Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 May 10;15(3):48. doi: 10.1007/s11783-021-1421-7

Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions

Jianwei Liu 1,2,, Peng Yue 1,2, Nana Zang 1,2, Chen Lu 1,2, Xinyue Chen 1,2
PMCID: PMC8109218  PMID: 33996175

Abstract

A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.

graphic file with name 11783_2021_1421_Fig1_HTML.jpg

Keywords: Biofiltration, Multi-stage biofilter, Volatile organic compounds, Waste gas treatment, Bioaerosol emissions

Acknowledgements

This work was financially supported by the key Projects in the National Science & Technology Pillar Program of China during the Twelfth Five-Year Plan Period (No. 2013BAC25B00-004).

Footnotes

Highlights

• TSIBF was composed of ABRS, FRS and HBRS.

• THIBF can effectively remove various odors, VOCs and bioaerosols.

• Different reaction segments in TSIBF can remove different types of odors and VOCs.

• TSIBF can reduce the emission of bioaerosols through enhanced interception.

References

  1. Agarwal S, Mandal P, Srivastava A. Quantification and characterization of size-segregated bioaerosols at municipal solid waste dumping site in Delhi. Procedia Environmental Sciences. 2016;35:400–407. doi: 10.1016/j.proenv.2016.07.021. [DOI] [Google Scholar]
  2. Barbusinski K, Kalemba K, Kasperczyk D, Urbaniec K, Kozik V. Biological methods for odor treatment: A review. Journal of Cleaner Production. 2017;152:223–241. doi: 10.1016/j.jclepro.2017.03.093. [DOI] [Google Scholar]
  3. Estrada J M, Kraakman N B, Muñoz R, Lebrero R. A comparative analysis of odour treatment technologies in wastewater treatment plants. Environmental Science &Technology. 2011;45(3):1100–1106. doi: 10.1021/es103478j. [DOI] [PubMed] [Google Scholar]
  4. Ghanbarian M, Ghanbarian M, Ghanbarian M, Mahvi A H, Hosseini M. Determination of bacterial and fungal bioaerosols in municipal solid-waste processing facilities of Tehran. Journal of Environmental Health Science & Engineering. 2020;18(2):865–872. doi: 10.1007/s40201-020-00510-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gjaltema A, Tijhuis L, Van Loosdrecht M, Heijnen J. Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors. Biotechnology and Bioengineering. 1995;46(3):258–269. doi: 10.1002/bit.260460309. [DOI] [PubMed] [Google Scholar]
  6. Han M F, Wang C, Yang N Y, Hu X R, Wang Y C, Duan E H, Ren H W, Hsi H C, Deng J G. Performance enhancement of a biofilter with pH buffering and filter bed supporting material in removal of chlorobenzene. Chemosphere. 2020;251:126358. doi: 10.1016/j.chemosphere.2020.126358. [DOI] [PubMed] [Google Scholar]
  7. Han Y, Wang Y, Chai F, Ma J, Li L. Biofilters for the cotreatment of volatile organic compounds and odors in a domestic waste landfill site. Journal of Cleaner Production. 2020;277:124012. doi: 10.1016/j.jclepro.2020.124012. [DOI] [Google Scholar]
  8. Ibanga I E, Fletcher L A, Noakes C J, King M F, Steinberg D. Pilot-scale biofiltration at a materials recovery facility: The impact on bioaerosol control. Waste Management (New York, N.Y.) 2018;80:154–167. doi: 10.1016/j.wasman.2018.09.010. [DOI] [PubMed] [Google Scholar]
  9. Khatami S, Deng Y, Tien M, Hatcher P G. Lignin contribution to aliphatic constituents of humic acids through fungal degradation. Journal of Environmental Quality. 2019;48(6):1565–1570. doi: 10.2134/jeq2019.01.0034. [DOI] [Google Scholar]
  10. Liu J, Kang X, Liu X, Yue P, Sun J, Lu C. Simultaneous removal of bioaerosols, odors and volatile organic compounds from a wastewater treatment plant by a full-scale integrated reactor. Process Safety and Environmental Protection. 2020;144:2–14. doi: 10.1016/j.psep.2020.07.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu J W, Yue P, Huang L H, Zhao M F, Kang X Y, Liu X L. Styrene removal with an acidic biofilter with four packing materials: Performance and fungal bioaerosol emissions. Environmental Research. 2020;191:110154. doi: 10.1016/j.envres.2020.110154. [DOI] [PubMed] [Google Scholar]
  12. Liu Q, Li M, Chen R, Li Z, Qian G, An T, Fu J, Sheng G. Biofiltration treatment of odors from municipal solid waste treatment plants. Waste Management (New York, N.Y.) 2009;29(7):2051–2058. doi: 10.1016/j.wasman.2009.02.002. [DOI] [PubMed] [Google Scholar]
  13. Liu Y, Zhang Y, Shi Y, Shen F, Yang Y, Wang M, Zhang G, Deng T, Lai S. Characterization of fungal aerosol in a landfill and an incineration plants in Guangzhou, Southern China: The link to potential impacts. Science of the Total Environment. 2021;764:142908. doi: 10.1016/j.scitotenv.2020.142908. [DOI] [PubMed] [Google Scholar]
  14. López M E, Rene E R, Boger Z, Veiga M C, Kennes C. Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks. Journal of Hazardous Materials. 2017;324:100–109. doi: 10.1016/j.jhazmat.2016.03.018. [DOI] [PubMed] [Google Scholar]
  15. Melse R W, Ploegaert J P M, Ogink N W M. Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosystems Engineering. 2012;113(3):242–252. doi: 10.1016/j.biosystemseng.2012.08.010. [DOI] [Google Scholar]
  16. Mohammad B T, Rene E R, Veiga M C, Kennes C. Performance of a thermophilic gas-phase biofilter treating high BTEX loads under steady-and transient-state operation. International Biodeterioration & Biodegradation. 2017;119:289–298. doi: 10.1016/j.ibiod.2016.10.054. [DOI] [Google Scholar]
  17. Mutuku J K, Hou W C, Chen W H. An overview of experiments and numerical simulations on airflow and aerosols deposition in human airways and the role of bioaerosol motion in COVID-19 transmission. Aerosol and Air Quality Research. 2020;20(6):1172–1196. doi: 10.4209/aaqr.2020.04.0185. [DOI] [Google Scholar]
  18. Nicolella C, Di Felice R, Rovatti M. An experimental model of biofilm detachment in liquid fluidized bed biological reactors. Biotechnology and Bioengineering. 1996;51(6):713–719. doi: 10.1002/(SICI)1097-0290(19960920)51:6<713::AID-BIT10>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  19. Ottengraf S P P, Konings J H G. Emission of microorganisms from biofilters. Bioprocess Engineering. 1991;7(1):89–96. doi: 10.1007/BF00383584. [DOI] [Google Scholar]
  20. Rene E R, Mohammad B T, Veiga M C, Kennes C. Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification. Bioresource Technology. 2012;116(4):204–213. doi: 10.1016/j.biortech.2011.12.006. [DOI] [PubMed] [Google Scholar]
  21. Rittmann B. In: Structure and Function of Biofilms. Characklis W G, Wilderer P A, editors. Hoboken: John Wiley & Sons; 1989. [Google Scholar]
  22. Sun S, Jia T, Chen K, Peng Y, Zhang L. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system. Frontiers of Environmental Science & Engineering. 2019;13(4):60. doi: 10.1007/s11783-019-1148-x. [DOI] [Google Scholar]
  23. Sun Y, Xue S, Li L, Ding W, Liu J, Han Y. Sulfur dioxide and oxylene co-treatment in biofilter: Performance, bacterial populations and bioaerosols emissions. Journal of Environmental Sciences (China) 2018;69:41–51. doi: 10.1016/j.jes.2017.03.039. [DOI] [PubMed] [Google Scholar]
  24. Tijhuis L, van Loosdrecht M C M, Heijnen J J. Dynamics of biofilm detachment in biofilm airlift suspension reactors. Biotechnology and Bioengineering. 1995;45(6):481–487. doi: 10.1002/bit.260450604. [DOI] [PubMed] [Google Scholar]
  25. Torretta V, Raboni M, Copelli S, Caruson P. Effectiveness of a multi-stage biofilter approach at pilot scale to remove odor and VOCs. International Journal of Sustainable Development and Planning. 2015;10(3):373–384. doi: 10.2495/SDP-V10-N3-373-384. [DOI] [Google Scholar]
  26. Van der Heyden C, Volcke E I, Brusselman E, Demeyer P. Comparative 1-year performance study of two full-scale biotrickling filters for ammonia removal including nitrous oxide emission monitoring. Biosystems Engineering. 2019;188:178–189. doi: 10.1016/j.biosystemseng.2019.10.014. [DOI] [Google Scholar]
  27. Vanek T, Halecky M, Paca J, Zapotocky L, Gelbicova T, Vadkertiova R, Kozliak E, Jones K. A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering. 2015;50(11):1148–1159. doi: 10.1080/10934529.2015.1047672. [DOI] [PubMed] [Google Scholar]
  28. Wang R, Lin J Q, Liu X M, Pang X, Zhang C J, Yang C L, Gao X Y, Lin C M, Li Y Q, Li Y, Lin J Q, Chen L X. Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Frontiers in Microbiology. 2019;9:3290. doi: 10.3389/fmicb.2018.03290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang Z, Lv J, Gu F, Yang J, Guo J. Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. Science of the Total Environment. 2020;709:136096. doi: 10.1016/j.scitotenv.2019.136096. [DOI] [PubMed] [Google Scholar]
  30. Wikuats C F H, Duarte E H, Prates K V M C, Janiaski L L L, de Oliveira Gabriel B, da Cunha Molina A, Martins L D. Assessment of airborne particles and bioaerosols concentrations in a waste recycling environment in Brazil. Scientific Reports. 2020;10(1):14812. doi: 10.1038/s41598-020-71787-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang K, Li L, Xue S, Wang Y, Liu J, Yang T. Influence factors and health risk assessment of bioaerosols emitted from an industrial-scale thermophilic biofilter for off gas treatment. Process Safety and Environmental Protection. 2019;129:55–62. doi: 10.1016/j.psep.2019.06.016. [DOI] [Google Scholar]
  32. Zhan Y, Yang M, Zhang S, Zhao D, Duan J, Wang W, Yan L. Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World Journal of Microbiology & Biotechnology. 2019;35(4):60. doi: 10.1007/s11274-019-2632-y. [DOI] [PubMed] [Google Scholar]
  33. Zhang Y, Liu J, Qin Y, Yang Z, Cao J, Xing Y, Li J. Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. Journal of Hazardous Materials. 2019;365:642–649. doi: 10.1016/j.jhazmat.2018.11.062. [DOI] [PubMed] [Google Scholar]

Articles from Frontiers of Environmental Science & Engineering are provided here courtesy of Nature Publishing Group

RESOURCES