Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Apr 9;77(Pt 5):512–515. doi: 10.1107/S2056989021003625

Crystal structure and Hirshfeld surface analysis of 6-amino-8-phenyl-1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine-7,9-dicarbo­nitrile

Farid N Naghiyev a, Tatiana A Tereshina b, Victor N Khrustalev b,c, Mehmet Akkurt d, Ali N Khalilov a,e, Anzurat A Akobirshoeva f,*, İbrahim G Mamedov a
PMCID: PMC8100277  PMID: 34026255

In the crystal of the title compound, the mol­ecules form dimers with centrosymmetric Inline graphic(12) motifs linked by pairwise N—H⋯N hydrogen bonds and C—H⋯N contacts connect these dimers into double layers.

Keywords: crystal structure; cyclo­addition product; pyrido[1,2-a]pyrimidine; Hirshfeld surface analysis

Abstract

In the title compound, C16H15N5, the 1,4-di­hydro­pyridine ring has a shallow boat conformation, while the 1,3-diazinane ring adopts an envelope conformation. In the crystal, pairwise N—H⋯N hydrogen bonds generate centrosymmetric dimers featuring R 2 2(12) motifs and C—H⋯N contacts connect these dimers to form double layers lying parallel to (001). Weak C—H⋯π and N—H⋯π inter­actions help to consolidate the double layers and van der Waals inter­actions occur between layers. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (38.5%), N⋯H/H⋯N (33.3%) and C⋯H/H⋯C (27.3%) contacts.

Chemical context  

Being [6,6]-bicyclic heterocyclic nitro­gen-containing systems, pyrido[1,2-a]pyrimidine derivatives are classified as both natural and synthetic compounds and exhibit a broad spectrum of biological properties, such as analgesic, insecticidal, anti-inflammatory, anti­thrombotic, hypoglycaemic and anti­microbial activities (Hermecz & Mészáros, 1988). The pyrido[1,2-a]pyrimidine motif occurs in a number of drugs, such as pemirolast, pirenperone, ramastine, risperidone and paliperidone (Awouters et al., 1986; Blaton et al., 1995; Riva et al., 2011). Two-component and multi-component synthetic methodologies aimed at pyrido[1,2-a]pyrimidines as well as their reactions and structural features have been reviewed in the literature (Elattar et al., 2017).graphic file with name e-77-00512-scheme1.jpg

As part of our ongoing studies in this area (Naghiyev et al., 2021), we now report the crystal structure and Hirshfeld surface analysis of the title compound, C16H15N5 (I), obtained by a three-component synthesis (Naghiyev, 2019).

Structural commentary  

The 1,4-di­hydro­pyridine ring (N5/C6–C9/C9A) of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (N1/N5/C2–C4/C6–C9/C9A) has a shallow boat conformation with C8 and N5 displaced by 0.094 (3) and 0.075 (2) Å, respectively, from the other four atoms (r.m.s. deviation = 0.011 Å). The 1,3-diazinane ring (N1/N5/C2–C4/C9A) adopts an envelope conformation with C3 displaced from the other five atoms (r.m.s. deviation = 0.050 Å) by 0.704 (3) Å. The pendant phenyl ring (C11–C16) subtends a dihedral angle of 89.45 (12)° with the mean plane of the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system (Fig. 1); C3 and the phenyl ring lie to the same side of the mol­ecule. In the arbitrarily chosen asymmetric mol­ecule, the stereogenic centre C8 has an R configuration but crystal symmetry generates a racemic mixture.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, pairwise N1—H1⋯N17 hydrogen bonds link the mol­ecules into centrosymmetric dimers with Inline graphic(12) motifs (Table 1) and C8—H8⋯N10 contacts connect these dimers to form double layers lying parallel to (001) (Figs. 2 and 3). The layers are consolidated by C—H⋯π and N—H⋯π inter­actions and weak van der Waals inter­actions occur between the layers.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A pyridine ring and the C11–C16 phenyl ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N17i 0.87 (3) 2.15 (3) 2.975 (4) 157 (3)
C8—H8⋯N10ii 1.00 2.57 3.447 (4) 146
C2—H2ACg2iii 0.99 2.67 3.620 (3) 161
N6—H6BCg3iv 0.92 (4) 2.98 (3) 3.633 (3) 129 (3)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z.

Figure 2.

Figure 2

A view of the N—H⋯N, C—H⋯N hydrogen bonds, C—H⋯π and N—H⋯π inter­actions in the extended structure of the title compound. The H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (a) −1 + x, y, z; (b) 1 − x, −y, 1 − z; (c) 1 − x, 1 − y, 1 − z; (d) 2 − x, 1 − y, 1 − z].

Figure 3.

Figure 3

View down [100] showing the formation of (001) layers in the title compound by means of N—H⋯N, C—H⋯N, C—H⋯π and N—H⋯π inter­actions.

Hirshfeld surface analysis  

The nature of the inter­molecular inter­actions in (I) were examined with CrystalExplorer17.5 (Turner et al., 2017), using Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots. The Hirshfeld surfaces mapped over d norm (Fig. 4) show the inter­molecular contacts as red-coloured spots, which indicate the closer contacts of the N—H⋯N and C—H⋯N hydrogen bonds.

Figure 4.

Figure 4

The three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.47 to +1.30 a.u.

The two-dimensional fingerprint plots are illustrated in Fig. 5. H⋯H contacts comprise 38.5% of the total inter­actions, followed by N⋯H/H⋯N (33.3%) and C⋯H/H⋯C (27.3%). The percentage contributions of the N⋯N, C⋯C and C⋯N/N⋯C contacts are negligible, at 0.6, 0.3 and 0.2%, respectively. The predominance of H⋯H, N⋯H/H⋯N and C⋯H/H⋯C contacts indicate that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 5.

Figure 5

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) N⋯H/H⋯N, and (d) C⋯H/H⋯C inter­actions.

Database survey  

The four related compounds containing the 1,3,4,8-tetra­hydro-2H-pyrido[1,2-a]pyrimidine ring system found in the title compound are 11-(amino­methyl­idene)-8,9,10,11-tetra­hydro­pyrido[2′,3′:4,5]pyrimido[1,2-a]azepin-5(7H)-one (Cambridge Structural Database refcode HECLUZ; Khodjaniyazov et al., 2017), 9-(4-nitro­benzyl­idene)-8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one (VAMBET; Khodjaniyazov & Ashurov, 2016), 7′-amino-1′H-spiro­[cyclo­heptane-1,2′-pyrim­ido[4,5-d]pyrimidin]-4′(3′H)-one (LEGLIU; Chen et al., 2012) and 11-(2-oxopyrrolidin-1-ylmeth­yl)-1,2,3,4,5,6,11,11a-octa­hydro­pyrido[2,1-b]quinazolin-6-one dihydrate (KUTPEV; Samarov et al., 2010).

In the mol­ecule of HECLUZ, the seven-membered penta­methyl­ene ring adopts a twist-boat conformation. In the crystal, hydrogen bonds with a 16-membered ring and a chain motif are generated by N—H⋯N and N—H⋯O contacts. The hydrogen-bonded chains formed along [100] are connected by aromatic π–π stacking inter­actions observed between the pyridine and pyrimidine rings. In the crystal of VAMBET, the mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers lying parallel to (101). In LEGLIU, the mol­ecular structure is built up with two fused six-membered rings and one seven-membered ring linked through a spiro C atom. The crystal packing features N—H⋯O hydrogen bonds. In KUTPEV, the water mol­ecules are mutually O—H⋯O hydrogen bonded and form infinite chains propagating along the b-axis direction. Neighboring chains are linked by the quinazoline mol­ecules by means of O—H⋯O=C hydrogen bonds, forming a two-dimensional network.

Synthesis and crystallization  

The title compound was synthesized using our previously reported procedure (Naghiyev, 2019), and colourless prisms were obtained upon recrystallization from methanol solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding atoms with U iso(H) = 1.2U eq(C). The N-bound H atoms were located in difference maps and their positions were freely refined with the constraint U iso(H) = 1.2U eq(N) applied.

Table 2. Experimental details.

Crystal data
Chemical formula C16H15N5
M r 277.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.2521 (6), 10.2774 (8), 16.2102 (12)
β (°) 92.070 (2)
V3) 1373.89 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.12 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.981, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 21387, 3146, 1519
R int 0.104
(sin θ/λ)max−1) 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.066, 0.172, 1.01
No. of reflections 3146
No. of parameters 200
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27

Computer programs: APEX3 (Bruker, 2018), SAINT (Bruker, 2013), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021003625/hb7972sup1.cif

e-77-00512-sup1.cif (647.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021003625/hb7972Isup2.hkl

e-77-00512-Isup2.hkl (251.4KB, hkl)

CCDC reference: 2075718

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors contributions are as follows. Conceptualization, FNN and IGM; methodology, FNN and IGM; investigation, FNN, TAT and AAA; writing (original draft), MA and ANK; writing (review and editing of the manuscript), MA and ANK; visualization, MA, FNN and IGM; funding acquisition, VNK and FNN; resources, AAA, VNK and FNN; supervision, IGM and MA.

supplementary crystallographic information

Crystal data

C16H15N5 F(000) = 584
Mr = 277.33 Dx = 1.341 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.2521 (6) Å Cell parameters from 1452 reflections
b = 10.2774 (8) Å θ = 2.4–22.3°
c = 16.2102 (12) Å µ = 0.09 mm1
β = 92.070 (2)° T = 100 K
V = 1373.89 (18) Å3 Prism, colourless
Z = 4 0.12 × 0.06 × 0.04 mm

Data collection

Bruker D8 QUEST PHOTON-III CCD diffractometer 1519 reflections with I > 2σ(I)
φ and ω scans Rint = 0.104
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.5°, θmin = 2.4°
Tmin = 0.981, Tmax = 0.990 h = −10→10
21387 measured reflections k = −13→13
3146 independent reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.4109P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
3146 reflections Δρmax = 0.30 e Å3
200 parameters Δρmin = −0.27 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier map Extinction coefficient: 0.00309 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6921 (3) 0.5239 (3) 0.56852 (16) 0.0325 (7)
H1 0.787 (4) 0.541 (3) 0.549 (2) 0.039*
C2 0.6082 (4) 0.6387 (3) 0.5990 (2) 0.0376 (8)
H2A 0.5337 0.6740 0.5553 0.045*
H2B 0.6879 0.7071 0.6148 0.045*
C3 0.5135 (4) 0.5990 (3) 0.6733 (2) 0.0401 (9)
H3A 0.5893 0.5737 0.7193 0.048*
H3B 0.4474 0.6731 0.6918 0.048*
C4 0.4049 (4) 0.4861 (3) 0.6502 (2) 0.0376 (8)
H4A 0.3478 0.4564 0.6995 0.045*
H4B 0.3224 0.5144 0.6082 0.045*
N5 0.5002 (3) 0.3771 (2) 0.61711 (15) 0.0317 (6)
C6 0.4428 (4) 0.2509 (3) 0.62264 (19) 0.0321 (8)
N6 0.2881 (3) 0.2398 (3) 0.65141 (19) 0.0388 (7)
H6A 0.211 (4) 0.313 (4) 0.650 (2) 0.047*
H6B 0.255 (4) 0.155 (4) 0.645 (2) 0.047*
C7 0.5356 (4) 0.1470 (3) 0.60400 (19) 0.0306 (7)
C8 0.7070 (4) 0.1551 (3) 0.57515 (18) 0.0298 (7)
H8 0.7106 0.1095 0.5208 0.036*
C9 0.7468 (4) 0.2969 (3) 0.56112 (19) 0.0315 (8)
C9A 0.6496 (4) 0.3993 (3) 0.58218 (18) 0.0309 (7)
C10 0.4710 (4) 0.0202 (3) 0.6141 (2) 0.0340 (8)
N10 0.4207 (3) −0.0837 (3) 0.62453 (19) 0.0443 (8)
C11 0.8298 (4) 0.0898 (3) 0.63415 (19) 0.0297 (7)
C12 0.9153 (4) −0.0185 (3) 0.6105 (2) 0.0363 (8)
H12 0.8957 −0.0541 0.5570 0.044*
C13 1.0300 (4) −0.0762 (3) 0.6639 (2) 0.0421 (9)
H13 1.0905 −0.1492 0.6465 0.051*
C14 1.0550 (4) −0.0269 (3) 0.7422 (2) 0.0431 (9)
H14 1.1318 −0.0671 0.7791 0.052*
C15 0.9700 (4) 0.0802 (3) 0.7676 (2) 0.0402 (9)
H15 0.9878 0.1139 0.8218 0.048*
C16 0.8582 (4) 0.1383 (3) 0.7135 (2) 0.0355 (8)
H16 0.7998 0.2125 0.7309 0.043*
C17 0.8973 (4) 0.3241 (3) 0.5286 (2) 0.0360 (8)
N17 1.0252 (4) 0.3441 (3) 0.5036 (2) 0.0497 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0306 (16) 0.0316 (16) 0.0353 (16) 0.0031 (12) 0.0009 (12) 0.0023 (12)
C2 0.041 (2) 0.0356 (19) 0.0359 (19) 0.0034 (16) −0.0041 (16) −0.0013 (16)
C3 0.042 (2) 0.042 (2) 0.0356 (19) 0.0054 (17) −0.0035 (16) −0.0043 (16)
C4 0.0335 (19) 0.040 (2) 0.0393 (19) 0.0035 (15) −0.0024 (15) −0.0017 (16)
N5 0.0302 (15) 0.0310 (16) 0.0334 (15) 0.0014 (12) −0.0038 (12) 0.0009 (12)
C6 0.0310 (18) 0.0353 (19) 0.0294 (17) 0.0014 (15) −0.0098 (14) 0.0014 (14)
N6 0.0293 (17) 0.0360 (17) 0.0509 (19) 0.0008 (13) −0.0005 (13) 0.0006 (15)
C7 0.0296 (18) 0.0308 (18) 0.0306 (17) −0.0042 (14) −0.0096 (14) 0.0026 (14)
C8 0.0323 (18) 0.0305 (18) 0.0260 (17) −0.0006 (14) −0.0079 (13) 0.0003 (13)
C9 0.0297 (18) 0.0352 (19) 0.0290 (17) 0.0027 (14) −0.0068 (14) 0.0039 (14)
C9A 0.0302 (18) 0.035 (2) 0.0269 (17) 0.0024 (15) −0.0100 (14) 0.0016 (14)
C10 0.0317 (19) 0.038 (2) 0.0314 (18) 0.0015 (16) −0.0062 (14) −0.0029 (15)
N10 0.0382 (17) 0.0407 (18) 0.053 (2) −0.0013 (15) −0.0098 (14) −0.0078 (15)
C11 0.0287 (17) 0.0282 (17) 0.0316 (17) −0.0019 (14) −0.0062 (13) 0.0024 (14)
C12 0.0342 (19) 0.0344 (19) 0.040 (2) −0.0027 (15) −0.0056 (15) −0.0005 (15)
C13 0.038 (2) 0.0316 (19) 0.056 (2) 0.0041 (15) −0.0080 (17) 0.0046 (17)
C14 0.038 (2) 0.036 (2) 0.054 (2) 0.0006 (16) −0.0195 (18) 0.0087 (17)
C15 0.040 (2) 0.041 (2) 0.039 (2) −0.0029 (17) −0.0148 (16) 0.0007 (16)
C16 0.0371 (19) 0.0320 (18) 0.0366 (19) −0.0019 (15) −0.0114 (15) −0.0004 (15)
C17 0.040 (2) 0.0296 (19) 0.038 (2) 0.0077 (15) −0.0040 (16) 0.0038 (15)
N17 0.0442 (19) 0.0336 (18) 0.072 (2) 0.0075 (14) 0.0096 (17) 0.0112 (16)

Geometric parameters (Å, º)

N1—C9A 1.349 (4) C7—C8 1.508 (4)
N1—C2 1.463 (4) C8—C9 1.513 (4)
N1—H1 0.87 (3) C8—C11 1.524 (4)
C2—C3 1.515 (5) C8—H8 1.0000
C2—H2A 0.9900 C9—C9A 1.373 (4)
C2—H2B 0.9900 C9—C17 1.395 (5)
C3—C4 1.505 (4) C10—N10 1.160 (4)
C3—H3A 0.9900 C11—C12 1.379 (4)
C3—H3B 0.9900 C11—C16 1.392 (4)
C4—N5 1.481 (4) C12—C13 1.393 (4)
C4—H4A 0.9900 C12—H12 0.9500
C4—H4B 0.9900 C13—C14 1.375 (5)
N5—C6 1.384 (4) C13—H13 0.9500
N5—C9A 1.394 (4) C14—C15 1.376 (5)
C6—C7 1.355 (4) C14—H14 0.9500
C6—N6 1.379 (4) C15—C16 1.385 (4)
N6—H6A 0.99 (4) C15—H15 0.9500
N6—H6B 0.92 (4) C16—H16 0.9500
C7—C10 1.420 (5) C17—N17 1.162 (4)
C9A—N1—C2 125.6 (3) C7—C8—C9 108.2 (3)
C9A—N1—H1 119 (2) C7—C8—C11 113.0 (2)
C2—N1—H1 114 (2) C9—C8—C11 112.1 (2)
N1—C2—C3 108.4 (3) C7—C8—H8 107.8
N1—C2—H2A 110.0 C9—C8—H8 107.8
C3—C2—H2A 110.0 C11—C8—H8 107.8
N1—C2—H2B 110.0 C9A—C9—C17 118.5 (3)
C3—C2—H2B 110.0 C9A—C9—C8 124.6 (3)
H2A—C2—H2B 108.4 C17—C9—C8 116.8 (3)
C4—C3—C2 109.2 (3) N1—C9A—C9 122.0 (3)
C4—C3—H3A 109.8 N1—C9A—N5 117.4 (3)
C2—C3—H3A 109.8 C9—C9A—N5 120.6 (3)
C4—C3—H3B 109.8 N10—C10—C7 178.0 (3)
C2—C3—H3B 109.8 C12—C11—C16 118.4 (3)
H3A—C3—H3B 108.3 C12—C11—C8 121.1 (3)
N5—C4—C3 110.8 (3) C16—C11—C8 120.5 (3)
N5—C4—H4A 109.5 C11—C12—C13 120.9 (3)
C3—C4—H4A 109.5 C11—C12—H12 119.6
N5—C4—H4B 109.5 C13—C12—H12 119.6
C3—C4—H4B 109.5 C14—C13—C12 119.6 (3)
H4A—C4—H4B 108.1 C14—C13—H13 120.2
C6—N5—C9A 119.3 (3) C12—C13—H13 120.2
C6—N5—C4 119.9 (3) C13—C14—C15 120.7 (3)
C9A—N5—C4 120.8 (3) C13—C14—H14 119.7
C7—C6—N6 123.2 (3) C15—C14—H14 119.7
C7—C6—N5 121.8 (3) C14—C15—C16 119.4 (3)
N6—C6—N5 115.0 (3) C14—C15—H15 120.3
C6—N6—H6A 122 (2) C16—C15—H15 120.3
C6—N6—H6B 109 (2) C15—C16—C11 121.1 (3)
H6A—N6—H6B 122 (3) C15—C16—H16 119.4
C6—C7—C10 118.7 (3) C11—C16—H16 119.4
C6—C7—C8 124.7 (3) N17—C17—C9 177.7 (4)
C10—C7—C8 116.6 (3)
C9A—N1—C2—C3 22.3 (4) C2—N1—C9A—N5 10.5 (4)
N1—C2—C3—C4 −54.1 (3) C17—C9—C9A—N1 3.4 (5)
C2—C3—C4—N5 55.8 (4) C8—C9—C9A—N1 179.6 (3)
C3—C4—N5—C6 154.4 (3) C17—C9—C9A—N5 −178.1 (3)
C3—C4—N5—C9A −23.9 (4) C8—C9—C9A—N5 −1.9 (5)
C9A—N5—C6—C7 7.8 (4) C6—N5—C9A—N1 172.0 (3)
C4—N5—C6—C7 −170.5 (3) C4—N5—C9A—N1 −9.7 (4)
C9A—N5—C6—N6 −174.6 (3) C6—N5—C9A—C9 −6.6 (4)
C4—N5—C6—N6 7.1 (4) C4—N5—C9A—C9 171.7 (3)
N6—C6—C7—C10 0.3 (5) C7—C8—C11—C12 115.1 (3)
N5—C6—C7—C10 177.6 (3) C9—C8—C11—C12 −122.4 (3)
N6—C6—C7—C8 −177.9 (3) C7—C8—C11—C16 −64.8 (4)
N5—C6—C7—C8 −0.5 (5) C9—C8—C11—C16 57.7 (4)
C6—C7—C8—C9 −6.8 (4) C16—C11—C12—C13 −1.4 (5)
C10—C7—C8—C9 175.0 (3) C8—C11—C12—C13 178.6 (3)
C6—C7—C8—C11 117.8 (3) C11—C12—C13—C14 1.8 (5)
C10—C7—C8—C11 −60.3 (4) C12—C13—C14—C15 −1.1 (5)
C7—C8—C9—C9A 8.0 (4) C13—C14—C15—C16 0.0 (5)
C11—C8—C9—C9A −117.3 (3) C14—C15—C16—C11 0.4 (5)
C7—C8—C9—C17 −175.7 (3) C12—C11—C16—C15 0.3 (5)
C11—C8—C9—C17 59.1 (4) C8—C11—C16—C15 −179.7 (3)
C2—N1—C9A—C9 −170.9 (3)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the N5/C6–C9/C9A pyridine ring and the C11–C16 phenyl ring, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···N17i 0.87 (3) 2.15 (3) 2.975 (4) 157 (3)
C8—H8···N10ii 1.00 2.57 3.447 (4) 146
C2—H2A···Cg2iii 0.99 2.67 3.620 (3) 161
N6—H6B···Cg3iv 0.92 (4) 2.98 (3) 3.633 (3) 129 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z.

Funding Statement

This work was funded by Baki Dövl\#601;t Universiteti grant . RUDN University Strategic Academic Leadership Program grant .

References

  1. Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102.
  2. Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 533–535.
  3. Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chen, S., Shi, D., Liu, M. & Li, J. (2012). Acta Cryst. E68, o2546. [DOI] [PMC free article] [PubMed]
  6. Elattar, K. M., Rabie, R. & Hammouda, M. M. (2017). Monatsh. Chem. 148, 601–627.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  9. Hermecz, I. & Mészáros, Z. (1988). Med. Res. Rev. 8, 203–230. [DOI] [PubMed]
  10. Khodjaniyazov, Kh. U. & Ashurov, J. M. (2016). Acta Cryst. E72, 452–455. [DOI] [PMC free article] [PubMed]
  11. Khodjaniyazov, K. U., Makhmudov, U. S., Turgunov, K. K. & Elmuradov, B. Z. (2017). Acta Cryst. E73, 1497–1500. [DOI] [PMC free article] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Naghiyev, F. N. (2019). Chem. Probl. 17, 275–281.
  14. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  15. Riva, R., Banfi, L., Castaldi, G., Ghislieri, D., Malpezzi, L., Musumeci, F., Tufaro, R. & Rasparini, M. (2011). Eur. J. Org. Chem. pp. 2319–2325.
  16. Samarov, Z. U., Okmanov, R. Y., Turgunov, K. K., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o890. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  21. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021003625/hb7972sup1.cif

e-77-00512-sup1.cif (647.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021003625/hb7972Isup2.hkl

e-77-00512-Isup2.hkl (251.4KB, hkl)

CCDC reference: 2075718

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES