Skip to main content
Other Publishers logoLink to Other Publishers
editorial
. 2021 May 4;2:676905. doi: 10.3389/fitd.2021.676905

The Constant Threat of Zoonotic and Vector-Borne Emerging Tropical Diseases: Living on the Edge

Alfonso J Rodriguez-Morales 1,2,3,4,*, Alberto E Paniz-Mondolfi 5,6, Álvaro A Faccini-Martínez 7, Andrés F Henao-Martínez 8, Julian Ruiz-Saenz 9, Marlen Martinez-Gutierrez 9,10, Lucia E Alvarado-Arnez 3, Jorge E Gomez-Marin 11, Ruben Bueno-Marí 12,13, Yenddy Carrero 14, Wilmer E Villamil-Gomez 15,16, D Katterine Bonilla-Aldana 17, Ubydul Haque 18, Juan D Ramirez 19, Juan-Carlos Navarro 20, Susana Lloveras 21, Kovy Arteaga-Livias 4,22, Cristina Casalone 23, Jorge L Maguiña 4, Angel A Escobedo 24, Marylin Hidalgo 25, Antonio C Bandeira 26, Salim Mattar 27, Jaime A Cardona-Ospina 1,2, Jose A Suárez 28
PMCID: PMC8132189  PMID: 34010366

Emerging diseases have significantly impacted the last few decades (110). The emergence and re-emergence of vector-borne and zoonotic diseases in Africa, Asia, and Latin America have reshaped the epidemiological landscape of these continents. The impact of these diseases and the establishment of local transmission in traditionally non-endemic areas, due to migration and travel, have been revealed over the last years. Diseases such as Chikungunya (1116), Zika (1724), Yellow Fever (2528), Dengue (2933), Oropouche, Madre de Dios virus, Iquitos virus (34, 35), Mayaro Fever (36, 37), Ebola (3842), Nipah virus, arenaviruses such as Lassa (43), Machupo (44, 45), Chapare (45, 46), Junin (47), zoonotic Malaria (48), Severe Fever with Thrombocytopenia Syndrome (49), Plague (50), Crimean-Congo Hemorrhagic Fever, Acute Orally Transmitted Chagas Disease (5154), Visceral and Diffuse Cutaneous Leishmaniasis (55, 56), Toxoplasmosis (5759), Tick-Borne Diseases (60, 61), Rift Valley Fever, Tuberculosis (62), Leprosy (6367), Avian Influenza (6870), Orthohantavirus (7175), and Toxocariasis (76, 77) have posed a significant impact to human health. Furthermore, zoonotic epidemics and pandemic coronaviruses, such as the Severe Acute Respiratory Syndrome (SARS), the Middle East Respiratory Syndrome (MERS) (7882), and the ongoing SARS-CoV-2/COVID-19 (83, 84) pandemic, have caused a profound economical and social disruption threatening to overwhelm public health systems globally (85) ( Table 1 ). Most of these pathogens can even cocirculate and coinfect a significant proportion of inhabitants within the same territories (11, 8794). For example, in arboviral diseases, the occurrence of coinfections has been widely reported –such as Dengue with Chikungunya and/or with Zika virus– and affects diverse populations, including pregnant women and immunocompromised patients (9497). This may obscure clinical suspicion, as signs and symptoms for many of these pathogens may overlap. In endemic areas, this becomes a particularly pressing issue that must be taken into account in order to ensure accurate diagnosis and provide appropriate management. The ChikDenMaZika syndrome has been previously adopted as a mnemonic device to include Chikungunya, Dengue, Mayaro, and Zika in the broad differential of acute febrile illnesses due to arboviral agents (95). More recently, emerging coinfections, including bacterial and parasitic diseases, such as tuberculosis and Chagas disease, have also been reported (98).

Table 1.

Lessons learned from the COVID-19 pandemic in Latin America.

• Avoid fragmentation and segmentation of the health system
• Enhance data integration between sectors
• Improve transfer of inputs and deployment of personnel
• Better linking of health and safety authorities
• Build up a strong capacity for molecular (RT‐PCR) testing
• Validate rapid tests for complementary diagnosis
• Improve primary care interventions before admission to ICU
• Improve ICU capacities including facilities, equipment, and personnel
• Better management and monitoring of non‐COVID patients
• Promote education of human resources, including health professionals
• Improve health personnel’s working conditions (salaries, PPE, among others)
• Enhance medical training during the pandemic
• Warrant medicinal oxygen supplement
• Monitor transparency in health authorities’ decision‐making documents
• Use of medications with evidence and develop evidence-based guidelines
• Provide appropiate information about public health policy and decision‐making processes
• Develop more capacities in biotechnology (for development of tests, treatments, and vaccines)

Modified from Herrera-Añazco et al. (86).

Current times call for more comprehensive ecoepidemiological and bioecosocial approaches (20, 99). Scarce funding and the lack of research (39, 43, 61, 81) in tropical medicine are entirely unacceptable. Human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), tuberculosis (TB), and malaria combined receive approximately 70% of neglected diseases funding. As mentioned here, emerging tropical diseases, such as those mentioned here, are worldwide in scope, and many have significant regional implications. Therefore, a different funding paradigm that improves their situation is needed (100). The world is no longer a place with distant countries and shielded territories. Instead, ever increasing interconnectivity has turned it into a “small” global village, where the health status of underprivileged areas may undermine not only their lives and development but extend to the wealthiest. The Ebola crisis in 2014 highlighted how high-consequence emerging diseases could spill over to Europe and North America (38, 40). The ongoing 2020-2021 pandemic of COVID-19, which has reached as far as Antarctica, affecting almost all countries worldwide, is another clear example (8, 29, 84, 101112). As was expected, coinfections between tropical pathogens and COVID-19 are also now increasingly being reported, especially with dengue (30). Dengue affects over 100 countries worldwide and puts about 2.5-3.9 billion people at risk of infection (113, 114). Within the next century, nearly a billion people are at risk of exposure to virus transmission by both main Aedes spp., Ae. aegypti, and Ae. albopictus (also Chikungunya and Zika) in the worst-case scenario (115). The recent first detection of Ae. vittatus in the Dominican Republic and the Americas generated concern in the region, requiring enhanced surveillance to understand the range and public health risks of this potential invasive mosquito species, deserving more studies (116). Most of these emerging tropical diseases are vector-borne, zoonotically transmitted, or environmentally spread through direct contact, food or water ingestion, as well as a consequence of environmental alterations (including the effects of climate change) (117125), becoming significant sources of mortality and morbidity worldwide (2).

The impact of these diseases extends well beyond the acute constellation of symptoms, leading in a considerable proportion of patients to chronic sequelae and complications, which can be long lasting and severely incapacitating, as is the case with Chikungunya (15, 126132), Zika (17, 133135), Ebola, Chagas disease (52), and even for COVID-19 (136139).

Many tools have been deployed to counteract emerging infectious diseases. Amongst these are active surveillance (some supported by artificial intelligence) (140142), leading to the rapid identification of novel pathogens by genome sequencing and phylogenetic tracing studies (36, 105, 107, 143146) based on computing methods to predict possible interspecies barriers spillover between humans and animals (147). Coupling biotechnological approaches with social sciences—the holistic understanding of humans and their interactions in the disease ecosystems—is also a critical element needed when studying emerging infectious diseases (148, 149).

One of the most significant challenges when studying tropical infectious diseases relies on their complexity and heterogeneity, which usually requires a deep understanding not only of the disease itself but its overall context. In order to better approach these diseases one must keep a broader vision of designing proposed interventions, including multilevel ecoepidemiological studies ranging from molecular and omics to satellite epidemiology (use of data and images derived from geospatial technologies, e.g., satellites, for the study of the occurrence and distribution of health-related events in specified populations, and the application of this knowledge to control the health problems) of pathogens, vectors, hosts, abiotic variables, and other socio-environmental factors (125, 150, 151). While more research is required to fill in the numerous gaps in knowledge for many of these diseases, particular attention should be placed in designing strategies to develop methods to forecast these diseases not only in vulnerable and underserved populations from low-income countries but also in those poverty pockets located in high-income countries. A whole chapter to be considered in emerging tropical diseases is vaccines development. Innovative global partnership between public, private, philanthropic, and civil society organisations, such as the Coalition for Epidemic Preparedness Innovations (CEPI), launched in 2017, are important to develop vaccines to stop future epidemics. To accelerate the development of vaccines against emerging infectious diseases and enable equitable access to these vaccines for people during outbreaks is crucial. Nevertheless, more funding to understand biology, pathogenesis, epidemiology, prevention, and treatment of emerging tropical diseases are urgently needed and expected (152154).

Tropical Medicine is no more a clinical specialty of “exotic diseases,” as it was conceived at its beginnings, and is no more about “diseases for those entering the jungle.” One dramatic change is the urban installation of diseases that before were observed only after sylvatic or primary forest exposure. The increase of urban outbreaks of Chagas disease in South America is now a horrific reality in Brazil (155157), Venezuela (158), and Colombia (159, 160), and it is also a new reality for visceral leishmaniasis (161164). The integrated work of public health experts, veterinarians, entomologists, and parasitologists is an urgent need to face these new challenges and transformations of tropical diseases. Tropical diseases also include non-infectious diseases, such as animal bites and stings (e.g. myiasis and tungiasis) (165, 166). Snake bites, scorpion stings, and spider bites, account for a significant amount of the morbidity and mortality in tropical countries in these changing scenarios, including ecotourism, rural migration, and other related factors (167170).

There is no doubt that “many things are wrong in the world today”, as the legendary American rock n’roll band Aerosmith has been singing since the 90s. We are “living on the edge”, the edge of neglect and of a surge of many emerging infectious diseases with no hope for resolution in the foreseeable future. Furthermore, “it sure ain’t no surprise” that poverty, inequality, climate change, deforestation, migration, urbanization, wildlife trade, among many other factors, have all contributed to the emergence of novel tropical diseases and the resurgence of other endemic diseases (171). There is no spare place for the arrival of emerging pathogens, and over time pathogens tend to adapt to new environments leading to unforeseen consequences. The next epidemic, the next pandemic, is just around the corner (68). In response to this latent threat, we need to gather real-time information and build collaborative networks aimed to enhance surveillance activities in order to develop high-priority medical countermeasures to prevent and control emerging tropical diseases. Research in Zoonotic and Vector-Borne Emerging Tropical Diseases remains the most critical aspect and the foundation to determine the drivers of emerging and re-emerging infectious diseases.

With that vision, our new Section Emerging Tropical Diseases in the journal Frontiers in Tropical Diseases offers to contribute to the scientific advancement and fill in the many knowledge gaps based on a multi and transdisciplinary approach. Our team of Associate Editors is comprised of a diverse group of experts from different countries, diverse backgrounds, and varied interrelated expertises in a wide range of conditions within the tropical diseases spectrum of diseases, following the One Health approach vision (8, 172).

Grand challenges exist in the fight against the threat of emerging tropical diseases. In the laboratory, our daily work, in the hospitals, in the field, in the community, and in many other places, our shared goal is to understand the drivers of emergence and address their root-causes. We are working collaboratively in social networks to reduce the impact of emerging tropical diseases. Let’s work on this together! We value your work and welcome your submissions to this new section of Frontiers in Tropical Diseases.

Author Contributions

All authors contributed to manuscript conception and design, literature review, manuscript preparation, and critical review. All authors contributed to the article and approved the submitted version.

Conflict of Interest

RB-M was employed by Laboratorios Lokímica, Spain.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

AR-M is the Specialty Chief Editor in Emerging Tropical Diseases of Frontiers in Tropical Diseases. The remaining authors of this article are their Associate Editors. This is a collaborative article of the Network NHEPACHA.

References

  • 1. Alfaro-Toloza P, Clouet-Huerta DE, Rodriguez-Morales AJ. Chikungunya, the Emerging Migratory Rheumatism. Lancet Infect Dis (2015) 15(5):510–2. 10.1016/S1473-3099(15)70160-X [DOI] [PubMed] [Google Scholar]
  • 2. McArthur DB. Emerging Infectious Diseases. Nurs Clin North Am (2019) 54(2):297–311. 10.1016/j.cnur.2019.02.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Shi Z. Emerging Infectious Diseases Associated With Bat Viruses. Sci China Life Sci (2013) 56(8):678–82. 10.1007/s11427-013-4517-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Liu SL, Saif L. Emerging Viruses Without Borders: The Wuhan Coronavirus. Viruses (2020) 12(2):130. 10.3390/v12020130 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Gill CM, Beckham JD, Piquet AL, Tyler KL, Pastula DM. Five Emerging Neuroinvasive Arboviral Diseases: Cache Valley, Eastern Equine Encephalitis, Jamestown Canyon, Powassan, and Usutu. Semin Neurol (2019) 39(4):419–27. 10.1055/s-0039-1687839 [DOI] [PubMed] [Google Scholar]
  • 6. Millan-Oñate J, Rodríguez-Morales AJ, Camacho-Moreno G, Mendoza-Ramírez H, Rodríguez-Sabogal IA, Álvarez-Moreno C. A New Emerging Zoonotic Virus of Concern: The 2019 Novel Coronavirus (Covid-19). Infectio (2020) 24(3):187–92. 10.22354/in.v24i3.848 [DOI] [Google Scholar]
  • 7. Carrion M, Madoff LC. ProMED-mail: 22 Years of Digital Surveillance of Emerging Infectious Diseases. Int Health (2017) 9(3):177–83. 10.1093/inthealth/ihx014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Bonilla-Aldana DK, Dhama K, Rodriguez-Morales AJ. Revisiting the One Health Approach in the Context of COVID-19: A Look Into the Ecology of This Emerging Disease. Adv Anim Vet Sci (2020) 8(3):234–7. 10.17582/journal.aavs/2020/8.3.234.237 [DOI] [Google Scholar]
  • 9. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent Insights Into Emerging Coronaviruses. Nat Rev Microbiol (2016) 14(8):523–34. 10.1038/nrmicro.2016.81 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Rodriguez-Morales AJ. Zika and Microcephaly in Latin America: An Emerging Threat for Pregnant Travelers? Travel Med Infect Dis (2016) 14(1):5–6. 10.1016/j.tmaid.2016.01.011 [DOI] [PubMed] [Google Scholar]
  • 11. Rodriguez-Morales AJ, Villamil-Gomez WE, Franco-Paredes C. The Arboviral Burden of Disease Caused by Co-Circulation and Co-Infection of Dengue, Chikungunya and Zika in the Americas. Travel Med Infect Dis (2016) 14(3):177–9. 10.1016/j.tmaid.2016.05.004 [DOI] [PubMed] [Google Scholar]
  • 12. Escalera-Antezana JP, Murillo-Garcia DR, Rodriguez-Morales AJ. Chikungunya in Bolivia: Still a Neglected Disease? Arch Med Res (2018) 49(4):288. 10.1016/j.arcmed.2018.09.002 [DOI] [PubMed] [Google Scholar]
  • 13. Zambrano LI, Sierra M, Lara B, Rodriguez-Nunez I, Medina MT, Lozada-Riascos CO, et al. Estimating and Mapping the Incidence of Dengue and Chikungunya in Honduras During 2015 Using Geographic Information Systems (Gis). J Infect Public Health (2017) 10(4):446–56. 10.1016/j.jiph.2016.08.003 [DOI] [PubMed] [Google Scholar]
  • 14. Bonilla-Aldana DK, Bonilla-Aldana JL, Garcia-Bustos JJ, Lozada CO, Rodriguez-Morales AJ. Geographical Trends of Chikungunya and Zika in the Colombian Amazonian Gateway Department, Caqueta, 2015-2018 - Implications for Public Health and Travel Medicine. Travel Med Infect Dis (2020) 35:101481. 10.1016/j.tmaid.2019.101481 [DOI] [PubMed] [Google Scholar]
  • 15. Rodriguez-Morales AJ, Cardona-Ospina JA, Fernanda Urbano-Garzon S, Sebastian Hurtado-Zapata J. Prevalence of Post-Chikungunya Infection Chronic Inflammatory Arthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken) (2016) 68(12):1849–58. 10.1002/acr.22900 [DOI] [PubMed] [Google Scholar]
  • 16. Rodriguez-Morales AJ, Paniz-Mondolfi AE. Venezuela: Far From the Path to Dengue and Chikungunya Control. J Clin Virol (2015) 66:60–1. 10.1016/j.jcv.2015.02.020 [DOI] [PubMed] [Google Scholar]
  • 17. Villamil-Gomez WE, Guijarro E, Castellanos J, Rodriguez-Morales AJ. Congenital Zika Syndrome With Prolonged Detection of Zika Virus RNA. J Clin Virol (2017) 95:52–4. 10.1016/j.jcv.2017.08.010 [DOI] [PubMed] [Google Scholar]
  • 18. Cardona-Ospina JA, Henao-SanMartin V, Acevedo-Mendoza WF, Nasner-Posso KM, Martinez-Pulgarin DF, Restrepo-Lopez A, et al. Fatal Zika Virus Infection in the Americas: A Systematic Review. Int J Infect Dis (2019) 88:49–59. 10.1016/j.ijid.2019.08.033 [DOI] [PubMed] [Google Scholar]
  • 19. Zambrano LI, Fuentes-Barahona IC, Soto-Fernandez RJ, Zuniga C, da Silva JC, Rodriguez-Morales AJ. Guillain-Barre Syndrome Associated With Zika Virus Infection in Honduras, 2016-2017. Int J Infect Dis (2019) 84:136–7. 10.1016/j.ijid.2019.05.008 [DOI] [PubMed] [Google Scholar]
  • 20. Rodriguez-Morales AJ, Ruiz P, Tabares J, Ossa CA, Yepes-Echeverry MC, Ramirez-Jaramillo V, et al. Mapping the Ecoepidemiology of Zika Virus Infection in Urban and Rural Areas of Pereira, Risaralda, Colombia, 2015-2016: Implications for Public Health and Travel Medicine. Travel Med Infect Dis (2017) 18:57–66. 10.1016/j.tmaid.2017.05.004 [DOI] [PubMed] [Google Scholar]
  • 21. Rodriguez-Morales AJ, Galindo-Marquez ML, Garcia-Loaiza CJ, Sabogal-Roman JA, Marin-Loaiza S, Ayala AF, et al. Mapping Zika Virus Disease Incidence in Valle Del Cauca. Infection (2017) 45(1):93–102. 10.1007/s15010-016-0948-1 [DOI] [PubMed] [Google Scholar]
  • 22. Nishiura H, Mizumoto K, Villamil-Gomez WE, Rodriguez-Morales AJ. Preliminary Estimation of the Basic Reproduction Number of Zika Virus Infection During Colombia Epidemic, 2015-2016. Travel Med Infect Dis (2016) 14(3):274–6. 10.1016/j.tmaid.2016.03.016 [DOI] [PubMed] [Google Scholar]
  • 23. Zambrano LI, Vasquez-Bonilla WO, Fuentes-Barahona IC, Claudio da Silva J, Valle-Reconco JA, Medina MT, et al. Spatial Distribution of Zika in Honduras During 2016-2017 Using Geographic Information Systems (GIS) - Implications for Public Health and Travel Medicine. Travel Med Infect Dis (2019) 31:101382. 10.1016/j.tmaid.2019.01.017 [DOI] [PubMed] [Google Scholar]
  • 24. Hamer DH, Barbre KA, Chen LH, Grobusch MP, Schlagenhauf P, Goorhuis A, et al. Travel-Associated Zika Virus Disease Acquired in the Americas Through February 2016: A GeoSentinel Analysis. Ann Intern Med (2017) 166(2):99–108. 10.7326/M16-1842 [DOI] [PubMed] [Google Scholar]
  • 25. Rifakis PM, Benitez JA, De-la-Paz-Pineda J, Rodriguez-Morales AJ. Epizootics of Yellow Fever in Venezuela (2004-2005): An Emerging Zoonotic Disease. Ann N Y Acad Sci (2006) 1081:57–60. 10.1196/annals.1373.005 [DOI] [PubMed] [Google Scholar]
  • 26. Reno E, Quan NG, Franco-Paredes C, Chastain DB, Chauhan L, Rodriguez-Morales AJ, et al. Prevention of Yellow Fever in Travellers: An Update. Lancet Infect Dis (2020) 20(6):e129–e37. 10.1016/S1473-3099(20)30170-5 [DOI] [PubMed] [Google Scholar]
  • 27. Chaves T, Orduna T, Lepetic A, Macchi A, Verbanaz S, Risquez A, et al. Yellow Fever in Brazil: Epidemiological Aspects and Implications for Travelers. Travel Med Infect Dis (2018) 23:1–3. 10.1016/j.tmaid.2018.05.001 [DOI] [PubMed] [Google Scholar]
  • 28. Ortiz-Martinez Y, Patino-Barbosa AM, Rodriguez-Morales AJ. Yellow Fever in the Americas: The Growing Concern About New Epidemics. F1000Res (2017) 6:398. 10.12688/f1000research.11280.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Navarro JC, Arrivillaga-Henriquez J, Salazar-Loor J, Rodriguez-Morales AJ. Covid-19 and Dengue, Co-Epidemics in Ecuador and Other Countries in Latin America: Pushing Strained Health Care Systems Over the Edge. Travel Med Infect Dis (2020) 37:101656. 10.1016/j.tmaid.2020.101656 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Cardona-Ospina JA, Arteaga-Livias K, Villamil-Gomez WE, Perez-Diaz CE, Katterine Bonilla-Aldana D, Mondragon-Cardona A, et al. Dengue and COVID-19, Overlapping Epidemics? An Analysis From Colombia. J Med Virol (2021) 93(1):522–7. 10.1002/jmv.26194 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Zambrano LI, Rodriguez E, Espinoza-Salvado IA, Rodriguez-Morales AJ. Dengue in Honduras and the Americas: The Epidemics are Back! Travel Med Infect Dis (2019) 31:101456. 10.1016/j.tmaid.2019.07.012 [DOI] [PubMed] [Google Scholar]
  • 32. Quintero-Herrera LL, Ramirez-Jaramillo V, Bernal-Gutierrez S, Cardenas-Giraldo EV, Guerrero-Matituy EA, Molina-Delgado AH, et al. Potential Impact of Climatic Variability on the Epidemiology of Dengue in Risaralda, Colombia, 2010-2011. J Infect Public Health (2015) 8(3):291–7. 10.1016/j.jiph.2014.11.005 [DOI] [PubMed] [Google Scholar]
  • 33. Zambrano LI, Rodriguez E, Espinoza-Salvado IA, Fuentes-Barahona IC, Lyra de Oliveira T, Luciano da Veiga G, et al. Spatial Distribution of Dengue in Honduras During 2016-2019 Using a Geographic Information Systems (GIS)-Dengue Epidemic Implications for Public Health and Travel Medicine. Travel Med Infect Dis (2019) 32:101517. 10.1016/j.tmaid.2019.101517 [DOI] [PubMed] [Google Scholar]
  • 34. Navarro JC, Giambalvo D, Hernandez R, Auguste AJ, Tesh RB, Weaver SC, et al. Isolation of Madre De Dios Virus (Orthobunyavirus; Bunyaviridae), an Oropouche Virus Species Reassortant, From a Monkey in Venezuela. Am J Trop Med Hyg (2016) 95(2):328–38. 10.4269/ajtmh.15-0679 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Aguilar PV, Barrett AD, Saeed MF, Watts DM, Russell K, Guevara C, et al. Iquitos Virus: A Novel Reassortant Orthobunyavirus Associated With Human Illness in Peru. PloS Negl Trop Dis (2011) 5(9):e1315. 10.1371/journal.pntd.0001315 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Auguste AJ, Liria J, Forrester NL, Giambalvo D, Moncada M, Long KC, et al. Evolutionary and Ecological Characterization of Mayaro Virus Strains Isolated During an Outbreak, Venezuela, 2010. Emerg Infect Dis (2015) 21(10):1742–50. 10.3201/eid2110.141660 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Aguilar-Luis MA, Del Valle-Mendoza J, Sandoval I, Silva-Caso W, Mazulis F, Carrillo-Ng H, et al. A Silent Public Health Threat: Emergence of Mayaro Virus and Co-Infection With Dengue in Peru. BMC Res Notes (2021) 14(1):29. 10.1186/s13104-021-05444-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Rodriguez-Morales AJ, Marin-Rincon HA, Sepulveda-Arias JC, Paniz-Mondolfi AE. Assessing the Potential Migration of People From Ebola Affected West African Countries to Latin America. Travel Med Infect Dis (2015) 13(3):264–6. 10.1016/j.tmaid.2014.12.015 [DOI] [PubMed] [Google Scholar]
  • 39. Cruz-Calderon S, Nasner-Posso KM, Alfaro-Toloza P, Paniz-Mondolfi AE, Rodriguez-Morales AJ. A Bibliometric Analysis of Global Ebola Research. Travel Med Infect Dis (2015) 13(2):202–4. 10.1016/j.tmaid.2015.02.007 [DOI] [PubMed] [Google Scholar]
  • 40. Cardona-Ospina JA, Giselle-Badillo A, Calvache-Benavides CE, Rodriguez-Morales AJ. Ebola Virus Disease: An Emerging Zoonosis With Importance for Travel Medicine. Travel Med Infect Dis (2014) 12(6 Pt A):682–3. 10.1016/j.tmaid.2014.10.014 [DOI] [PubMed] [Google Scholar]
  • 41. Rodriguez-Morales AJ, Henao DE, Franco TB, Mayta-Tristan P, Alfaro-Toloza P, Paniz-Mondolfi AE. Ebola: A Latent Threat to Latin America. Are We Ready? Travel Med Infect Dis (2014) 12(6 Pt A):688–9. 10.1016/j.tmaid.2014.11.002 [DOI] [PubMed] [Google Scholar]
  • 42. Patino-Barbosa AM, Arroyave-Valencia F, Garcia-Ramirez LM, Vallejo-Atehortua E, Arciniegas-Pantoja M, Rodriguez-Morales AJ, et al. Healthcare Students’ and Workers’ Knowledge About Epidemiology and Symptoms of Ebola in One City of Colombia. J Hosp Infect (2015) 90(4):356–8. 10.1016/j.jhin.2015.05.001 [DOI] [PubMed] [Google Scholar]
  • 43. Almeida-Guerrero A, Olaya-Gomez JC, Sanchez-Ramirez N, Murillo-Garcia DR, Cardona-Ospina JA, Lagos-Grisales GJ, et al. Mitigation of the Global Impact of Lassa Fever: Have We Investigated Enough About This Arenavirus? - A Bibliometric Analysis of Lassa Fever Research. Travel Med Infect Dis (2018) 24:13–4. 10.1016/j.tmaid.2018.06.012 [DOI] [PubMed] [Google Scholar]
  • 44. Rodriguez-Morales AJ, Castañeda-Hernández DM, Escalera-Antezana JP, Alvarado-Arnez LE. Organisms of Concern But Not Foodborne or Confirmed Foodborne: Bolivian Hemorrhagic Fever Virus (Machupo Virus)☆. Reference Module Food Sci: Elsevier (2019). 10.1016/B978-0-08-100596-5.22639-5 [DOI] [Google Scholar]
  • 45. Silva-Ramos CR, Faccini-Martínez ÁA, Calixto O-J, Hidalgo M. Bolivian Hemorrhagic Fever: A Narrative Review. Travel Med Infect Dis (2021) 40:102001. 10.1016/j.tmaid.2021.102001 [DOI] [PubMed] [Google Scholar]
  • 46. Escalera-Antezana JP, Rodriguez-Villena OJ, Arancibia-Alba AW, Alvarado-Arnez LE, Bonilla-Aldana DK, Rodriguez-Morales AJ. Clinical Features of Fatal Cases of Chapare Virus Hemorrhagic Fever Originating From Rural La Paz, Bolivia, 2019: A Cluster Analysis. Travel Med Infect Dis (2020) 36:101589. 10.1016/j.tmaid.2020.101589 [DOI] [PubMed] [Google Scholar]
  • 47. Vanella JM, Gonzalez LE, Paglini S, Marquez A. [Laboratory Evidence of the Activity of Junin Virus in the Southeast of Cordoba: Hypothesis on Its Epidemiology]. Dia Med (1964) 36:290–1. [PubMed] [Google Scholar]
  • 48. Rodriguez-Morales AJ. Malaria: An Eradicable Threat? J Infect Dev Ctries (2008) 2(1):1–2. 10.3855/jidc.316 [DOI] [PubMed] [Google Scholar]
  • 49. Rodriguez-Morales AJ, Ramirez-Jaramillo V, Patino-Barbosa AM, Bedoya-Arias HA, Henao-SanMartin V, Murillo-Garcia DR, et al. Severe Fever With Thrombocytopenia Syndrome - A Bibliometric Analysis of an Emerging Priority Disease. Travel Med Infect Dis (2018) 23:97–8. 10.1016/j.tmaid.2018.04.010 [DOI] [PubMed] [Google Scholar]
  • 50. Rodriguez-Morales AJ, Escalera-Antezana JP, Alvarado-Arnez LE. Is Plague Globally Reemerging? Infectio (2019) 23:7–9. 10.22354/in.v23i1.748 [DOI] [Google Scholar]
  • 51. Franco-Paredes C, Villamil-Gomez WE, Schultz J, Henao-Martinez AF, Parra-Henao G, Rassi A Jr, et al. A Deadly Feast: Elucidating the Burden of Orally Acquired Acute Chagas Disease in Latin America - Public Health and Travel Medicine Importance. Travel Med Infect Dis (2020) 36:101565. 10.1016/j.tmaid.2020.101565 [DOI] [PubMed] [Google Scholar]
  • 52. Chadalawada S, Sillau S, Archuleta S, Mundo W, Bandali M, Parra-Henao G, et al. Risk of Chronic Cardiomyopathy Among Patients With the Acute Phase or Indeterminate Form of Chagas Disease: A Systematic Review and Meta-Analysis. JAMA Netw Open (2020) 3(8):e2015072. 10.1001/jamanetworkopen.2020.15072 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Madigan R, Majoy S, Ritter K, Luis Concepcion J, Marquez ME, Silva SC, et al. Investigation of a Combination of Amiodarone and Itraconazole for Treatment of American Trypanosomiasis (Chagas Disease) in Dogs. J Am Vet Med Assoc (2019) 255(3):317–29. 10.2460/javma.255.3.317 [DOI] [PubMed] [Google Scholar]
  • 54. Villamil-Gomez WE, Echeverria LE, Ayala MS, Munoz L, Mejia L, Eyes-Escalante M, et al. Orally Transmitted Acute Chagas Disease in Domestic Travelers in Colombia. J Infect Public Health (2017) 10(2):244–6. 10.1016/j.jiph.2016.05.002 [DOI] [PubMed] [Google Scholar]
  • 55. Villamil-Gomez WE, Calderon-Gomezcaseres A, Rodriguez-Morales AJ. Visceral Leishmaniasis in a Patient With Systemic Lupus Erythematosus From Colombia, Latin America. Infez Med (2019) 27(1):106–8. [PubMed] [Google Scholar]
  • 56. Arteaga-Livias K, Santos-Huerta M, Damaso-Mata B, Panduro-Correa V, Gonzales-Zamora JA, Rodriguez-Morales AJ. Disseminated Cutaneous Leishmaniasis in a Pediatric Patient From Peru. J Trop Pediatr (2020). 10.1093/tropej/fmaa051 [DOI] [PubMed] [Google Scholar]
  • 57. Hernandez-de-Los-Rios A, Murillo-Leon M, Mantilla-Muriel LE, Arenas AF, Vargas-Montes M, Cardona N, et al. Influence of Two Major Toxoplasma Gondii Virulence Factors (ROP16 and ROP18) on the Immune Response of Peripheral Blood Mononuclear Cells to Human Toxoplasmosis Infection. Front Cell Infect Microbiol (2019) 9:413. 10.3389/fcimb.2019.00413 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Pfaff AW, de-la-Torre A, Rochet E, Brunet J, Sabou M, Sauer A, et al. New Clinical and Experimental Insights Into Old World and Neotropical Ocular Toxoplasmosis. Int J Parasitol (2014) 44(2):99–107. 10.1016/j.ijpara.2013.09.007 [DOI] [PubMed] [Google Scholar]
  • 59. El Bissati K, Levigne P, Lykins J, Adlaoui EB, Barkat A, Berraho A, et al. Global Initiative for Congenital Toxoplasmosis: An Observational and International Comparative Clinical Analysis. Emerg Microbes Infect (2018) 7(1):1–14. 10.1038/s41426-018-0164-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Rodriguez-Morales AJ, Bonilla-Aldana DK, Idarraga-Bedoya SE, Garcia-Bustos JJ, Cardona-Ospina JA, Faccini-Martinez AA. Epidemiology of Zoonotic Tick-Borne Diseases in Latin America: Are We Just Seeing the Tip of the Iceberg? F1000Res (2018) 7:1988. 10.12688/f1000research.17649.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Rodriguez-Morales AJ, Bonilla-Aldana DK, Escalera-Antezana JP, Alvarado-Arnez LE. Research on Babesia: A Bibliometric Assessment of a Neglected Tick-Borne Parasite. F1000Res (2018) 7:1987. 10.12688/f1000research.17581.1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Cubillos-Angulo JM, Arriaga MB, Melo MGM, Silva EC, Alvarado-Arnez LE, de Almeida AS, et al. Polymorphisms in Interferon Pathway Genes and Risk of Mycobacterium Tuberculosis Infection in Contacts of Tuberculosis Cases in Brazil. Int J Infect Dis (2020) 92:21–8. 10.1016/j.ijid.2019.12.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Alvarado-Arnez LE, Amaral EP, Sales-Marques C, Duraes SM, Cardoso CC, Nunes Sarno E, et al. Association of IL10 Polymorphisms and Leprosy: A Meta-Analysis. PloS One (2015) 10(9):e0136282. 10.1371/journal.pone.0136282 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Franco-Paredes C, Marcos LA, Henao-Martinez AF, Rodriguez-Morales AJ, Villamil-Gomez WE, Gotuzzo E, et al. Cutaneous Mycobacterial Infections. Clin Microbiol Rev (2018) 32(1):e00069–18. 10.1128/CMR.00069-18 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Sales-Marques C, Cardoso CC, Alvarado-Arnez LE, Illaramendi X, Sales AM, Hacker MA, et al. Genetic Polymorphisms of the IL6 and NOD2 Genes are Risk Factors for Inflammatory Reactions in Leprosy. PloS Negl Trop Dis (2017) 11(7):e0005754. 10.1371/journal.pntd.0005754 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66. de Toledo-Pinto TG, Ferreira AB, Ribeiro-Alves M, Rodrigues LS, Batista-Silva LR, Silva BJ, et al. Sting-Dependent 2’-5’ Oligoadenylate Synthetase-Like Production is Required for Intracellular Mycobacterium Leprae Survival. J Infect Dis (2016) 214(2):311–20. 10.1093/infdis/jiw144 [DOI] [PubMed] [Google Scholar]
  • 67. Franco-Paredes C, Rodriguez-Morales AJ. Unsolved Matters in Leprosy: A Descriptive Review and Call for Further Research. Ann Clin Microbiol Antimicrob (2016) 15(1):33. 10.1186/s12941-016-0149-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Bonilla-Aldana DK, Aguirre-Florez M, Villamizar-Pena R, Gutierrez-Ocampo E, Henao-Martinez JF, Cvetkovic-Vega A, et al. After SARS-CoV-2, Will H5N6 and Other Influenza Viruses Follow the Pandemic Path? Infez Med (2020) 28(4):475–85. [PubMed] [Google Scholar]
  • 69. Philippon DAM, Wu P, Cowling BJ, Lau EHY. Avian Influenza Human Infections At the Human-Animal Interface. J Infect Dis (2020) 222(4):528–37. 10.1093/infdis/jiaa105 [DOI] [PubMed] [Google Scholar]
  • 70. Dhama K, Chauhan R, Kataria J, Mahesh M, Simmi T. Avian Influenza: The Current Perspectives. J Immunol Immunopathol (2005) 7(2):1–33. [Google Scholar]
  • 71. Chandy S, Mathai D. Globally Emerging Hantaviruses: An Overview. Indian J Med Microbiol (2017) 35(2):165–75. 10.4103/ijmm.IJMM_16_429 [DOI] [PubMed] [Google Scholar]
  • 72. Kruger DH, Figueiredo LTM, Song J-W, Klempa B. Hantaviruses—Globally Emerging Pathogens. J Clin Virol (2015) 64:128–36. 10.1016/j.jcv.2014.08.033 [DOI] [PubMed] [Google Scholar]
  • 73. Enria DA, Pinheiro F. Rodent-Borne Emerging Viral Zoonosis: Hemorrhagic Fevers and Hantavirus Infections in South America. Infect Dis Clinics North America (2000) 14(1):167–84. 10.1016/S0891-5520(05)70223-3 [DOI] [PubMed] [Google Scholar]
  • 74. Chand S, Thapa S, Kon S, Johnson SC, Poeschla EM, Franco-Paredes C, et al. Hantavirus Infection With Renal Failure and Proteinuria, Colorado, USA, 2019. Emerg Infect Dis (2020) 26(2):383–5. 10.3201/eid2602.191349 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75. Escalera-Antezana JP, Torrez-Fernandez R, Montalvan-Plata D, Montenegro-Narvaez CM, Aviles-Sarmiento JL, Alvarado-Arnez LE, et al. Orthohantavirus Pulmonary Syndrome in Santa Cruz and Tarija, Bolivia, 2018. Int J Infect Dis (2020) 90:145–50. 10.1016/j.ijid.2019.10.021 [DOI] [PubMed] [Google Scholar]
  • 76. Gomez-Marin JE, Londono AL, Cabeza-Acevedo N, Torres E, Navarrete-Moncada L, Bueno O, et al. Ocular Toxocariasis in Parasitology Consultation in Quindio, Colombia: Description of Cases and Contact Studies. J Trop Pediatr (2021) 67(1):fmaa096. 10.1093/tropej/fmaa096 [DOI] [PubMed] [Google Scholar]
  • 77. Rodriguez-Morales AJ, Bonilla-Aldana DK, Gallego-Valencia V, Gómez-DeLaRosa SH, López-Echeverri C, Peña-Verjan NM, et al. Toxocariasis in Colombia: More Than Neglected. Curr Trop Med Rep (2020) 7(1):17–24. 10.1007/s40475-020-00199-x [DOI] [Google Scholar]
  • 78. Bonilla-Aldana DK, Cardona-Trujillo MC, Garcia-Barco A, Holguin-Rivera Y, Cortes-Bonilla I, Bedoya-Arias HA, et al. Mers-CoV and SARS-CoV Infections in Animals: A Systematic Review and Meta-Analysis of Prevalence Studies. Infez Med (2020) 28(suppl 1):71–83. 10.20944/preprints202003.0103.v1 [DOI] [PubMed] [Google Scholar]
  • 79. Dhama K, Patel SK, Sharun K, Pathak M, Tiwari R, Yatoo MI, et al. Sars-CoV-2 Jumping the Species Barrier: Zoonotic Lessons From SARS, MERS and Recent Advances to Combat This Pandemic Virus. Travel Med Infect Dis (2020) 37:101830. 10.1016/j.tmaid.2020.101830 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80. Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, et al. SARS-Cov-2, SARS-CoV, and MERS-COV: A Comparative Overview. Infez Med (2020) 28(2):174–84. [PubMed] [Google Scholar]
  • 81. Bonilla-Aldana DK, Quintero-Rada K, Montoya-Posada JP, Ramirez-Ocampo S, Paniz-Mondolfi A, Rabaan AA, et al. SARS-Cov, MERS-CoV and Now the 2019-Novel CoV: Have We Investigated Enough About Coronaviruses? - A Bibliometric Analysis Travel Med Infect Dis (2020) 33:101566. 10.1016/j.tmaid.2020.101566 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82. Al-Tawfiq JA, Rodriguez-Morales AJ. Super-Spreading Events and Contribution to Transmission of MERS, SARS, and SARS-CoV-2 (Covid-19). J Hosp Infect (2020) 105(2):111–2. 10.1016/j.jhin.2020.04.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83. Sanchez-Duque JA, Arce-Villalobos LR, Rodriguez-Morales AJ. [Coronavirus Disease 2019 (COVID-19) in Latin America: Role of Primary Care in Preparedness and Response]. Aten Primaria (2020) 52(6):369–72. 10.1016/j.aprim.2020.04.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus Disease 2019-COVID-19. Clin Microbiol Rev (2020) 33(4):e00028–20. 10.1128/CMR.00028-20 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Hashem NM, Gonzalez-Bulnes A, Rodriguez-Morales AJ. Animal Welfare and Livestock Supply Chain Sustainability Under the COVID-19 Outbreak: An Overview. Front Vet Sci (2020) 7:582528. 10.3389/fvets.2020.582528 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86. Herrera-Anazco P, Uyen-Cateriano A, Mezones-Holguin E, Taype-Rondan A, Mayta-Tristan P, Malaga G, et al. Some Lessons That Peru did Not Learn Before the Second Wave of COVID-19. Int J Health Plann Manage (2021). 10.1002/hpm.3135 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Carrillo-Hernandez MY, Ruiz-Saenz J, Villamizar LJ, Gomez-Rangel SY, Martinez-Gutierrez M. Co-Circulation and Simultaneous Co-Infection of Dengue, Chikungunya, and Zika Viruses in Patients With Febrile Syndrome At the Colombian-Venezuelan Border. BMC Infect Dis (2018) 18(1):61. 10.1186/s12879-018-2976-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Haqqi A, Awan UA, Ali M, Saqib MAN, Ahmed H, Afzal MS. Covid-19 and Dengue Virus Coepidemics in Pakistan: A Dangerous Combination for an Overburdened Healthcare System. J Med Virol (2021) 93(1):80–2. 10.1002/jmv.26144 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89. Sanchez-Duque JA, Orozco-Hernandez JP, Marin-Medina DS, Cvetkovic-Vega A, Aveiro-Robalo TR, Mondragon-Cardona A, et al. Are We Now Observing an Increasing Number of Coinfections Between SARS-CoV-2 and Other Respiratory Pathogens? J Med Virol (2020) 92(11):2398–400. 10.1002/jmv.26089 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90. Alberca RW, Yendo TM, Leuzzi Ramos YA, Fernandes IG, Oliveira LM, Teixeira FME, et al. Case Report: Covid-19 and Chagas Disease in Two Coinfected Patients. Am J Trop Med Hyg (2020) 103(6):2353–6. 10.4269/ajtmh.20-1185 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91. Touzard-Romo F, Tape C, Lonks JR. Co-Infection With SARS-CoV-2 and Human Metapneumovirus. R I Med J (2013) (2020) 103(2):75–6. [PubMed] [Google Scholar]
  • 92. Rodriguez JA, Rubio-Gomez H, Roa AA, Miller N, Eckardt PA. Co-Infection With SARS-COV-2 and Parainfluenza in a Young Adult Patient With Pneumonia: Case Report. IDCases (2020) 20:e00762. 10.1016/j.idcr.2020.e00762 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93. Rodriguez-Morales AJ, Suarez JA, Risquez A, Delgado-Noguera L, Paniz-Mondolfi A. The Current Syndemic in Venezuela: Measles, Malaria and More Co-Infections Coupled With a Breakdown of Social and Healthcare Infrastructure. Quo Vadis? Travel Med Infect Dis (2019) 27:5–8. 10.1016/j.tmaid.2018.10.010 [DOI] [PubMed] [Google Scholar]
  • 94. Villamil-Gomez WE, Gonzalez-Camargo O, Rodriguez-Ayubi J, Zapata-Serpa D, Rodriguez-Morales AJ. Dengue, Chikungunya and Zika Co-Infection in a Patient From Colombia. J Infect Public Health (2016) 9(5):684–6. 10.1016/j.jiph.2015.12.002 [DOI] [PubMed] [Google Scholar]
  • 95. Paniz-Mondolfi AE, Rodriguez-Morales AJ, Blohm G, Marquez M, Villamil-Gomez WE. Chikdenmazika Syndrome: The Challenge of Diagnosing Arboviral Infections in the Midst of Concurrent Epidemics. Ann Clin Microbiol Antimicrob (2016) 15(1):42. 10.1186/s12941-016-0157-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Villamil-Gomez WE, Rodriguez-Morales AJ, Uribe-Garcia AM, Gonzalez-Arismendy E, Castellanos JE, Calvo EP, et al. Zika, Dengue, and Chikungunya Co-Infection in a Pregnant Woman From Colombia. Int J Infect Dis (2016) 51:135–8. 10.1016/j.ijid.2016.07.017 [DOI] [PubMed] [Google Scholar]
  • 97. Villamil-Gomez WE, Rodriguez-Morales AJ. Reply: Dengue RT-PCR-Positive, Chikungunya IgM-positive and Zika Rt-PCR-positive Co-Infection in a Patient From Colombia. J Infect Public Health (2017) 10(1):133–4. 10.1016/j.jiph.2016.02.003 [DOI] [PubMed] [Google Scholar]
  • 98. Villamil-Gomez WE, Silvera LA, Henao-Palencia S, Contreras-Arrieta J, Caceres JF, Ortiz-Martinez Y, et al. Coinfection of Trypanosoma Cruzi and Mycobacterium Tuberculosis in a Patient From Colombia. J Infect Public Health (2016) 9(1):113–5. 10.1016/j.jiph.2015.09.004 [DOI] [PubMed] [Google Scholar]
  • 99. Rifakis PM, Benitez JA, Rodriguez-Morales AJ, Dickson SM, De-La-Paz-Pineda J. Ecoepidemiological and Social Factors Related to Rabies Incidence in Venezuela During 2002-2004. Int J BioMed Sci (2006) 2(1):1–6. [PMC free article] [PubMed] [Google Scholar]
  • 100. Macleod CK, Bright P, Steer AC, Kim J, Mabey D, Parks T. Neglecting the Neglected: The Objective Evidence of Underfunding in Rheumatic Heart Disease. Trans R Soc Trop Med Hyg (2019) 113(5):287–90. 10.1093/trstmh/trz014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101. Rodriguez-Morales AJ, Sánchez-Duque JA, Hernández-Botero S, Pérez-Díaz CE, Villamil-Gómez WE, Méndez CA, et al. Preparación Y Control De La Enfermedad Por Coronavirus 2019 (COVID-19) En América Latina. Acta Med Peruana (2020) 37(1):3–7. 10.35663/amp.2020.371.909 [DOI] [Google Scholar]
  • 102. Pathak M, Patel SK, Jigyasa R, Tiwari R, Dhama K, Sah R, et al. Global Threat of SARS-CoV-2/COVID-19 and the Need for More and Better Diagnostic Tools. Arch Med Res (2020) 51(5):450–2. 10.1016/j.arcmed.2020.04.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103. Mousavi SH, Zahid SU, Wardak K, Azimi KA, Reza Hosseini SM, Wafaee M, et al. Mapping the Changes on Incidence, Case Fatality Rates and Recovery Proportion of COVID-19 in Afghanistan Using Geographical Information Systems. Arch Med Res (2020) 51(6):600–2. 10.1016/j.arcmed.2020.06.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104. Cimerman S, Chebabo A, Cunha CAD, Rodriguez-Morales AJ. Deep Impact of COVID-19 in the Healthcare of Latin America: The Case of Brazil. Braz J Infect Dis (2020) 24(2):93–5. 10.1016/j.bjid.2020.04.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105. Rodriguez-Morales AJ, Rodriguez-Morales AG, Mendez CA, Hernandez-Botero S. Tracing New Clinical Manifestations in Patients With COVID-19 in Chile and Its Potential Relationship With the SARS-CoV-2 Divergence. Curr Trop Med Rep (2020) 7:75–8. 10.1007/s40475-020-00205-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106. Bonilla-Aldana DK, Villamil-Gómez WE, Rabaan AA, Rodriguez-Morales AJ. Una Nueva Zoonosis Viral De Preocupación Global: COVID-19, Enfermedad Por Coronavirus 2019. Iatreia (2020) 33(2):107–10. 10.17533/udea.iatreia.85 [DOI] [Google Scholar]
  • 107. Rodriguez-Morales AJ, Balbin-Ramon GJ, Rabaan AA, Sah R, Dhama K, Paniz-Mondolfi A, et al. Genomic Epidemiology and its Importance in the Study of the COVID-19 Pandemic. Infez Med (2020) 28(2):139–42. [PubMed] [Google Scholar]
  • 108. Ahmad T, Khan M, Haroon, Musa TH, Nasir S, Hui J, et al. Covid-19: Zoonotic Aspects. Travel Med Infect Dis (2020) 36:101607. 10.1016/j.tmaid.2020.101607 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109. Escalera-Antezana JP, Lizon-Ferrufino NF, Maldonado-Alanoca A, Alarcon-De-la-Vega G, Alvarado-Arnez LE, Balderrama-Saavedra MA, et al. Clinical Features of the First Cases and a Cluster of Coronavirus Disease 2019 (Covid-19) in Bolivia Imported From Italy and Spain. Travel Med Infect Dis (2020) 35:101653. 10.1016/j.tmaid.2020.101653 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Pena R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, Laboratory and Imaging Features of COVID-19: A Systematic Review and Meta-Analysis. Travel Med Infect Dis (2020) 34:101623. 10.1016/j.tmaid.2020.101623 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Rodriguez-Morales AJ, Gallego V, Escalera-Antezana JP, Mendez CA, Zambrano LI, Franco-Paredes C, et al. Covid-19 in Latin America: The Implications of the First Confirmed Case in Brazil. Travel Med Infect Dis (2020) 35:101613. 10.1016/j.tmaid.2020.101613 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112. Ahmad T, Haroon, Dhama K, Sharun K, FM K, Ahmed I, et al. Biosafety and Biosecurity Approaches to Restrain/Contain and Counter SARS-CoV-2/ Covid-19 Pandemic: A Rapid-Review. Turk J Biol (2020) 44(Special issue 1):132–45. 10.3906/biy-2005-63 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113. Nuraini N, Fauzi IS, Fakhruddin M, Sopaheluwakan A, Soewono E. Climate-Based Dengue Model in Semarang, Indonesia: Predictions and Descriptive Analysis. Infect Dis Model (2021) 6:598–611. 10.1016/j.idm.2021.03.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114. Hussen MO, Sayed ASM, Abushahba MFN. Sero-Epidemiological Study on Dengue Fever Virus in Humans and Camels At Upper Egypt. Vet World (2020) 13(12):2618–24. 10.14202/vetworld.2020.2618-2624 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115. Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global Expansion and Redistribution of Aedes-borne Virus Transmission Risk With Climate Change. PloS Negl Trop Dis (2019) 13(3):e0007213. 10.1371/journal.pntd.0007213 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Alarcon-Elbal PM, Rodriguez-Sosa MA, Newman BC, Sutton WB. The First Record of Aedes Vittatus (Diptera: Culicidae) in the Dominican Republic: Public Health Implications of a Potential Invasive Mosquito Species in the Americas. J Med Entomol (2020) 57(6):2016–21. 10.1093/jme/tjaa128 [DOI] [PubMed] [Google Scholar]
  • 117. Chowdhury FR, Ibrahim QSU, Bari MS, Alam MMJ, Dunachie SJ, Rodriguez-Morales AJ, et al. The Association Between Temperature, Rainfall and Humidity With Common Climate-Sensitive Infectious Diseases in Bangladesh. PloS One (2018) 13(6):e0199579. 10.1371/journal.pone.0199579 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Rodriguez-Morales AJ. Climate Change, Climate Variability and Brucellosis. Recent Pat Antiinfect Drug Discovery (2013) 8(1):4–12. 10.2174/1574891X11308010003 [DOI] [PubMed] [Google Scholar]
  • 119. Rodriguez-Morales AJ. [Climate Change, Rainfall, Society and Disasters in Latin America: Relations and Needs]. Rev Peru Med Exp Salud Publica (2011) 28(1):165–6. 10.1590/S1726-46342011000100032 [DOI] [PubMed] [Google Scholar]
  • 120. Chowdhury FR, Ibrahim QSU, Bari MS, Alam MMJ, Dunachie SJ, Rodriguez-Morales AJ, et al. Correction: The Association Between Temperature, Rainfall and Humidity With Common Climate-Sensitive Infectious Diseases in Bangladesh. PloS One (2020) 15(4):e0232285. 10.1371/journal.pone.0232285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121. Mattar S, Morales V, Cassab A, Rodriguez-Morales AJ. Effect of Climate Variables on Dengue Incidence in a Tropical Caribbean Municipality of Colombia, Cerete, 2003-2008. Int J Infect Dis (2013) 17(5):e358–9. 10.1016/j.ijid.2012.11.021 [DOI] [PubMed] [Google Scholar]
  • 122. Cardenas R, Sandoval CM, Rodriguez-Morales AJ, Franco-Paredes C. Impact of Climate Variability in the Occurrence of Leishmaniasis in Northeastern Colombia. Am J Trop Med Hyg (2006) 75(2):273–7. 10.4269/ajtmh.2006.75.273 [DOI] [PubMed] [Google Scholar]
  • 123. Zambrano LI, Sevilla C, Reyes-Garcia SZ, Sierra M, Kafati R, Rodriguez-Morales AJ, et al. Potential Impacts of Climate Variability on Dengue Hemorrhagic Fever in Honduras, 2010. Trop BioMed (2012) 29(4):499–507. [PubMed] [Google Scholar]
  • 124. Herrera-Martinez AD, Rodriguez-Morales AJ. Potential Influence of Climate Variability on Dengue Incidence Registered in a Western Pediatric Hospital of Venezuela. Trop BioMed (2010) 27(2):280–6. [PubMed] [Google Scholar]
  • 125. Cardenas R, Sandoval CM, Rodriguez-Morales AJ, Vivas P. Zoonoses and Climate Variability. Ann N Y Acad Sci (2008) 1149:326–30. 10.1196/annals.1428.094 [DOI] [PubMed] [Google Scholar]
  • 126. Rodriguez-Morales AJ, Simon F. Chronic Chikungunya, Still to be Fully Understood. Int J Infect Dis (2019) 86:133–4. 10.1016/j.ijid.2019.07.024 [DOI] [PubMed] [Google Scholar]
  • 127. Rodriguez-Morales AJ, Cardona-Ospina JA, Villamil-Gomez W, Paniz-Mondolfi AE. How Many Patients With Post-Chikungunya Chronic Inflammatory Rheumatism can We Expect in the New Endemic Areas of Latin America? Rheumatol Int (2015) 35(12):2091–4. 10.1007/s00296-015-3302-5 [DOI] [PubMed] [Google Scholar]
  • 128. Rodriguez-Morales AJ, Restrepo-Posada VM, Acevedo-Escalante N, Rodriguez-Munoz ED, Valencia-Marin M, Castrillon-Spitia JD, et al. Impaired Quality of Life After Chikungunya Virus Infection: A 12-Month Follow-Up Study of its Chronic Inflammatory Rheumatism in La Virginia, Risaralda, Colombia. Rheumatol Int (2017) 37(10):1757–8. 10.1007/s00296-017-3795-1 [DOI] [PubMed] [Google Scholar]
  • 129. Rodriguez-Morales AJ. Letter to the Editor: Chikungunya Virus Infection-an Update on Chronic Rheumatism in Latin America. Rambam Maimonides Med J (2017) 8(1):e0013. 10.5041/RMMJ.10288 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Rodriguez-Morales AJ, Villamil-Gomez W, Merlano-Espinosa M, Simone-Kleber L. Post-Chikungunya Chronic Arthralgia: A First Retrospective Follow-Up Study of 39 Cases in Colombia. Clin Rheumatol (2016) 35(3):831–2. 10.1007/s10067-015-3041-8 [DOI] [PubMed] [Google Scholar]
  • 131. Rodriguez-Morales AJ, Calvache-Benavides CE, Giraldo-Gomez J, Hurtado-Hurtado N, Yepes-Echeverri MC, Garcia-Loaiza CJ, et al. Post-Chikungunya Chronic Arthralgia: Results From a Retrospective Follow-Up Study of 131 Cases in Tolima, Colombia. Travel Med Infect Dis (2016) 14(1):58–9. 10.1016/j.tmaid.2015.09.001 [DOI] [PubMed] [Google Scholar]
  • 132. Rodriguez-Morales AJ, Gil-Restrepo AF, Ramirez-Jaramillo V, Montoya-Arias CP, Acevedo-Mendoza WF, Bedoya-Arias JE, et al. Post-Chikungunya Chronic Inflammatory Rheumatism: Results From a Retrospective Follow-Up Study of 283 Adult and Child Cases in La Virginia, Risaralda, Colombia. F1000Res (2016) 5:360. 10.12688/f1000research.8235.2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133. Alvarado-Socarras JL, Idrovo AJ, Contreras-Garcia GA, Rodriguez-Morales AJ, Audcent TA, Mogollon-Mendoza AC, et al. Congenital Microcephaly: A Diagnostic Challenge During Zika Epidemics. Travel Med Infect Dis (2018) 23:14–20. 10.1016/j.tmaid.2018.02.002 [DOI] [PubMed] [Google Scholar]
  • 134. Rodriguez-Morales AJ, Cardona-Ospina JA, Ramirez-Jaramillo V, Gaviria JA, Gonzalez-Moreno GM, Castrillon-Spitia JD, et al. Diagnosis and Outcomes of Pregnant Women With Zika Virus Infection in Two Municipalities of Risaralda, Colombia: Second Report of the ZIKERNCOL Study. Travel Med Infect Dis (2018) 25:20–5. 10.1016/j.tmaid.2018.06.006 [DOI] [PubMed] [Google Scholar]
  • 135. Alvarado-Socarras JL, Aux-Cadena CP, Murillo-Garcia DR, Rodriguez-Morales AJ. Ophthalmologic Evaluation in Infants of Mothers With Zika: A Report From Colombia. Travel Med Infect Dis (2019) 32:101449. 10.1016/j.tmaid.2019.07.005 [DOI] [PubMed] [Google Scholar]
  • 136. Wijeratne T, Crewther S. Covid-19 and Long-Term Neurological Problems: Challenges Ahead With Post-COVID-19 Neurological Syndrome. Aust J Gen Pract (2021) 50. 10.31128/AJGP-COVID-43 [DOI] [PubMed] [Google Scholar]
  • 137. Chun HJ, Coutavas E, Pine A, Lee AI, Yu V, Shallow M, et al. Immuno-Fibrotic Drivers of Impaired Lung Function in post-COVID-19 Syndrome. medRxiv (2021). 10.1101/2021.01.31.21250870 [DOI] [Google Scholar]
  • 138. Soriano JB, Waterer G, Penalvo JL, Rello J. Nefer, Sinuhe and Clinical Research Assessing post-COVID-19 Syndrome. Eur Respir J (2021). 10.1183/13993003.04423-2020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139. Borg K, Stam HJ. Rehabilitation of post-Covid - 19 Syndrome - Once Again a Call for Action! J Rehabil Med (2021) 53(1):jrm00132. 10.2340/16501977-2783 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140. Walsh DP, Ma TF, Ip HS, Zhu J. Artificial Intelligence and Avian Influenza: Using Machine Learning to Enhance Active Surveillance for Avian Influenza Viruses. Transbound Emerg Dis (2019) 66(6):2537–45. 10.1111/tbed.13318 [DOI] [PubMed] [Google Scholar]
  • 141. Thiebaut R, Cossin S. Section Editors for the IYSoPH, Epidemiology I. Artificial Intelligence for Surveillance in Public Health. Yearb Med Inform (2019) 28(1):232–4. 10.1055/s-0039-1677939 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142. Chiappelli F, Balenton N, Khakshooy A. Future Innovations in Viral Immune Surveillance: A Novel Place for Bioinformation and Artificial Intelligence in the Administration of Health Care. Bioinformation (2018) 14(5):201–5. 10.6026/97320630014201 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143. Cardona-Ospina JA, Rojas-Gallardo DM, Garzon-Castano SC, Jimenez-Posada EV, Rodriguez-Morales AJ. Phylodynamic Analysis in the Understanding of the Current COVID-19 Pandemic and its Utility in Vaccine and Antiviral Design and Assessment. Hum Vaccin Immunother (2021), 1–8. 10.1080/21645515.2021.1880254 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144. Rabaan AA, Al-Ahmed SH, Sah R, Al-Tawfiq JA, Haque S, Harapan H, et al. Genomic Epidemiology and Recent Update on Nucleic Acid-Based Diagnostics for COVID-19. Curr Trop Med Rep (2020) 7:113–9. 10.1007/s40475-020-00212-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145. Auguste AJ, Lemey P, Bergren NA, Giambalvo D, Moncada M, Moron D, et al. Enzootic Transmission of Yellow Fever Virus, Venezuela. Emerg Infect Dis (2015) 21(1):99–102. 10.3201/eid2101.140814 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146. Solano D, Navarro JC, Leon-Reyes A, Benitez-Ortiz W, Rodriguez-Hidalgo R. Molecular Analyses Reveal Two Geographic and Genetic Lineages for Tapeworms, Taenia Solium and Taenia Saginata, From Ecuador Using Mitochondrial DNA. Exp Parasitol (2016) 171:49–56. 10.1016/j.exppara.2016.10.015 [DOI] [PubMed] [Google Scholar]
  • 147. Rendon-Marin S, Martinez-Gutierrez M, Whittaker GR, Jaimes JA, Ruiz-Saenz J. Sars CoV-2 Spike Protein in Silico Interaction With ACE2 Receptors From Wild and Domestic Species. Front Genet (2021) 12(27):571707. 10.3389/fgene.2021.571707 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148. Elsinga J, Grobusch MP, Tami A, Gerstenbluth I, Bailey A. Health-Related Impact on Quality of Life and Coping Strategies for Chikungunya: A Qualitative Study in Curacao. PloS Negl Trop Dis (2017) 11(10):e0005987. 10.1371/journal.pntd.0005987 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149. Proos R, Matheron H, Vas Nunes J, Falama A, Sery Kamal P, Grobusch MP, et al. Perspectives of Health Workers on the Referral of Women With Obstetric Complications: A Qualitative Study in Rural Sierra Leone. BMJ Open (2020) 10(12):e041746. 10.1136/bmjopen-2020-041746 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150. Porta M. A Dictionary of Epidemiology: Books.Google.Com. International Association of Epidemiology and Oxford Press; (2014). 10.1093/acref/9780199976720.001.0001 [DOI] [Google Scholar]
  • 151. Rodríguez-Morales AJ. Ecoepidemiología Y Epidemiología Satelital: Nuevas Herramientas En El Manejo De Problemas En Salud Pública. Rev Peruana Medicina Exp y Salud Publica (2005) 22:54–63. [Google Scholar]
  • 152. Brende B, Farrar J, Gashumba D, Moedas C, Mundel T, Shiozaki Y, et al. CEPI-a New Global R&D Organisation for Epidemic Preparedness and Response. Lancet (2017) 389(10066):233–5. 10.1016/S0140-6736(17)30131-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153. Gouglas D, Christodoulou M, Plotkin SA, Hatchett R. Cepi: Driving Progress Toward Epidemic Preparedness and Response. Epidemiol Rev (2019) 41(1):28–33. 10.1093/epirev/mxz012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154. Plotkin SA. Vaccines for Epidemic Infections and the Role of CEPI. Hum Vaccin Immunother (2017) 13(12):2755–62. 10.1080/21645515.2017.1306615 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155. de Sousa Pereira H, Scofield A, Junior PSB, Lira Dos Santos D, de Sousa Siqueira J, Chaves JF, et al. Chagas Disease in Urban and Periurban Environment in the Amazon: Sentinel Hosts, Vectors, and the Environment. Acta Trop (2021) 217:105858. 10.1016/j.actatropica.2021.105858 [DOI] [PubMed] [Google Scholar]
  • 156. Bastos CJ, Aras R, Mota G, Reis F, Dias JP, de Jesus RS, et al. Clinical Outcomes of Thirteen Patients With Acute Chagas Disease Acquired Through Oral Transmission From Two Urban Outbreaks in Northeastern Brazil. PloS Negl Trop Dis (2010) 4(6):e711. 10.1371/journal.pntd.0000711 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157. Shikanai-Yasuda MA, Carvalho NB. Oral Transmission of Chagas Disease. Clin Infect Dis (2012) 54(6):845–52. 10.1093/cid/cir956 [DOI] [PubMed] [Google Scholar]
  • 158. Noya BA, Perez-Chacon G, Diaz-Bello Z, Dickson S, Munoz-Calderon A, Hernandez C, et al. Description of an Oral Chagas Disease Outbreak in Venezuela, Including a Vertically Transmitted Case. Mem Inst Oswaldo Cruz (2017) 112(8):569–71. 10.1590/0074-02760170009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159. Diaz ML, Leal S, Mantilla JC, Molina-Berrios A, Lopez-Munoz R, Solari A, et al. Acute Chagas Outbreaks: Molecular and Biological Features of Trypanosoma Cruzi Isolates, and Clinical Aspects of Acute Cases in Santander, Colombia. Parasit Vectors (2015) 8:608. 10.1186/s13071-015-1218-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160. Rueda K, Trujillo JE, Carranza JC, Vallejo GA. [Oral Transmission of Trypanosoma Cruzi : A New Epidemiological Scenario for Chagas’ Disease in Colombia and Other South American Countries]. Biomedica (2014) 34(4):631–41. 10.7705/biomedica.v34i4.2204 [DOI] [PubMed] [Google Scholar]
  • 161. Lacerda AFA, Oliveria DS, Salomao JVF, Oliveira LGR, Monte-Alegre A, Santos J, et al. Clinical, Epidemiological and Transmission Cycle Aspects of Leishmaniasis Urbanization in Barreiras, Bahia, Brazil. Spat Spatiotemporal Epidemiol (2021) 36:100395. 10.1016/j.sste.2020.100395 [DOI] [PubMed] [Google Scholar]
  • 162. da Silva Santana Cruz C, Soeiro Barbosa D, Oliveira VC, Cardoso DT, Guimaraes NS, Carneiro M. Factors Associated With Human Visceral Leishmaniasis Cases During Urban Epidemics in Brazil: A Systematic Review. Parasitology (2021) 148(6):639–47. 10.1017/S0031182021000019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163. Ribeiro CJN, Dos Santos AD, Lima S, da Silva ER, Ribeiro BVS, Duque AM, et al. Space-Time Risk Cluster of Visceral Leishmaniasis in Brazilian Endemic Region With High Social Vulnerability: An Ecological Time Series Study. PloS Negl Trop Dis (2021) 15(1):e0009006. 10.1371/journal.pntd.0009006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164. Zambrano-Hernandez P, Ayala-Sotelo MS, Fuya-Oviedo P, Montenegro-Puentes CA, Aya-Vanegas NM, Aguilera-Jaramillo G, et al. [Urban Outbreak of Visceral Leishmaniasis in Neiva (Colombia)]. Rev Salud Publica (Bogota) (2015) 17(4):514–27. 10.15446/rsap.v17n4.44663 [DOI] [PubMed] [Google Scholar]
  • 165. Osorio-Pinzon J, Palencia A, Cruz-Calderon S, Rodriguez-Morales AJ. Myiasis and Tungiasis. Curr Trop Med Rep (2021). 10.1007/s40475-021-00233-6 [DOI] [Google Scholar]
  • 166. Shepard Z, Rios M, Solis J, Wand T, Henao-Martínez AF, Franco-Paredes C, et al. Common Dermatologic Conditions in Returning Travelers. Curr Trop Med Rep (2021). 10.1007/s40475-021-00231-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167. Pecchio M, Suarez JA, Hesse S, Hersh AM, Gundacker ND. Descriptive Epidemiology of Snakebites in the Veraguas Province of Panama, 2007-2008. Trans R Soc Trop Med Hyg (2018) 112(10):463–6. 10.1093/trstmh/try076 [DOI] [PubMed] [Google Scholar]
  • 168. Reyes-Lugo M, Sanchez T, Finol HJ, Sanchez EE, Suarez JA, Guerreiro B, et al. Neurotoxic Activity and Ultrastructural Changes in Muscles Caused by the Brown Widow Spider Latrodectus Geometricus Venom. Rev Inst Med Trop Sao Paulo (2009) 51(2):95–101. 10.1590/S0036-46652009000200007 [DOI] [PubMed] [Google Scholar]
  • 169. Benitez JA, Rifakis PM, Vargas JA, Cabaniel G, Rodriguez-Morales AJ. Trends in Fatal Snakebites in Venezuela, 1995-2002. Wilderness Environ Med (2007) 18(3):209–13. 10.1580/06-WEME-BR-076R.1 [DOI] [PubMed] [Google Scholar]
  • 170. De Roodt AR, Salomon OD, Lloveras SC, Orduna TA. [Poisoning by Spiders of Loxosceles Genus]. Medicina (B Aires) (2002) 62(1):83–94. [PubMed] [Google Scholar]
  • 171. Bonilla-Aldana DK, Suarez JA, Franco-Paredes C, Vilcarromero S, Mattar S, Gomez-Marin JE, et al. Brazil Burning! What is the Potential Impact of the Amazon Wildfires on Vector-Borne and Zoonotic Emerging Diseases? - A Statement From an International Experts Meeting. Travel Med Infect Dis (2019) 31:101474. 10.1016/j.tmaid.2019.101474 [DOI] [PubMed] [Google Scholar]
  • 172. Bonilla-Aldana DK, Holguin-Rivera Y, Perez-Vargas S, Trejos-Mendoza AE, Balbin-Ramon GJ, Dhama K, et al. Importance of the One Health Approach to Study the SARS-CoV-2 in Latin America. One Health (2020) 10:100147. 10.1016/j.onehlt.2020.100147 [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES