ and ω scans Rint = 0.12
Absorption correction: multi-scan (SADABS; Bruker, 2009) θmax = 25.3°, θmin = 2.3°
Tmin = 0.98, Tmax = 0.99 h = −24→24
35544 measured reflections k = −9→9
2495 independent reflections l = −21→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3
2495 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.09 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.63879 (5) 0.40128 (15) 0.44786 (5) 0.0604 (3)
O2 0.53785 (6) 0.34750 (15) 0.39356 (6) 0.0641 (4)
O3 0.44474 (6) 0.07225 (16) 0.65984 (6) 0.0672 (4)
N1 0.67268 (6) 0.40557 (18) 0.52191 (7) 0.0559 (4)
C11 0.45217 (7) 0.17739 (18) 0.53778 (8) 0.0423 (4)
C10 0.51760 (7) 0.23684 (17) 0.56343 (8) 0.0409 (4)
H10 0.528401 0.219863 0.614403 0.049*
C6 0.65205 (7) 0.35594 (18) 0.64799 (8) 0.0419 (4)
C5 0.61267 (8) 0.43223 (19) 0.69787 (8) 0.0499 (4)
H5 0.571966 0.479668 0.680373 0.060*
C8 0.56690 (7) 0.31231 (18) 0.52928 (7) 0.0376 (4)
C7 0.63081 (7) 0.35667 (18) 0.56711 (8) 0.0400 (4)
C12 0.42284 (8) 0.1993 (2) 0.46438 (9) 0.0566 (5)
H12 0.446785 0.253003 0.429297 0.068*
C1 0.71264 (8) 0.2846 (2) 0.67501 (9) 0.0518 (4)
H1 0.739346 0.232764 0.642170 0.062*
C16 0.41449 (8) 0.0947 (2) 0.58918 (9) 0.0511 (4)
C3 0.69408 (9) 0.3668 (2) 0.79957 (9) 0.0633 (5)
H3 0.708286 0.370488 0.850331 0.076*
C9 0.57442 (8) 0.3509 (2) 0.45076 (8) 0.0474 (4)
C2 0.73315 (9) 0.2905 (2) 0.75030 (10) 0.0632 (5)
H2 0.773723 0.242656 0.768033 0.076*
C4 0.63365 (9) 0.4380 (2) 0.77336 (9) 0.0593 (5)
H4 0.607189 0.489740 0.806480 0.071*
C15 0.35023 (8) 0.0404 (2) 0.56730 (11) 0.0633 (5)
H15 0.325381 −0.013537 0.601461 0.076*
C14 0.32368 (9) 0.0672 (2) 0.49456 (12) 0.0717 (6)
H14 0.280483 0.032695 0.480253 0.086*
C13 0.35978 (9) 0.1436 (2) 0.44307 (11) 0.0710 (6)
H13 0.341624 0.157705 0.393888 0.085*
C17 0.41045 (9) −0.0215 (3) 0.71332 (9) 0.0764 (6)
H17A 0.437527 −0.026963 0.760129 0.115*
H17B 0.370029 0.038399 0.720143 0.115*
H17C 0.400829 −0.138807 0.695475 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0531 (8) 0.0810 (9) 0.0494 (6) −0.0098 (6) 0.0165 (5) 0.0092 (5)
O2 0.0606 (8) 0.0864 (9) 0.0452 (6) −0.0005 (6) 0.0045 (5) 0.0073 (5)
O3 0.0630 (8) 0.0842 (9) 0.0568 (7) −0.0219 (6) 0.0176 (6) 0.0039 (6)
N1 0.0455 (9) 0.0667 (9) 0.0564 (8) −0.0096 (7) 0.0101 (7) 0.0045 (7)
C11 0.0345 (9) 0.0357 (8) 0.0577 (9) −0.0008 (7) 0.0086 (7) −0.0027 (7)
C10 0.0416 (9) 0.0378 (9) 0.0437 (7) 0.0012 (7) 0.0055 (7) −0.0010 (6)
C6 0.0362 (9) 0.0402 (9) 0.0494 (8) −0.0053 (7) 0.0054 (7) −0.0032 (7)
C5 0.0447 (10) 0.0503 (10) 0.0545 (9) −0.0012 (8) 0.0036 (8) −0.0042 (7)
C8 0.0354 (9) 0.0362 (8) 0.0421 (7) −0.0012 (7) 0.0083 (6) 0.0011 (6)
C7 0.0353 (9) 0.0371 (9) 0.0490 (8) −0.0024 (7) 0.0103 (7) 0.0008 (6)
C12 0.0477 (11) 0.0553 (11) 0.0653 (10) −0.0036 (8) −0.0009 (8) 0.0075 (8)
C1 0.0401 (10) 0.0558 (10) 0.0593 (9) −0.0014 (8) 0.0042 (8) −0.0076 (8)
C16 0.0454 (11) 0.0462 (10) 0.0639 (10) −0.0059 (8) 0.0161 (8) −0.0066 (8)
C3 0.0719 (14) 0.0657 (12) 0.0499 (9) −0.0098 (10) −0.0056 (9) −0.0071 (8)
C9 0.0471 (11) 0.0485 (10) 0.0478 (8) −0.0001 (8) 0.0109 (8) 0.0042 (7)
C2 0.0525 (11) 0.0653 (12) 0.0680 (11) −0.0018 (9) −0.0123 (10) −0.0009 (9)
C4 0.0619 (13) 0.0622 (12) 0.0547 (9) −0.0024 (9) 0.0112 (9) −0.0136 (8)
C15 0.0442 (12) 0.0619 (12) 0.0865 (13) −0.0126 (9) 0.0204 (9) −0.0081 (10)
C14 0.0387 (11) 0.0725 (13) 0.1023 (15) −0.0101 (9) −0.0008 (11) −0.0090 (11)
C13 0.0491 (12) 0.0754 (14) 0.0847 (13) −0.0095 (10) −0.0118 (10) 0.0106 (10)
C17 0.0838 (14) 0.0802 (14) 0.0719 (11) −0.0161 (11) 0.0400 (10) 0.0042 (10)

Geometric parameters (Å, º)

O1—C9 1.3729 (18) C12—C13 1.371 (2)
O1—N1 1.4376 (15) C12—H12 0.9300
O2—C9 1.2085 (17) C1—C2 1.377 (2)
O3—C16 1.3663 (18) C1—H1 0.9300
O3—C17 1.4341 (18) C16—C15 1.392 (2)
N1—C7 1.2914 (18) C3—C2 1.378 (2)
C11—C12 1.403 (2) C3—C4 1.384 (2)
C11—C16 1.408 (2) C3—H3 0.9300
C11—C10 1.4394 (19) C2—H2 0.9300
C10—C8 1.3566 (19) C4—H4 0.9300
C10—H10 0.9300 C15—C14 1.379 (2)
C6—C5 1.389 (2) C15—H15 0.9300
C6—C1 1.391 (2) C14—C13 1.369 (2)
C6—C7 1.4754 (19) C14—H14 0.9300
C5—C4 1.3824 (19) C13—H13 0.9300
C5—H5 0.9300 C17—H17A 0.9600
C8—C7 1.4475 (19) C17—H17B 0.9600
C8—C9 1.4654 (18) C17—H17C 0.9600
C9—O1—N1 110.05 (10) C15—C16—C11 120.45 (16)
C16—O3—C17 118.75 (13) C2—C3—C4 119.86 (15)
C7—N1—O1 106.87 (12) C2—C3—H3 120.1
C12—C11—C16 117.50 (15) C4—C3—H3 120.1
C12—C11—C10 123.89 (14) O2—C9—O1 118.92 (13)
C16—C11—C10 118.61 (14) O2—C9—C8 134.47 (15)
C8—C10—C11 133.82 (13) O1—C9—C8 106.61 (12)
C8—C10—H10 113.1 C1—C2—C3 120.56 (16)
C11—C10—H10 113.1 C1—C2—H2 119.7
C5—C6—C1 119.18 (14) C3—C2—H2 119.7
C5—C6—C7 120.26 (14) C5—C4—C3 119.91 (16)
C1—C6—C7 120.52 (14) C5—C4—H4 120.0
C4—C5—C6 120.39 (15) C3—C4—H4 120.0
C4—C5—H5 119.8 C14—C15—C16 119.51 (17)
C6—C5—H5 119.8 C14—C15—H15 120.2
C10—C8—C7 123.95 (12) C16—C15—H15 120.2
C10—C8—C9 132.47 (13) C13—C14—C15 121.19 (17)
C7—C8—C9 103.27 (12) C13—C14—H14 119.4
N1—C7—C8 113.07 (13) C15—C14—H14 119.4
N1—C7—C6 118.35 (13) C14—C13—C12 119.65 (17)
C8—C7—C6 128.56 (13) C14—C13—H13 120.2
C13—C12—C11 121.68 (17) C12—C13—H13 120.2
C13—C12—H12 119.2 O3—C17—H17A 109.5
C11—C12—H12 119.2 O3—C17—H17B 109.5
C2—C1—C6 120.10 (16) H17A—C17—H17B 109.5
C2—C1—H1 119.9 O3—C17—H17C 109.5
C6—C1—H1 119.9 H17A—C17—H17C 109.5
O3—C16—C15 123.35 (16) H17B—C17—H17C 109.5
O3—C16—C11 116.20 (14)
C9—O1—N1—C7 1.14 (16) C17—O3—C16—C15 4.0 (2)
C12—C11—C10—C8 −4.4 (3) C17—O3—C16—C11 −175.92 (14)
C16—C11—C10—C8 176.65 (15) C12—C11—C16—O3 178.84 (14)
C1—C6—C5—C4 0.4 (2) C10—C11—C16—O3 −2.2 (2)
C7—C6—C5—C4 −177.39 (13) C12—C11—C16—C15 −1.1 (2)
C11—C10—C8—C7 −177.90 (14) C10—C11—C16—C15 177.91 (14)
C11—C10—C8—C9 −5.5 (3) N1—O1—C9—O2 176.89 (13)
O1—N1—C7—C8 1.18 (17) N1—O1—C9—C8 −2.88 (15)
O1—N1—C7—C6 −177.58 (11) C10—C8—C9—O2 10.1 (3)
C10—C8—C7—N1 171.42 (14) C7—C8—C9—O2 −176.37 (17)
C9—C8—C7—N1 −2.85 (17) C10—C8—C9—O1 −170.22 (15)
C10—C8—C7—C6 −10.0 (2) C7—C8—C9—O1 3.35 (15)
C9—C8—C7—C6 175.75 (14) C6—C1—C2—C3 0.0 (2)
C5—C6—C7—N1 132.05 (16) C4—C3—C2—C1 0.1 (2)
C1—C6—C7—N1 −45.7 (2) C6—C5—C4—C3 −0.3 (2)
C5—C6—C7—C8 −46.5 (2) C2—C3—C4—C5 0.1 (2)
C1—C6—C7—C8 135.77 (16) O3—C16—C15—C14 −179.53 (15)
C16—C11—C12—C13 0.3 (2) C11—C16—C15—C14 0.4 (2)
C10—C11—C12—C13 −178.59 (15) C16—C15—C14—C13 1.1 (3)
C5—C6—C1—C2 −0.2 (2) C15—C14—C13—C12 −1.9 (3)
C7—C6—C1—C2 177.52 (14) C11—C12—C13—C14 1.1 (3)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.93 2.53 3.463 (2) 176
C5—H5···O2ii 0.93 2.81 3.728 (2) 169
C10—H10···O3 0.93 2.26 2.7009 (18) 108
C12—H12···O2 0.93 2.15 2.998 (2) 151
C14—H14···N1iii 0.93 2.58 3.396 (2) 147
C17—H17A···O3iv 0.96 2.78 3.615 (2) 147
C17—H17C···Cgiv 0.96 2.82 3.606 (2) 139

Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1/2, y−1/2, z; (iv) −x+1, y, −z+3/2.

References

  1. Abbiati, G., Beccalli, E. M., Broggini, G. & Zoni, C. (2003). Tetrahedron, 59, 9887–9893.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Asiri, A. M., Faidallah, H. M., Sobahi, T. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1154. [DOI] [PMC free article] [PubMed]
  4. Badrey, M. G. & Gomha, S. M. (2014). Int. J. Pharm. Pharm. Sci., 6, 236–239.
  5. Batra, S. & Bhaduri, A. P. (1994). J. Indian Inst. Sci., 74, 213–226.
  6. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Chandra, S. N., Srikantamurthy, N., Jeyaseelan, S., Umesha, K. B., Palani, K. & Mahendra, M. (2012). Acta Cryst. E68, o3091. [DOI] [PMC free article] [PubMed]
  8. Cheng, Q., Xu, X., Liu, L. & Zhang, L. (2009). Acta Cryst. E65, o3012. [DOI] [PMC free article] [PubMed]
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Fozooni, S., Hosseinzadeh, G. N., Hamidianc, H. & Akhgar, M. R. (2013). J. Braz. Chem. Soc., 24, 1649-1655.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Guo, K. L., Zhao, L. X., Wang, Z. W., Gao, Y. C., Li, J. J., Gao, S., Fu, Y. & Ye, F. (2020). J. Agric. Food Chem. 68, 10550–10559. [DOI] [PubMed]
  13. Jiang, D., Xue, Z., Li, Y., Liu, H. & Yang, W. (2013) J. Mater. Chem. C, 1, 5694–5700.
  14. Laughlin, S. K., Clark, M. P., Djung, J. F., Golebiowski, A., Brugel, T. A., Sabat, M., Bookland, R. G., Laufersweiler, M. J., VanRens, J. C., Townes, J. A., De, B., Hsieh, L. C., Xu, S. C., Walter, R. L., Mekel, M. J. & Janusz, M. J. (2005). Bioorg. Med. Chem. Lett. 15, 2399–2403. [DOI] [PubMed]
  15. Liu, Q. & Zhang, Y.-N. (2011). Bull. Korean Chem. Soc. 32, 3559–3560.
  16. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  17. Mazimba, O., Wale, K., Loeto, D. & Kwape, T. (2014). Bioorg. Med. Chem. 22, 6564–6569. [DOI] [PubMed]
  18. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun., pp. 3814–3816. [DOI] [PubMed]
  19. Meunier-Piret, J., Piret, P., Germain, G., Putzeys, J.-P. & Van Meerssche, M. (1972). Acta Cryst. B28, 1308–1311.
  20. Miyake, T., Yagasaki, Y. & Kagabu, S. J. (2012). J. Pestic. Sci. 37, 89–94.
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  23. Tu, S., Zhang, J., Jia, R., Jiang, B., Zhang, Y. & Jiang, H. (2006). Org. Biomol. Chem., 5, 1450–1453. [DOI] [PubMed]
  24. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  25. Zemamouche, W., Laroun, R., Hamdouni, N., Brihi, O., Boudjada, A. & Debache, A. (2018). Acta Cryst. E74, 926–930. [DOI] [PMC free article] [PubMed]
  26. Zhang, X., Jiang, X., Li, Y., Lin, Z., Zhang, G. & Wu, Y. (2015). CrystEngComm, 17, 7316–7322.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021004308/ex2043sup1.cif

e-77-00564-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004308/ex2043Isup2.hkl

e-77-00564-Isup2.hkl (137.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021004308/ex2043Isup3.cml

CCDC reference: 2079211

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES