Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
2021 May 17;95(Suppl 1):S1–S7. doi: 10.1134/S0036024421140132

Partial and Аpparent Мolar Volume of Аzithromycin in Its Solutions in Еthanol, 1-Рropanol, and 1-Butanol at 300.15, 305.15, 310.15 K and Ambient Pressure

Nita P Mohabansi 1,, Anita K Satone 1, Sonia N Hirani 1
PMCID: PMC8128087

Abstract

The densities and ultrasound velocities in azithromycin solutions in ethanol, 1-propanol and 1-butanol at various concentrations and at three different temperatures (T = 300.15, 305.15, and 310.15 K) have been measured. Based on the data obtained, various derived acoustical parameters viz, acoustic impedance (Z), adiabatic compressibility (β), intermolecular free length (Lf), free volume (Vf), Rao’s constant (R), Wada’s constant (W), partial molar volume (VФ), and hence apparent molar volume (Inline graphic) of the solute have been calculated. The results are discussed on the basis of the nature of solute-solvent interactions.

Keywords: acoustical, molecular interaction, acoustic impedance, azithromycin, partial molar volume, apparent molar volume

INTRODUCTION

Studies of intermolecular interactions play an important role in understanding the interactions that take place in solutions. Changes in density, viscosity, ultrasound velocity and other parameters from temperature and concentration have been considered by many scientists and shed light on the structural changes occurring in solutions [15].

The choice of a suitable solvent is of primary scientific interest in order to obtain the required efficiency, selectivity and kinetics of a chemical process. The presence of hydrogen bonds in polar solvents has a significant effect on the dielectric, physicochemical and acoustic properties of mixtures. Alcohols are widely used as solvents in chemical and pharmaceutical industries, during extraction [68], as dispersing agents for nanomaterials [912] and for the synthesis of other organic compounds [1316]. A large number of studies devoted to alcohols and their mixtures at various temperatures and pressures have been carried out using densimetry, viscometry, spectroscopy, and computer chemistry [1729]. In clinical medicine, undesirable drug–alcohol interactions are of common concern [30]. Heavy drinking and its combined effect with the antibiotics resulted into deadly incidental and intentional poisoning. When a new drug is synthesized, drug-alcohol interactions should be thoroughly studied [30, 31].

Azithromycin (Fig. 1) is a macrolide antibiotic similar in structure to erythromycin. Azithromycin has increased activity against Gram-negative bacteria compared with erythromycin, while maintaining activity against Gram-positive organisms. Azithromycin is characterized by good oral bioavailability, excellent tissue penetration and persistence, and long elimination half-lives [32]. Azithromycin demonstrates good results in vitro against Zika and Ebola viruses [33] and severe respiratory diseases. Recently, the evaluation of azithromycin as a drug for the COVID‑19 therapy has started [3437].

Fig. 1.

Fig. 1.

Structure of azithromycin.

Therefore, in the present article we report the experimental densities, ultrasonic velocities and the derived parameters of azithromycin solutions of various concentrations and at different temperatures: 300.15, 305.15, and 310.15 K in ethanol, 1-propanol, and 1-butanol.

EXPERIMENTAL

In the present study, the chemicals used are ethanol, 1-propanol, and 1-butanol, are of AR grade. These chemicals were used without any further purification. The details of these chemicals are given in Table 1. All the solutions were prepared gravimetrically and are kept hermetically sealed to prevent contact with moisture from the air and evaporation. Solutions were prepared using CONTECH CA 224 analytical balance (e ± 0.0001 g). The solutions of different molality viz, 0.0144, 0.0275, 0.0394, 0.0503, 0.0602, 0.0694, 0.0779, 0.0858, 0.0931, and 0.1 of azithromycin were prepared in ethanol, 1-propanol, and 1‑butanol. The solutions were gently stirred on a magnetic stirrer before measurements. Care was taken to avoid contamination during mixing. The estimated uncertainty of molality value is u(m) = ±1 × 10–3.

Table 1.  .

Specification and mass fraction puritya of chemical samples

S.N. Chemical name Source CAS no. M, g/mol Fraction purity
1 Ethanol Merck 64-17-5 46.07 ≥99.9%
2 1-Propanol Merck 71-23-8 60.10 ≥99.5%
3 1-Butanol Merck 71-36-3 74.12 ≥99.5%
4 Azithromycin 83905-01-5 749

a Purity as provided by supplier.

Densities were measured using calibrated pycnometer with nominal volume of 10 cm3. The ultrasonic velocity (u) was measured on digital ultrasonic pulse echo velocity meter (Vi Microsystems Pvt. Ltd. model VCT-70) at 2 MHz with an accuracy of 0.1% (2 ± 0.0001 MHz). The estimated uncertainity of ultrasonic velocity is within u(m) = ±1.09 m s–1. The instrument has a built-in thermostat to maintain the temperature (±0.1 K). Ultrasonic velocity meter was calibrated with triple distilled water and pure methanol at 300.15, 305.15, and 310.15 K.

RESULTS AND DISCUSSION

The comparison of experimentally obtained values of densities (ρ) and ultrasonic velocity (U) of pure liquids with literature values is presented in Table 2.

Table 2.  .

Comparison of experimental densities (ρ) and ultrasonic velocity (u) of pure liquids with interpolated literature values at 300.15, 305.15, and 310.15 K and atmospheric pressure

Liquids ρ × 10–3, kg m–3 u, m s–1
exp. literature exp. literature
300.15 K
Ethanol 0.7810 0.7893 [38] 1128.2 1127.4 [39]
1-Propanol 0.7962 0.798 [39] 1188.1 1189.2 [38]
1-Butanol 0.8042 0.8069 [38] 1227.9 1225.8 [13]
305.15 K
Ethanol 0.7875 0.7873 [38] 1108.9 1109.4 [38]
1-Propanol 0.7959 0.7955 [40] 1170.1 1169.7 [38]
1-Butanol 0.7942 0.7946 [42] 1203.2 1203 [44]
310.15 K
Ethanol 0.7853 0.7855 [38] 1093.1 1092.9 [43]
1-Propanol 0.7879 0.7873 [41] 1098.3 1093 [41]
1-Butanol 0.7955 0.7945 [41] 1188.9 1189.5 [43]

The experimentally determined values of density (ρ), ultrasonic velocity (u) for all solutions of the drug at different concentrations and at T = 300.15, 305.15, and 310.15 K are listed in Table 3. The data on density and ultrasonic velocity were used to calculate acoustical parameters [45] viz., acoustic impedance (Z), adiabatic compressibility (Inline graphic), intermolecular free length (Lf), free volume (Vf), Rao’s constant (R), Wada’s constant (W), and partial molar volume (Vm) by the following equations:

graphic file with name M3.gif 1
graphic file with name M4.gif 2
graphic file with name M5.gif 3

where KT is temperature dependent constant known as Jacobson’s constant

graphic file with name M6.gif

where T is absolute temperature, free volume

graphic file with name M7.gif 4

where Meff is effective molecular weight, Rao’s constant:

graphic file with name M8.gif 5

Wada’s constant:

graphic file with name M9.gif 6

where M is molecular weight of solute, partial molar volume of azithromycin:

graphic file with name M10.gif 7

It is observed from Table 3 that the densities and ultrasonic velocities increase with concentration. Same types of the trends are observed at T = 300.15, 305.15, and 310.15 K. The product of density and ultrasonic velocity is the acoustic impedance (Z). Z increases gradually with increase in concentration and decreases with increase in temperature. This reflects the structure making action through strong hydrogen bonding [46]. Adiabatic compressibility (β) varies inversely to ultrasonic velocity and density (Eq. (2)). With the increase in the molality of the solution, β decreases linearly at the studied temperature. Naik et al. also reported the same trend in the values of β [1]. This indicates the closer packing of the molecules [47]. Intermolecular free length (Lf) is the indicator of the interactions between the solute and solvent due to association between the molecules through H-bonding. With the increase in the concentration, the decrease in the Lf values reflects the strong solute- solvent interactions. From the Table 3, it is observed that the value of Vf increases with increase in the concentration for all studied alcoholic solutions. This may be due to the dispersive forces of the component molecules. The decrease in the Rao’s constant and the increase in the Wada’s constant values confirms that these alcohols are associated in solution due to dipole–dipole interaction and hydrogen bonding.

Table 3.  .

Molality (m), density (ρ), ultrasonic velocity (u), adiabatic compressibility (β), acoustic impedance (Z), intermolecular free length (Lf), free volume (Vf), Rao’s constant (R), Wada’s constant (W), and partial molar volume (VФ) for the solution of drug in ethanol, 1-propanol, and 1-butanol at 300.15, 305.15, 310.15 K and atmospheric pressure

m,
mol kg–1
ρ,
kg/m3
u, m s–1 Z × 10–5,
kg m–2 s–1
β × 1010,
m2 N–1
Lf × 1011,
m
Vf × 106, m3 mol–1 R W VФ × 10–6,
m3 mol–1
Ethanol, T = 300.15 K
0.014 772.63 1149.19 8.879 9.592 9.901 2.718 0.0393 1.407 55.123
0.028 780.02 1159.15 9.042 9.499 9.804 2.830 0.0390 1.411 54.191
0.039 791.74 1172.63 9.284 9.352 9.653 3.008 0.0384 1.412 53.958
0.050 800.31 1182.52 9.464 9.247 9.545 3.116 0.0380 1.412 53.755
0.060 805.45 1188.75 9.575 9.181 9.476 3.181 0.0378 1.413 53.58
0.069 817.74 1202.89 9.837 9.041 9.332 3.264 0.0372 1.414 53.392
0.078 824.88 1211.52 9.994 8.943 9.230 3.453 0.0369 1.416 53.25
0.086 830.31 1218.25 10.115 8.875 9.160 3.538 0.0367 1.417 53.128
0.093 836.14 1225.81 10.249 8.810 9.093 3.633 0.0365 1.419 52.994
0.102 842.88 1234.06 10.402 8.723 9.004 3.852 0.0362 1.421 52.842
Ethanol, T = 305.15 K
0.014 720.34 1077.28 7.760 10.289 10.619 2.534 0.0422 1.438 55.669
0.028 733.45 1092.57 8.013 10.102 10.426 2.661 0.0414 1.440 55.383
0.039 742.31 1103.04 8.188 9.975 10.296 2.820 0.0410 1.444 55.125
0.050 754.02 1116.44 8.418 9.815 10.131 2.935 0.0403 1.446 54.918
0.060 770.31 1135.21 8.745 9.600 9.909 3.042 0.0395 1.448 54.683
0.069 778.67 1145.35 8.918 9.495 9.800 3.108 0.0391 1.449 54.515
0.078 788.88 1157.86 9.134 9.351 9.651 3.302 0.0386 1.451 54.271
0.086 801.79 1172.74 9.403 9.190 9.486 3.416 0.0380 1.451 54.129
0.093 805.74 1178.53 9.496 9.142 9.436 3.501 0.0378 1.456 53.97
0.102 822.32 1197.20 9.845 8.941 9.229 3.758 0.0371 1.457 53.81
Ethanol, T = 310.15 K
0.014 715.46 1063.38 7.608 10.359 10.692 2.517 0.0425 1.351 56.163
0.028 728.62 1078.68 7.859 10.169 10.496 2.644 0.0417 1.353 55.856
0.039 740.31 1092.39 8.087 10.002 10.324 2.812 0.0411 1.355 55.559
0.050 748.89 1102.72 8.258 9.882 10.200 2.915 0.0406 1.357 55.335
0.060 756.89 1112.31 8.419 9.770 10.084 2.989 0.0402 1.359 55.056
0.069 768.76 1126.05 8.657 9.617 9.926 3.068 0.0396 1.361 54.843
0.078 777.74 1136.86 8.842 9.485 9.790 3.256 0.0392 1.363 54.604
0.086 784.61 1145.27 8.986 9.392 9.693 3.343 0.0389 1.365 54.43
0.093 794.89 1157.58 9.201 9.267 9.565 3.453 0.0384 1.367 54.253
0.102 802.94 1167.07 9.371 9.157 9.452 3.670 0.0380 1.369 54.043
1-Propanol, T = 300.15 K
0.014 796.27 1100.54 8.763 9.308 9.607 2.801 0.0382 1.472 71.532
0.028 806.27 1112.39 8.969 9.189 9.485 2.926 0.0377 1.473 71.271
0.039 815.13 1123.23 9.156 9.084 9.376 3.097 0.0373 1.475 71.053
0.050 825.99 1136.60 9.388 8.960 9.248 3.216 0.0368 1.477 70.794
0.060 830.84 1142.59 9.493 8.901 9.187 3.282 0.0366 1.478 70.606
0.069 836.27 1150.62 9.622 8.841 9.125 3.338 0.0364 1.483 70.433
0.078 843.99 1160.88 9.798 8.740 9.021 3.533 0.0361 1.487 70.212
0.086 855.99 1176.65 10.072 8.608 8.885 3.647 0.0356 1.492 69.986
0.093 862.56 1185.10 10.222 8.540 8.815 3.748 0.0353 1.494 69.851
0.102 868.27 1192.51 10.354 8.468 8.741 3.968 0.0351 1.496 69.636
1-Propanol, T = 305.15 K
0.014 750.27 1035.71 7.771 9.878 10.196 2.639 0.0405 1.438 73.292
0.028 762.27 1049.98 8.004 9.720 10.032 2.766 0.0399 1.441 72.859
0.039 774.84 1065.72 8.258 9.556 9.864 2.943 0.0392 1.444 72.546
0.050 781.99 1074.59 8.403 9.464 9.768 3.044 0.0389 1.446 72.123
0.060 791.99 1086.49 8.605 9.337 9.637 3.128 0.0384 1.448 71.814
0.069 805.99 1103.06 8.891 9.173 9.468 3.217 0.0378 1.449 71.528
0.078 813.99 1112.72 9.057 9.062 9.354 3.407 0.0374 1.451 71.189
0.086 830.56 1131.67 9.399 8.872 9.157 3.539 0.0367 1.451 70.869
0.093 837.41 1141.19 9.556 8.797 9.080 3.638 0.0364 1.456 70.615
0.102 843.72 1148.94 9.694 8.715 8.995 3.856 0.0362 1.457 70.389
1-Propanol, T = 310.15 K
0.014 731.74 1005.29 7.356 7.356 10.454 2.574 0.0415 1.412 74.266
0.028 739.99 1015.03 7.511 7.511 10.334 2.685 0.0411 1.413 73.877
0.039 748.56 1025.61 7.677 7.677 10.210 2.844 0.0406 1.416 73.571
0.050 756.27 1034.85 7.826 7.826 10.100 2.944 0.0402 1.417 73.246
0.060 763.74 1043.73 7.971 7.971 9.994 3.016 0.0398 1.419 73.012
0.069 773.19 1054.69 8.155 8.155 9.869 3.086 0.0394 1.419 72.693
0.078 780.84 1063.78 8.306 8.306 9.751 3.269 0.0390 1.421 72.442
0.086 787.99 1072.19 8.449 8.449 9.652 3.358 0.0387 1.422 72.209
0.093 795.99 1082.02 8.613 8.613 9.552 3.458 0.0383 1.424 72.046
0.102 805.13 1092.87 8.799 8.799 9.426 3.680 0.0379 1.425 71.747
1-Butanol, T = 300.15 K
0.014 804.21 1198.42 9.638 9.216 9.512 2.829 0.0378 1.513 89.285
0.028 819.36 1216.20 9.965 9.042 9.333 2.973 0.0371 1.514 88.999
0.039 826.5 1224.86 10.123 8.959 9.247 3.140 0.0368 1.515 88.769
0.050 831.93 1231.50 10.245 8.896 9.182 3.239 0.0366 1.515 88.567
0.060 839.07 1240.28 10.407 8.813 9.097 3.314 0.0363 1.517 88.416
0.069 849.36 1252.39 10.637 8.704 8.984 3.390 0.0358 1.517 88.212
0.078 856.21 1261.75 10.803 8.615 8.892 3.584 0.0356 1.52 88.021
0.086 862.55 1269.79 10.953 8.543 8.818 3.675 0.0353 1.522 87.857
0.093 877.64 1287.62 11.301 8.393 8.663 3.813 0.0347 1.522 87.685
0.102 883.07 1295.15 11.437 8.326 8.594 4.036 0.0346 1.525 87.568
1-Butanol, T = 305.15 K
0.014 747.93 1113.51 8.328 9.909 10.228 2.631 0.0406 1.461 90.982
0.028 756.21 1125.16 8.509 9.798 10.113 2.744 0.0402 1.467 90.715
0.039 771.07 1143.34 8.816 9.603 9.912 2.929 0.0394 1.47 90.393
0.050 774.50 1148.27 8.893 9.555 9.863 3.015 0.0393 1.473 90.215
0.060 782.21 1158.57 9.062 9.454 9.758 3.089 0.0389 1.477 89.914
0.069 794.35 1173.72 9.323 9.307 9.607 3.171 0.0383 1.479 89.643
0.078 804.79 1188.08 9.562 9.166 9.461 3.369 0.0379 1.486 89.472
0.086 818.79 1204.94 9.866 8.999 9.289 3.489 0.0372 1.487 89.286
0.093 829.07 1217.33 10.093 8.885 9.171 3.602 0.0368 1.489 89.074
0.102 831.03 1222.19 10.157 8.848 9.132 3.798 0.0367 1.495 88.878
1-Butanol T = 310.15 K
0.014 725.64 1012.28 7.346 10.213 10.542 2.553 0.0419 1.408 93.989
0.028 733.93 1025.17 7.524 10.095 10.420 2.663 0.0414 1.415 93.595
0.039 742.5 1036.39 7.695 9.973 10.293 2.820 0.0410 1.419 93.184
0.050 750.21 1048.69 7.867 9.865 10.182 2.920 0.0405 1.422 92.838
0.060 757.64 1063.40 8.057 9.760 10.074 2.992 0.0402 1.425 92.446
0.069 767.64 1075.82 8.258 9.631 9.941 3.064 0.0396 1.429 92.129
0.078 746.21 1088.35 8.121 9.885 10.203 3.124 0.0408 1.433 91.815
0.086 753.36 1099.19 8.281 9.781 10.096 3.210 0.0405 1.436 91.551
0.093 761.27 1112.05 8.466 9.676 9.988 3.307 0.0400 1.441 91.279
0.102 770.5 1124.77 8.666 9.543 9.850 3.521 0.0396 1.445 91.032

The partial molar volume (Vφ) of the drug in ethanol, 1-propanol, and 1-butanol were calculated from the density measurements at the different temperatures by using Eq. (7). These Vφ values are listed in Table 3. By using the values of the partial molar volumes, the apparent molar volumes (V0φ) of the drug were evaluated by using Masson’s equation [48] given below:

graphic file with name M11.gif 8

When Vφ are plotted against molality, the intercept on Y axis and slope gives the values of the apparent molar volume, V0φ and Sm, respectively. The negative values of the Sm listed in Table 4 confirm the drug–solvent interactions [2].

Table 4.  .

The apparent molal volume of azithromycin drug in alcoholic solution at different temperature (T = 300.15, 305.15, and 310.15 K)

Sr. no. Solvent 300.15 K 305.15 K 310.15 K
Inline graphic × 10–6,
m3/mol
Sm R2 Inline graphic × 10–6,
m3/mol
Sm R2 Inline graphic × 10–6,
m3/mol
Sm R2
1 Ethanol 296.2 183.6 0.999 309.8 216.7 0.999 315.3 246.4 0.999
2 1-Propanol 297.8 199.4 0.998 313.8 246.7 0.997 345.4 349.0 0.999
3 1-Butanol 318.9 219.1 0.996 338.3 342.4 0.997 346.9 289.1 0.998

CONCLUSION

In the present work, densities and ultrasonic velocity in the solutions of azitromycin in ethanol, 1-propanol, and 1-butanol were experimentally determined at various concentrations and temperatures (T = 300.15, 303.15, and 310.15 K). By using these values, acoustical parameters of the drug are calculated over the entire concentration range. The obtained data are interpreted in terms of molecular interactions between the drug and the alcohols. The negative values of the apparent molar volume of the solute confirmed the presence of strong H-bonding between the drug and alcohol [49]. The strength of H bonding increases with increase in the concentration and temperature. The extent intermolecular interactions is higher in 1-butanol than in other solvents. The temperature also play the major effect on these interactions.

ACKNOWLEDGMENTS

The authors are thankful to Dr. Om Mahodaya, Principal and the Department of Chemistry, Bajaj College of Science, Wardha for providing all the necessary facilities.

REFERENCES

  • 1.Naik R. R., Bawankar S. V, Kukade S. D. Russ. J. Phys. Chem. A. 2015;89:2149. doi: 10.1134/S003602441511014X. [DOI] [Google Scholar]
  • 2.Bhattacharya D. M., Dhondge S. S., Zodape S. P. J. Chem. Thermodyn. 2016;101:207. doi: 10.1016/j.jct.2016.05.025. [DOI] [Google Scholar]
  • 3.Arsule A. D., Sawale R. T., Deosarkar S. D. J. Mol. Liq. 2019;275:478. doi: 10.1016/j.molliq.2018.10.122. [DOI] [Google Scholar]
  • 4.Makarov D. M., Egorov G. I., Kolker A. M. J. Chem. Thermodyn. 2020;151:106233. doi: 10.1016/j.jct.2020.106233. [DOI] [Google Scholar]
  • 5.Dyshin A., Kiselev M. G. J. Chem. Eng. Data. 2019;64:2536. doi: 10.1021/acs.jced.9b00046. [DOI] [Google Scholar]
  • 6.Marcus Y. Separations. 2018;5:1. doi: 10.3390/separations5010004. [DOI] [Google Scholar]
  • 7.Rammunia M. N., Ariyadasaa Th. U., Nimarshanab P. H. V., Attalage R. A. Food Chem. 2019;277:128. doi: 10.1016/j.foodchem.2018.10.066. [DOI] [PubMed] [Google Scholar]
  • 8.Q. Salamat, Y. Yamini, M. Moradi, A. Farahani, et al., J. Separ. Sci. 42 (8) (2019). 10.1002/jssc.201801152 [DOI] [PubMed]
  • 9.Kevin R., Hinklei D. J. Phys. Chem. C. 2017;121:41. doi: 10.1021/acs.jpcc.7b07769. [DOI] [Google Scholar]
  • 10.Dyshin A. A., Eliseeva O. V., Bondarenko G. V. Russ. J. Phys. Chem. A. 2013;87:2068. doi: 10.1134/S0036024413120054. [DOI] [Google Scholar]
  • 11.Liu T., Xu G., Zhang J., Zhang H., Pang J. Colloid Polym. Sci. 2013;291:3. doi: 10.1007/s00396-012-2737-4. [DOI] [Google Scholar]
  • 12.Dyshin A. A., Eliseeva O. V., Bondarenko G. V. Russ. J. Phys. Chem. A. 2015;89:1628. doi: 10.1134/S0036024415090095. [DOI] [Google Scholar]
  • 13.Ndaba B., Chiyanzu I., Marx S. Biotechnol. Rep. 2015;8:1. doi: 10.1016/j.btre.2015.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gananprakasam B., Zhang J., Milstein D. Angew. Chem., Int. Ed. 2010;49:8. doi: 10.1002/anie.200907018. [DOI] [PubMed] [Google Scholar]
  • 15.Nordstrom L. U., Vogt H., Madsen R. J. Am. Chem. Soc. 2008;130:52. doi: 10.1021/ja808129p. [DOI] [PubMed] [Google Scholar]
  • 16.Gunanathan C., Milstein D. Angew. Chem. 2008;47:45. doi: 10.1002/anie.200803229. [DOI] [PubMed] [Google Scholar]
  • 17.Kurnia K. A., Mutalib M. I. A., Murugesan T., Ariwahjoedi B. J. Solut. Chem. 2011;40:818. doi: 10.1007/s10953-011-9680-8. [DOI] [Google Scholar]
  • 18.Barlow S. J., Bondarenko G. V., Gorbaty Y. E., Yamaguchi T., Poliakoff M. J. Phys. Chem. A. 2002;106:10452. doi: 10.1021/jp0135095. [DOI] [Google Scholar]
  • 19.Dyshin A. A., Oparin R. D., Kiselev M. G. Russ. J. Phys. Chem. B. 2012;6:868. doi: 10.1134/S1990793112080106. [DOI] [Google Scholar]
  • 20.Sokolova M., Barlow S. J., Bondarenko G. V., Gorbaty Y. E., Poliakoff M. J. Phys. Chem. A. 2006;110:3882. doi: 10.1021/jp055931h. [DOI] [PubMed] [Google Scholar]
  • 21.Eliseeva O. V., Dyshin A. A., Kiselev M. G. Russ. J. Phys. Chem. A. 2013;87:401. doi: 10.1134/S0036024413030096. [DOI] [Google Scholar]
  • 22.Tomšič M., Jamnik A., Popovski G. F., Glatter O., Vlček L. J. Phys. Chem. B. 2007;111:1738. doi: 10.1021/jp066139z. [DOI] [PubMed] [Google Scholar]
  • 23.Bala A. M., Killian W. G., Plascencia C., Storer J. A., Norfleet A. T., Peereboom L. J. Phys. Chem. A. 2020;124:3077. doi: 10.1021/acs.jpca.9b11245. [DOI] [PubMed] [Google Scholar]
  • 24.Ivlev D. V., Dyshin A. A., Kiselev M. G., Kolker A. M. Russ. J. Phys. Chem. A. 2010;84:2077. doi: 10.1134/S0036024410120125. [DOI] [Google Scholar]
  • 25.Fanourgakis G. S., Shi Y. J., Consta S., Lipson R. H. J. Chem. Phys. 2003;119:6597. doi: 10.1063/1.1605384. [DOI] [Google Scholar]
  • 26.Bulgarevich D. S., Horikawa Y., Sako T. J. Supercrit. Fluids. 2008;46:206. doi: 10.1016/j.supflu.2008.01.013. [DOI] [Google Scholar]
  • 27.Gorbaty Y. E., Bondarenko G. V. Russ. J. Phys. Chem. B. 2012;6:873. doi: 10.1134/S1990793112080118. [DOI] [Google Scholar]
  • 28.Andanson J. M., Bopp P. A., Soetens J. C. J. Mol. Liq. 2006;129:101. doi: 10.1016/j.molliq.2006.08.019. [DOI] [Google Scholar]
  • 29.Dyshin A. A., Eliseeva O. V., Kiselev M. G. Russ. J. Phys. Chem. A. 2012;86:563. doi: 10.1134/S0036024412040073. [DOI] [Google Scholar]
  • 30.Launiainen T., Vuori E., Ojanpera I. Int. J. Legal Med. 2009;123:109. doi: 10.1007/s00414-008-0261-3. [DOI] [PubMed] [Google Scholar]
  • 31.Carson H. J. Leg. Med. 2008;10:92. doi: 10.1016/j.legalmed.2007.08.001. [DOI] [PubMed] [Google Scholar]
  • 32.Digest C. P. Am. J. Hospital Pharm. 1992;49:686. doi: 10.1093/ajhp/49.3.686. [DOI] [Google Scholar]
  • 33.Gautret P., Lagier J. C., Parola P., Hoang V. T., Meddeb L., Mailhe M., Doudier B., Courjon J., Giordanengo V., Vieira V. E., Tissot Dupont H., Honoré S., Colson P., Chabrière E., la Scola B., Rolain J. M., Brouqui P., Raoult D. Int. J. Antimicrob. Agents. 2020;56:105949. doi: 10.1016/j.ijantimicag.2020.105949. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 34.Bleyzac N., Goutelle S., Bourguignon L., Tod M. Clin. Drug Invest. 2020;40:683. doi: 10.1007/s40261-020-00933-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Molina J. M., Delaugerre C., le Goff J., Mela-Lima B., Ponscarme D., Goldwirt L., Castro N. Med. Mal. Infect. 2020;50:384. doi: 10.1016/j.medmal.2020.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Fanin A., Calegari J., Beverina A., Tiraboschi S., Metodologica G. A. Intern. Emerg. Med. 2020;15:841. doi: 10.1007/s11739-020-02388-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Damle B., Vourvahis M., Wang E., Leaney J., Corrigan B. Clin. Pharm. Ther. 2020;108:2. doi: 10.1002/cpt.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.S. Sreehari Sastry, S. Babu, T. Vishwam, K. Parvateesam, and H. Sie Tiong, Phys. B (Amsterdam, Neth.) 420, 40 (2013). 10.1016/j.physb.2013.03.028
  • 39.Rezanova E. N., Lichtenthaler R. N. Fluid Phase Equilib. 2001;182:289. doi: 10.1016/S0378-3812(01)00405-8. [DOI] [Google Scholar]
  • 40.Watson G., Mikkelsen C. K., Baylaucq A., Boned C. J. Chem. Eng. Data. 2006;51:112. doi: 10.1021/je050261u. [DOI] [Google Scholar]
  • 41.Rodríguez A., Canosa J., Tojo J. J. Chem. Eng. Data. 2001;46:1476. doi: 10.1021/je0101193. [DOI] [Google Scholar]
  • 42.Valles C., Pérez E., Cardoso M., Domínguez M., Mainar A. M. J. Chem. Eng. Data. 2004;49:1460. doi: 10.1021/je0498457. [DOI] [Google Scholar]
  • 43.Dominguez M., Lafuente C., López M. C., Royo F. M., Urieta J. S. J. Chem. Thermodyn. 2000;32:155. doi: 10.1006/jcht.1999.0578. [DOI] [Google Scholar]
  • 44.Riddick J. A., Bunger W. A., Sakano T. K. Organic Solvents: Physical Properties and Methods of Purification. New York: Wiley; 1986. [Google Scholar]
  • 45.Mohabansi N. J. Sci. Res. 2020;64:352. doi: 10.37398/JSR.2020.640248. [DOI] [Google Scholar]
  • 46.Chauhan S., Pathania L., Chauhan M. S. J. Mol. Liq. 2016;221:755. doi: 10.1016/j.molliq.2016.06.025. [DOI] [Google Scholar]
  • 47.Roy R., Mondal S., Ghosh S., Jengathe S. Russ. J. Phys. Chem. A. 2018;92:2606. doi: 10.1134/S0036024418130253. [DOI] [Google Scholar]
  • 48.Chauhan S., Pathania L., Chauhan M. S. J. Mol. Liq. 2016;221:755. doi: 10.1016/j.molliq.2016.06.025. [DOI] [Google Scholar]
  • 49.Tekade P. V., Tale B. U., Bajaj S. D., Authankar N. Russ. J. Phys.Chem. A. 2018;92:2488. doi: 10.1134/S0036024418120415. [DOI] [Google Scholar]

Articles from Russian Journal of Physical Chemistry are provided here courtesy of Nature Publishing Group

RESOURCES