Skip to main content
. 2020 Sep 4;37(7):1000–1007. doi: 10.1093/bioinformatics/btaa768

Table 1.

Summary of binary classification tasks and datasets

Type Dataset
Edge classification
|V| |E| n+ n
PPI PC 4761 22 988 10 517 12 471
DTI ID 544 drugs 10 436 4284 6152
2261 targets
AI 378 drugs 1039 249 790
267 targets
Hyperedge classification
|V| |E| n+ n
PPI BC 3436 2357 145 161
MP 3436 2357 175 200
Link prediction
|V| |E| |Vlcc| |Elcc|a
PPI EC 393 391 100 153
CE 3026 5163 2779 5014
AT 5391 12 825 5063 12 631
SP 853 1197 685 1092
RN 526 532 301 388
MM 2065 2833 1590 2522
DTI EZ 445 drugs 2926 809 2556
664 targets
IC 210 drugs 1476 409 1473
204 targets
GR 223 drugs 635 240 570
95 targets
NR 54 drugs 90 42 50
26 targets

Note: For each learning problem, we show the number of vertices (V) and edges (E) in the full hypergraph, as well as the largest connected component (Vlcc,Elcc). We also show the number of positive (n+), negative (n) or unlabeled (nu) data points.

a

The size of n+ and nu is given by |Elcc|.