Abstract
An indirect immunofluorescence method using smears from membrana nictitans (M3 test) to diagnose feline corona virus (FCV) infection was compared with immunohistopathology (using indirect immunofluorescence assay (IFFA) performed on organs (IFO)), and routine pathology (RP) in cats with suspected feline infectious peritonitis (FIP).
A close correlation between the 2 immunofluorescence methods (IFO and M3) was observed. Although the M3 test requires samples from only 1 organ per animal, both the sensitivity and specificity were high (80 %), when compared to IFO (using samples from an average of 5 organs per animal). In 21 % of the cats with suspected FIP typical pathological lesions were found. As the M3 test is relatively easy to perform, it could reduce work-load of pathology laboratories and provide valuable data for clinical and epidemiological use.
Keywords: Membrana nictitans, feline corona virus, feline infectious peritonitis, FIP, indirect immunofluorescence assay
Sammanfattning
Katter, med FIP-sjukdom som misstänkt dödsorsak, undersöktes med användande av 3 metoder: utstryk från membrana nictitans infargad for indirekt immunofluorescence (M3 test) för att påvisa kattcoronavirus- (FCV-) infektion, immunohistopatologi utford på i genomsnitt 5 immunofluorescensfärgade organsnitt (IFO) och rutinpatologi (RP). De 2 immunofluorescensbaserade metoderna stämde väl överens, specificitet och sensitivitet cirka 80 %, trots att M3 testen är baserad på endast ett organ, medan endast ett positivt organ av i genomsnitt 5 undersökta krävdes för att ge ett positivt IFO-svar. Rutinpatologin bekräftade diagnosen i 21 % av fallen. M3 testen som är lätt att utföra, medför minskat arbete, samtidigt som den ger värdefull information vid klinisk, epidemiologisk och patologisk undersökning. Dessutom erhålls en säkrare diagnos genom att påvisa virus istället för antikroppar.
Full Text
The Full Text of this article is available as a PDF (937.0 KB).
References
- Barlough JE. Cats, coronaviruses and coronavirus antibody tests. J. small. Anim. Pract. 1985;26:353–362. doi: 10.1111/j.1748-5827.1985.tb02210.x. [DOI] [Google Scholar]
- Horzinek MC, Osterhaus ADME. Feline infectious peritonitis: A worldwide serosurvey. Amer. J. vet. Res. 1979;40:1487–1492. [PubMed] [Google Scholar]
- Hök K. Demonstration of feline infectious peritonitis virus in conjunctival epithelial cells from cats. Acta Path. Microb. Immun. Scand. 1989;97:820–824. doi: 10.1111/j.1699-0463.1989.tb00483.x. [DOI] [PubMed] [Google Scholar]
- Lutz H. Hauser B, Horzinek MC. FELINFO No. 1. Feline infectious peritonitis (FIP) – the present state of knowledge. J. small Anim. Pract. 1986;27:108–116. [Google Scholar]
- Pedersen NC, Ward J, Mengeling WL. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Arch. Virol. 1978;58:45–53. doi: 10.1007/BF01315534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen NC: Coronavirus diseases. Diseases of the cat. Vol. 1. Ed. J Holtzworth. Philadelphia, W. B. Saunders 1987, 193–214.
- Robinson RL, Holzworth J, Gilmore CE. Naturally occurring feline infectious peritonitis. Signs and clinical diagnosis. J. Amer. vet. med. Ass. 1971;158:981–986. [PubMed] [Google Scholar]
- Ward JM. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology. 1970;41:191–194. doi: 10.1016/0042-6822(70)90070-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss RC, Scott FW. Laboratory diagnosis of feline infectious peritonitis. Feline Pract. 1980;10:16–22. [Google Scholar]