Skip to main content
Arquivos Brasileiros de Cardiologia logoLink to Arquivos Brasileiros de Cardiologia
. 2020 Dec 1;115(6):1135–1141. [Article in Portuguese] doi: 10.36660/abc.20190296
View full-text in English

Efeitos da Heroína nos Parâmetros Eletrocardiográficos

Ersin Yildirim 1, Murat Selcuk 2, Faysal Saylik 2, Ferit Onur Mutluer 2, Ozgur Deniz 2
PMCID: PMC8133719  PMID: 33470313

Resumo

Fundamento

Atualmente, o vício em heroína é um problema de saúde preocupante, e as informações sobre os efeitos eletrocardiográficos da heroína são limitadas.

Objetivos

O objetivo do presente estudo é investigar os efeitos da dependência de heroína em parâmetros eletrocardiográficos.

Métodos

Um total de 136 indivíduos, incluindo 66 indivíduos que fumam heroína como grupo de estudo e 70 indivíduos saudáveis sem dependência de drogas como grupo de controle, foram incluídos no estudo. Indivíduos que injetam heroína foram excluídos. A avaliação eletrocardiográfica (ECG) dos usuários de heroína foi realizada e comparada com as do grupo controle. Além disso, os ECGs pré e pós-tratamento do grupo usuário de heroína foram comparados. Um valor de p<0,05 foi aceito como estatisticamente significativo.

Resultados

A frequência cardíaca (77,2±12,8 versus 71,4±11,2; p=0,02) foi maior no grupo usuário de heroína em comparação com o grupo controle. Os intervalos QT (341,50±25,80 versus 379,11±45,23; p=0,01), QTc (385,12±29,11 versus 411,3±51,70; p<0,01) e o intervalo do pico ao fim da onda T (Tpe) (65,41±10,82 versus 73,3±10,13; p<0,01) foram significativamente menores no grupo usuário de heroína. Nenhuma diferença foi observada entre os grupos com respeito às razões Tpe/QT e Tpe/QTc. Na análise de subgrupo do grupo usuário de heroína, os intervalos QT (356,81±37,49 versus 381,18±40,03; p<0,01) e QTc (382,06±26,41 versus 396,06±29,80; p<0,01) foram significativamente mais curtos no período pré-tratamento.

Conclusão

O vício em heroína afeta significativamente os intervalos de tempo QT, QTc e Tpe. Os efeitos de arritmia desses parâmetros já são conhecidos. Os parâmetros eletrocardiográficos desses indivíduos merecem mais atenção. (Arq Bras Cardiol. 2020; 115(6):1135-1141)

Keywords: Heroína, Dependência de Heroína, Entorpecentes/toxicidade, Arritmias cardíacas/efeitos adversos, Síndrome de QT longo, Edema Pulmonar, Insuficiência Renal, Leucoencefalopatias

Introdução

A heroína, um depressor do sistema nervoso central (diacetilmorfina), é um opiáceo semissintético. A heroína é um opioide altamente utilizado, e o vício em heroína causa um prejuízo significativo para a sociedade em todo o mundo. A prevalência do uso de heroína aumentou nos últimos anos. A mortalidade entre os usuários de heroína varia entre 1 e 3%, e o método de tratamento mais eficaz para a dependência de heroína é a terapia de reposição de opioides.1 , 2 Seu principal efeito adverso é a dificuldade respiratória, que pode levar à morte. Com a perda de tolerância, a overdose de heroína pode ser letal após um período de abstinência. As outras complicações da dependência da heroína, como edema pulmonar,3 choque,4 lesão miocárdica, insuficiência renal aguda,5 rabdomiólise6 e leucoencefalopatia,7 são descritas na literatura. Além disso, a heroína tem se mostrado eficaz na modulação vagal e regulação autonômica.8 No entanto, nosso conhecimento sobre os efeitos cardíacos da dependência de heroína é limitado, o que é um problema de saúde pública importante nesse aspecto. Além disso, há alguns estudos na literatura que mostram a relação entre heroína, toxicidade miocárdica e arritmias.9 , 10 Portanto, é essencial compreender as alterações no ECG dependentes de heroína. O objetivo do presente estudo é investigar os efeitos da dependência de heroína sobre os parâmetros eletrocardiográficos.

Métodos

Após a aprovação do Comitê de Ética, um total de 136 indivíduos foram incluídos no estudo, que incluiu 66 pacientes usuários de heroína via tabagismo e em terapia no Centro de Tratamento e Treinamento para Dependência de Álcool e Drogas, entre 2014 e 2017, como grupo de estudo, além de 70 indivíduos saudáveis sem dependência de drogas que não seja o tabaco como grupo controle. O grupo controle foi selecionado consecutivamente entre os pacientes que visitavam a clínica de cardiologia. A avaliação de ECG daqueles que usam heroína foi realizada e comparada com aqueles do grupo controle. Além disso, foi avaliado o ECG pré e pós-tratamento do grupo usuário de heroína. As características clínicas e demográficas dos pacientes, o estado e a duração da dependência da heroína foram coletados junto aos pacientes e seus prontuários no hospital. Apenas aqueles que fumavam heroína foram incluídos no estudo. Os registros eletrocardiográficos (ECG) dos pacientes foram obtidos com o dispositivo Schiller Cardiovit AT-102 plus, usando a derivação 12 padrão (calibração de 10 mm/mV e taxa de deslizamento de 25 mm/s) na primeira admissão no hospital. Somente os pacientes que recebiam heroína em até 12 horas após os registros de ECG obtidos foram incluídos no estudo. As medições do ECG dos intervalos QT e Tpe foram realizadas manualmente por dois cardiologistas especialistas, usando uma lupa para diminuir os erros de medição. As derivações 2 e V5 foram selecionadas para medir os intervalos QT e Tpe, respectivamente. A média dos três batimentos em cada derivação de ECG foi calculada. O intervalo QT é calculado como o intervalo do início do QRS ao fim da onda T. O intervalo Tpe é definido como o intervalo do pico da onda T ao fim da onda T. Os intervalos QTc foram calculados usando a fórmula de Bazett. O hemograma completo (HC) e os exames bioquímicos foram realizados com Beckman Coulter LH-750 e Beckman Coulter L × 20, respectivamente. Os resultados de cada paciente foram registrados. As avaliações ecocardiográficas de todos os pacientes foram feitas na primeira admissão ao hospital. Todos os participantes foram submetidos à avaliação ecocardiográfica 2D e Doppler (VIVID 3, General Electric, EUA) e a fração de ejeção do ventrículo esquerdo foi calculada usando as regras de Simpson modificadas. Os indivíduos que usaram heroína por via intravenosa, dependentes de álcool, aqueles com doenças das artérias coronárias, insuficiência cardíaca, distúrbios das válvulas cardíacas, arritmias conhecidas, hipertensão, doenças cardíacas congênitas, diabetes, insuficiência hepática ou renal, doença pulmonar obstrutiva crônica, doenças endócrinas, distúrbios metabólicos ou eletrolíticos, infecções agudas ou crônicas ou pacientes que tomaram medicamentos que podem afetar os intervalos QT e QTc foram excluídos do estudo.

Análise Estatística

A análise estatística foi realizada com os programas Statistical Package for the Social Sciences (SPSS) para Windows 20 (IBM SPSS Inc., Chicago, Illinois) e Medcalc 11.4.2 (MedCalc Software, Mariakerke, Bélgica). A conformidade dos dados com a distribuição normal foi testada com o teste de Kolmogorov-Smirnov. As variáveis numéricas normalmente distribuídas foram expressas como média ± desvio padrão. Variáveis categóricas foram expressas em números e porcentagens. Para as comparações entre o grupo usuário de heroína e os grupos de controle, o teste-t não pareado foi usado. Os testes de qui-quadrado e exato de Fisher foram realizados para comparar variáveis categóricas. Para as comparações de ambos os períodos pré-tratamento e pós-tratamento, o teste de McNemar e amostras pareadas de teste t foram usados. Um valor de p <0,05 foi aceito como estatisticamente significativo.

Resultados

A distribuição da população estudada (n=136, idade média 30,40±9,58) foi a seguinte: 66 (48,52%) Heroína (+) e 70 (51,47%) Heroína (-). O sexo feminino correspondeu a 8,82% da população estudada. Não houve diferença significativa na distribuição da média de idade entre os grupos. No grupo usuário de heroína, a duração média do uso da heroína foi de cinco anos. Estatisticamente, não há diferenças significativas entre os grupos em relação ao sexo, tabagismo, fração de ejeção do ventrículo esquerdo e doença cerebrovascular. Nenhuma diferença foi determinada nas outras características demográficas e laboratoriais entre os dois grupos ( Tabela 1 ).

Tabela 1. – Groups’ Baseline Characteristics and Laboratory Findings.

Variáveis Heroína (+) (n= 66) Heroína (-) (n= 70) valor de p
Características base      
 Idade (anos), média (DP) 30,2±10,1 30,6±9,1 0,808
 Sexo (feminino), n (%) 3(4,5%) 9(12,8%) 0,087
 Fumantes atuais, n (%) 35(53,0%) 31(44,2%) 0,307
 Doença arterial coronária, n (%) 0 0 -
 Hipertensão, n (%) 0 0 -
 Diabetes Mellitus, n (%) 0 0 -
 Doença cerebrovascular, n (%) 1(1,5%) 2(2,8%) 0,594
 Fração de ejeção do ventrículo esquerdo (%) 59,8±2,9 60,4±9,4 0,620
Resultados laboratoriais      
 Sódio (mmol/dl; DP) 139,48±4,81 140,37±5,20 0,302
 Potássio (mmol/dl; DP) 4,32±0,51 4,45±0,65 0,198
 Cálcio (mg/dl; DP) 9,45±0,82 9,53±0,93 0,596
 Magnésio (mg/dl; DP) 1,99±0,30 2,02±0,26 0,533
 Creatinina (mg/dl; DP) 0,77±0,22 0,72±0,23 0,197
 HDL-C (mg/dl; DP) 37,61±8,45 38,89±10,53 0,437
 LDL-C (mg/dl; DP) 137,74±39,81 125,66±45,14 0,101
 Triglicerídeo (mg/dl; DP) 155,42±96,50 163,44±85,55 0,608
 GB (x103 /µL; DP) 6,89±4,03 7,12±4,35 0,750
 Hemoglobina (g/dL; DP) 14,31±4,38 14,53±2,74 0,724
 Hematócrito, n (%;DP) 42,53±4,11 42,88±5,43 0,673
 Plaquetas (x103 /µL; DP) 253,75±68,32 261,16±77,14 0,555
 LDH % 15,23±2,06 13,88±1,78 0,001
TSH (uIU/mL) 2,12±1,77 2,16±1,98 0,896

*Teste-t de amostras independentes, Teste do qui-quadrado, Teste exato de Fisher *p<0,05 estatisticamente significativo. As variáveis contínuas são relatadas como média ± DP). Variáveis categóricas são relatadas como n (%). HDL-C: Colesterol de lipoproteína de alta densidade; LDL-C: Colesterol de lipoproteína de baixa densidade; GB: Glóbulos brancos; LDH: Largura de distribuição de hemácias; TSH: Hormônio estimulador da tireóide.

A comparação dos achados eletrocardiográficos entre os grupos revelou que não houve diferença estatística entre os grupos em termos de período PR, alterações inespecíficas do segmento ST-onda T, duração do QRS e tempo de pico da onda R. No grupo usuário de heroína (+), os intervalos QT (341,50±25,80 versus 379,11±45,23, p<0,01) e QTc (385,12±29,11 versus 411,3±51,70, p<0,01) os intervalos foram significativamente mais curtos do que o grupo usuário de heroína (-). O tempo T-pico até o T-final foi significativamente menor no grupo heroína (+), em comparação com o grupo heroína (-) (65,41±10,82 versus 73,3±10,13, p<0,01). Nenhuma diferença significativa foi observada entre os dois grupos em termos de razões Tpe/QT e Tpe/QTc ( Tabela 2 ).

Tabela 2. – Achados de ECG dos grupos.

Achados de ECG Heroína (+) (n= 66) Heroína (-) (n= 70) valor de p
Frequência cardíaca, bat/min 77,25±12,84 71,43±11,22 0,02
PR, msc 147,83±29,49 151,12±33,19 0,54
Alterações não específicas da onda T do segmento ST, n (%) 8(12,1%) 4(5,7%) 0,18
QRS, msg 98,82±19,53 100,50±19,87 0,49
QT, msg 341,50±25,80 379,11±45,23 <0,01
QTc, msg 385,12±29,11 411,3±51,70 <0,01
Tpe, msg 65,41±10,82 73,3±10,13 <0,01
Horário de pico da onda R, msg 32,18±8,16 34,22±9,32 0,17
Tpe/QT 0.19±0.03 0.2±0.03 0.70
Tpe/QTc 0.17±0.03 0.18±0.03 0.15

*Teste-t de amostras independentes; Teste de qui-quadrado; Teste exato de Fisher; Variáveis contínuas são relatadas como média±DP). Variáveis categóricas são relatadas como n (%); p<0,05 estatisticamente significativo.

Um total de 16 pacientes completou o tratamento com sucesso. Na análise de subgrupo desse grupo, os intervalos QT (356,81±37,49 versus 381,18±40,03, p<0,01) e QTc (382,06±26,41 versus 396,06±29,80, p<0,01) foram significativamente mais curtos no período pré-tratamento. Nenhuma diferença foi determinada nos outros parâmetros eletrocardiográficos entre os períodos pré e pós-tratamento ( Tabela 3 ).

Tabela 3. – Achados de ECG dos pacientes tratados.

Variáveis Antes do tratamento (n= 16) Depois do tratamento (n= 16) valor de p
Frequência cardíaca, bat/min 79,06±9,08 74,81±8,37 0,02
PR, msc 148,75±18,65 150,01±19,15 0,13
Alterações não específicas da onda T do segmento ST, n (%) 3(18,7) 3(18,7) 1,00
QRS, msg 98,08±10,58 98,68±8,80 0,46
QT, msg 356,81±37,49 381,18±40,03 <0,01
QTc, msg 382,06±26,41 396,06±29,80 <0,01
Tpe, msg 64,75±8,10 66,37±9,68 0,28
Horário de pico da onda R, msg 33,06±4,80 33,93±5,10 0,42
Tpe/QT 0,18±0,02 0,17±0,02 0,18
Tpe/QTc 0,17±0,02 0,18±0,02 0,23

*Teste de McNemar, teste-t de amostras pareadas. Variáveis contínuas são relatadas como média±DP, e variáveis categóricas são relatadas como n (%); p<0,05 estatisticamente significativo.

Discussão

Atualmente, o vício em heroína é um problema de saúde preocupante, e as informações sobre os efeitos eletrocardiográficos da heroína são limitadas. Até onde sabemos, o presente estudo é o primeiro na literatura sobre alterações eletrocardiográficas dependentes de heroína. No estudo, mostramos que o vício em heroína afeta significativamente os intervalos de tempo QT, QTc e Tpe.

O vício em heroína é responsável por eventos cardíacos. O efeito do uso de heroína nas funções cardíacas foi investigado anteriormente em alguns estudos. O uso de heroína mostrou aumentar significativamente a taxa de anormalidades das válvulas mitral e tricúspide.11 Demirkıran et al.,12 demonstraram que os canabinóides sintéticos afetaram negativamente a função ventricular esquerda, ao passo que a heroína não.12 O uso de heroína não parece ter efeito sobre as funções ventriculares esquerdas de acordo com os resultados desses estudos; por outro lado, irregularidades atriais e miocárdicas com amostra histopatológica13 e contagem de leucócitos miocárdicos intersticiais, contagem de linfócitos T e macrófagos promovem aumento de cinco vezes nas amostras miocárdicas. 14 Os efeitos cardíacos da heroína não se limitam aos efeitos miotóxicos. Pavlidis et al.,15 relataram que infarto do miocárdio pode ser observado, embora raramente, para o qual o mecanismo comum é desconhecido.15 Orlando et al.,16 relataram redução subclínica da fração de ejeção do ventrículo esquerdo em 20 indivíduos dependentes de heroína.16 No entanto, esses estudos não fornecem informações sobre o efeito da dependência de heroína nos parâmetros eletrocardiográficos. Além disso, em estudos que investigaram os mecanismos de arritmias relacionadas à heroína e subsequentes mortes súbitas, o uso de heroína não só levou à infiltração miocárdica, mas também levou à displasia fibromuscular no nó sinusal, nó atrioventricular e vias de transmissão, e à infiltração de gordura. Os autores concluíram que essa pode ser a causa da arritmia relacionada à morte súbita em indivíduos dependentes de heroína.9 , 10 Portanto, revelar alterações no ECG dependentes de heroína tornou-se ainda mais importante.

Em um dos primeiros estudos sobre os efeitos eletrocardiográficos da dependência de heroína, Glauser et al.,17 mostraram que os achados mais comuns foram alterações inespecíficas de ST-T em 17 pacientes; e taquicardia sinusal em 11 pacientes.17 No entanto, os parâmetros eletrocardiográficos como QT, QTc, tempo de Tpe e durações de QSR não foram examinados neste estudo. Em um relato de caso, os autores mostraram que a overdose de heroína é uma possível causa da fenocopia de Brugada.18 Embora alguns estudos tenham sido realizados em ratos e cães, não há muitas informações na literatura sobre eletrocardiogramas em humanos. No presente estudo, o vício em heroína mostrou diminuir significativamente os intervalos de tempo QT, QTc e Tpe. A síndrome do QT curto, como o prolongamento do QT, também é bem conhecida por sua associação a arritmias cardíacas graves e morte súbita cardíaca.19 - 21 Além disso, o intervalo Tpe foi proposto como um marcador não invasivo de risco arrítmico. O intervalo do pico T ao final do T no eletrocardiograma (ECG) é uma medida da dispersão miocárdica da repolarização. Evidências crescentes sugerem que o intervalo Tpe pode predizer a suscetibilidade à arritmia em pacientes com várias doenças cardiovasculares.22 Marjamaa et al.,23 concluíram que o alelo menor da variante comum rs7219669 está associado ao encurtamento do intervalo Tpe em duas populações de estudo independentes, sendo, portanto, um candidato a modular a suscetibilidade à arritmia em nível populacional.23 No presente estudo, o uso de heroína teve um efeito significativo sobre esses parâmetros importantes. Usuários de heroína apresentam redução da modulação vagal cardíaca, e a terapia com metadona aumentou a atividade vagal diretamente em indivíduos que tiveram recidiva recente de uso de heroína.8 Além dos achados inflamatórios aumentados do miocárdio, também acreditamos que essa diminuição na atividade vagal possa ser responsável por alterações no ECG. A maioria dos estudos sobre dependência de heroína e ECG dizem respeito à metadona. A metadona é usada no tratamento da dependência de heroína, e um de seus efeitos conhecidos mais importantes é o prolongamento das durações QT e QTc.24 , 25 A metadona é um inibidor do canal iônico cardíaco KCNH226 e causa o prolongamento do intervalo QT de maneira relacionada à dose consumida.26 Por outro lado, pode aumentar a atividade vagal e prolongar a duração do intervalo QT.8 Após o presente estudo, acreditamos que parte dos efeitos da metadona pode estar relacionada à neutralização do efeito da heroína. Nosso estudo demonstrou que o vício em heroína mudou significativamente os intervalos QT, QTc e Tpe, independentemente do efeito dos adulterantes e da metadona. Além de indivíduos dependentes de heroína, a metadona também é conhecida por prolongar o intervalo QT. No entanto, no grupo de usuários de heroína, esse resultado deve ser levado em consideração ao discutir o efeito de prolongamento do intervalo QT da metadona em pessoas dependentes de heroína. Embora o efeito da heroína nos canais de potássio seja desconhecido, o efeito na atividade vagal foi analisado.8 Com esses resultados, embora ela não seja responsável por todos os mecanismos de prolongamento do intervalo QT, acreditamos que a neutralização dos efeitos da heroína contribui significativamente para o prolongamento do QT. Com o presente estudo, não podemos explicar exatamente se o prolongamento QT é efeito direto da metadona ou o resultado da neutralização do efeito da heroína em estudos anteriores. Quando consideramos o assunto um novo ponto de vista, é um tema importante para orientar os demais estudos. Ainda assim, a metadona é um agonista opioide completo, e as mortes por overdose são um grande problema. A buprenorfina, um agonista opioide parcial, tem se tornado uma opção cada vez mais popular na prática clínica em nosso país e em todo o mundo. A buprenorfina é, provavelmente, o agente mais seguro devido à sua ação farmacológica única e foi declarada uma nova opção para o tratamento da dependência de heroína com menor potencial de abuso e baixo risco de overdose.27 Doses terapêuticas de buprenorfina mostraram não ter efeitos sobre a duração de QT e QTc,28 , 29 e a buprenorfina em doses comumente utilizadas é uma alternativa adequada à metadona, no que diz respeito ao risco de prolongamento do intervalo QTc.30 Portanto, os indivíduos do presente estudo foram tratados com buprenorfina em vez de metadona. A buprenorfina não teve efeitos significativos nas durações de QT e QTc, o que foi uma das vantagens do presente estudo. Visto isso, observamos os efeitos da heroína no ECG com mais clareza. Quando olhamos para o subgrupo de tratamento, há uma mudança significativa nas durações de QT e QTc devido à interrupção do uso da heroína. Se esses indivíduos fossem tratados com metadona, seria muito difícil entender se esse efeito era devido à heroína ou à metadona. Infelizmente, assim como em outros países, a desvantagem mais importante nesse subgrupo é a proporção de pacientes que podem concluir o tratamento médico para dependência de heroína, insuficiente em nosso estudo.31 A maioria dos pacientes não conseguiu completar o tratamento, e é por isso que o número de indivíduos no subgrupo do estudo diminuiu significativamente. Embora tenha havido uma mudança significativa nos intervalos QT e QTc no grupo pós-tratamento, houve apenas um aumento numérico na duração do Tpe, o qual não atingiu significância estatística. Presumimos que isso seja devido ao número insuficiente de indivíduos que concluíram o tratamento. Porém, estudos com maior número de participantes são necessários para uma decisão definitiva sobre o assunto.

A heroína tem uma meia-vida extremamente curta no sangue (menos de cinco minutos) e é imediatamente convertida no metabólito ativo 6-acetilmorfina (6-AM), que é posteriormente metabolizado em morfina.32 Na urina, o metabólito ativo 6-AM pode ser detectado por um período mais longo, possivelmente até 12 horas.33 Portanto, foram incluídos no presente estudo pacientes que usaram heroína apenas nas últimas 12 horas. Por outro lado, quando a heroína é usada por via intravenosa, é administrada em conjunto com substâncias químicas adicionais, denominadas adulterantes (paracetamol, cafeína, difenidramina, metorfano, alprazolam, quetiapina, cloroquina, diltiazem, cocaína, procaína, lidocaína, quinina/quinidina, fenacetina e tiamina), e os potenciais efeitos cardíacos dessas substâncias complicam a avaliação dos efeitos eletrocardiográficos da heroína.34 Desa forma, para investigar os efeitos cardíacos da heroína apenas, excluímos aqueles que usaram heroína por injeção intravenosa. O presente estudo demonstrou que o uso de heroína diminuiu significativamente os intervalos QT, QTc e Tpe independentemente do efeito dos adulterantes.

Limitações do Estudo

As principais limitações do presente estudo foram o desenho unicêntrico e o número relativamente menor de indivíduos.

Conclusão

O vício em heroína afeta significativamente os intervalos de tempo QT, QTc e Tpe. Os efeitos de arritmia desses parâmetros já são conhecidos. Os parâmetros eletrocardiográficos desses indivíduos merecem mais atenção. Tendo em vista que o conhecimento atual sobre os efeitos do uso de heroína nas funções cardíacas é limitado, o estudo do assunto é imprescindível para sua contribuição para a literatura. Ainda assim, estudos futuros com uma amostra maior são necessários para alcançar consenso e resultados concretos.

Vinculação acadêmica

Não há vinculação deste estudo a programas de pós-graduação.

Fontes de financiamento .O presente estudo não teve fontes de financiamento externas.

Referências

  • 1.. Hosztafi S, Fürst Z. Therapy in heroin addiction. Neuropsychopharmacol Hung. 2014;16(3):127-40. [PubMed]; Hosztafi S, Fürst Z. Therapy in heroin addiction. Neuropsychopharmacol Hung . 2014;16(3):127–140. [PubMed] [Google Scholar]
  • 2.. Demaret I, Lemaître A, Ansseau M. Heroin. Rev Med Liege. 2013;68(5-6):287-93. [PubMed]; Demaret I, Lemaître A, Ansseau M. Heroin. Rev Med Liege . 2013 May-Jun;68:287–293. [PubMed] [Google Scholar]
  • 3.. Morrison WJ, Wetherill S, Zyroff J. The acute pulmonary edema of heroin intoxication. Radiology. 1970;97(2):347–51. [DOI] [PubMed]; Morrison WJ, Wetherill S, Zyroff J. The acute pulmonary edema of heroin intoxication. Radiology . 1970;97(2):347–351. doi: 10.1148/97.2.347. [DOI] [PubMed] [Google Scholar]
  • 4.. Remskar M, Noc M, Leskovsek B, Horvat M. Profound circulatory shock following heroin overdose. Resuscitation. 1998;38(1):51–3. [DOI] [PubMed]; Remskar M, Noc M, Leskovsek B, Horvat M. Profound circulatory shock following heroin overdose. Resuscitation . 1998;38(1):51–53. doi: 10.1016/s0300-9572(98)00065-3. [DOI] [PubMed] [Google Scholar]
  • 5.. Schwartzfarb L, Singh G, Marcus D. Heroin associated rhabdomyolysis with cardiac involvement. Arch Intern Med. 1977;137(9):1255–7. [PubMed]; Schwartzfarb L, Singh G, Marcus D. Heroin associated rhabdomyolysis with cardiac involvement. Arch Intern Med . 1977;137(9):1255–1257. [PubMed] [Google Scholar]
  • 6.. Scherrer P, Delaloye-Bischof A, Turini G, Perret C. Myocardial involvement in nontraumatic rhabdomyolysis following an opiate overdose. Schweiz Med Wochenschr. 1985;115(34):1166–70. [PubMed]; Scherrer P, Delaloye-Bischof A, Turini G, Perret C. Myocardial involvement in nontraumatic rhabdomyolysis following an opiate overdose. Schweiz Med Wochenschr . 1985;115(34):1166–1170. [PubMed] [Google Scholar]
  • 7.. Wolters EC, Van Wijngaarden GK, Stam FC, Rengelink H, Lousberg RJ, Schipper ME, et al. Leucoencephalopathy after inhaling “heroin” pyrolysate. Lancet. 1982;2(8310):1233–6. [DOI] [PubMed]; Wolters EC, Van Wijngaarden GK, Stam FC, Rengelink H, Lousberg RJ, Schipper ME, et al. Leucoencephalopathy after inhaling “heroin” pyrolysate. Lancet . 1982;2(8310):1233–1236. doi: 10.1016/s0140-6736(82)90101-5. [DOI] [PubMed] [Google Scholar]
  • 8.. Chang LR, Lin YH, Kuo TB, Ho YC, Chen SH, Wu Chang HC, et al. Cardiac autonomic modulation during methadone therapy among heroin users: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2012;37(1):188-93. [DOI] [PubMed]; Chang LR, Lin YH, Kuo TB, Ho YC, Chen SH, Wu Chang HC, et al. Cardiac autonomic modulation during methadone therapy among heroin users: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry . 2012;37(1):188–193. doi: 10.1016/j.pnpbp.2012.01.006. [DOI] [PubMed] [Google Scholar]
  • 9.. Nerantzis CE, Couvaris CM, Pastromas SC, Marianou SK, Boghiokas ID, Koutsaftis PN. Histological findings of the atrioventricular conductive system in street heroin addicts, victims of sudden unexpected death. J Forensic Sci. 2013;58 Suppl 1:S99-104. [DOI] [PubMed]; Nerantzis CE, Couvaris CM, Pastromas SC, Marianou SK, Boghiokas ID, Koutsaftis PN. Histological findings of the atrioventricular conductive system in street heroin addicts, victims of sudden unexpected death. J Forensic Sci . 2013;58(Suppl 1):S99–104. doi: 10.1111/j.1556-4029.2012.02304.x. [DOI] [PubMed] [Google Scholar]
  • 10.. Nerantzis CE, Koulouris SN, Marianou SK, Pastromas SC, Koutsaftis PN, Agapitos EB Histologic findings of the sinus node and the perinodal area in street heroin addicts, victims of sudden unexpected death. J Forensic Sci. 2011;56(3):645-8. [DOI] [PubMed]; Nerantzis CE, Koulouris SN, Marianou SK, Pastromas SC, Koutsaftis PN, Agapitos EB. Histologic findings of the sinus node and the perinodal area in street heroin addicts, victims of sudden unexpected death. J Forensic Sci . 2011;56(3):645–648. doi: 10.1111/j.1556-4029.2011.01717.x. [DOI] [PubMed] [Google Scholar]
  • 11.. Pons-Lladó G, Carreras F, Borrás X, Cadafalch J, Fuster M, Guardia J, et al. Findings on Doppler echocardiography in asymptomatic intravenous heroin users. Am J Cardiol. 1992;69(3):238-41. [DOI] [PubMed]; Pons-Lladó G, Carreras F, Borrás X, Cadafalch J, Fuster M, Guardia J, et al. Findings on Doppler echocardiography in asymptomatic intravenous heroin users. Am J Cardiol . 1992;69(3):238–241. doi: 10.1016/0002-9149(92)91312-r. [DOI] [PubMed] [Google Scholar]
  • 12.. Demirkıran A, Albayrak N, Albayrak Y, Zorkun CS. Speckle-tracking strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol. 2018;19(6):388-393. [DOI] [PMC free article] [PubMed]; Demirkıran A, Albayrak N, Albayrak Y, Zorkun CS. Speckle-tracking strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol . 2018;19(6):388–393. doi: 10.14744/AnatolJCardiol.2018.76429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.. Paterna S, Di Pasquale P, Montaina G, Procaccianti P, Antona A, Scaglione R, et al. Effect of heroin and morphine on cardiac performance in isolated and perfused rabbit heart: evaluation of cardiac haemodynamics, myocardial enzyme activity and ultrastructure features. Cardiologia. 1991;36(10):811-5. [PubMed]; Paterna S, Di Pasquale P, Montaina G, Procaccianti P, Antona A, Scaglione R, et al. Effect of heroin and morphine on cardiac performance in isolated and perfused rabbit heart: evaluation of cardiac haemodynamics, myocardial enzyme activity and ultrastructure features. Cardiologia . 1991;36(10):811–815. [PubMed] [Google Scholar]
  • 14.. Dettmeyer R, Friedrich K, Schmidt P, Madea B. Heroin-associated myocardial damages--conventional and immunohistochemical investigations. Forensic Sci Int. 2009;187(1-3):42-6. [DOI] [PubMed]; Dettmeyer R, Friedrich K, Schmidt P, Madea B. Heroin-associated myocardial damages--conventional and immunohistochemical investigations. Forensic Sci Int . 2009 Jan-Mar;187:42–46. doi: 10.1016/j.forsciint.2009.02.014. [DOI] [PubMed] [Google Scholar]
  • 15.. Pavlidis P, Deftereou TE, Karakasi MV, Papadopoulos N, Zissimopoulos A, Pagonopoulou O, et al. Intravenous Heroin Abuse and Acute Myocardial Infarction: Forensic Study. Am J Forensic Med Pathol. 2016;37(2):95-8. [DOI] [PubMed]; Pavlidis P, Deftereou TE, Karakasi MV, Papadopoulos N, Zissimopoulos A, Pagonopoulou O, et al. Intravenous Heroin Abuse and Acute Myocardial Infarction: Forensic Study. Am J Forensic Med Pathol . 2016;37(2):95–98. doi: 10.1097/PAF.0000000000000224. [DOI] [PubMed] [Google Scholar]
  • 16.. Orlando E, Fantini A, D’Antuono G. Echocardiographic study of the left ventricle function in heroin dependence. Clin Ter. 1989;128(2):75-9. [PubMed]; Orlando E, Fantini A, D’Antuono G. Echocardiographic study of the left ventricle function in heroin dependence. Clin Ter . 1989;128(2):75–79. [PubMed] [Google Scholar]
  • 17.. Glauser FL, Downie RL, Smith WR. Electrocardiographic abnormalities in acute heroin overdosage. Bull Narc. 1977;29(1):85-9. [PubMed]; Glauser FL, Downie RL, Smith WR. Electrocardiographic abnormalities in acute heroin overdosage. Bull Narc . 1977;29(1):85–89. [PubMed] [Google Scholar]
  • 18.. Rambod M, Elhanafi S, Mukherjee D. Brugada phenocopy in concomitant ethanol and heroin overdose. Ann Noninvasive Electrocardiol. 2015;20(1):87-90. [DOI] [PMC free article] [PubMed]; Rambod M, Elhanafi S, Mukherjee D. Brugada phenocopy in concomitant ethanol and heroin overdose. Ann Noninvasive Electrocardiol . 2015;20(1):87–90. doi: 10.1111/anec.12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.. Pereira R, Campuzano O, Sarquella-Brugada G, Cesar S, Iglesias A, Brugada J, et al. Short QT syndrome in pediatrics. Clin Res Cardiol. 2017;106(6):393-400. [DOI] [PubMed]; Pereira R, Campuzano O, Sarquella-Brugada G, Cesar S, Iglesias A, Brugada J, et al. Short QT syndrome in pediatrics. Clin Res Cardiol . 2017;106(6):393–400. doi: 10.1007/s00392-017-1094-1. [DOI] [PubMed] [Google Scholar]
  • 20.. Akdis D, Saguner AM, Medeiros-Domingo A, Schaller A, Balmer C, Steffel J, et al. Multiple clinical profiles of families with the short QT syndrome. Europace. 2018;20(FI1):f113-f121. [DOI] [PubMed]; Akdis D, Saguner AM, Medeiros-Domingo A, Schaller A, Balmer C, Steffel J, et al. Multiple clinical profiles of families with the short QT syndrome. Europace . 2018;20:f113–f121. doi: 10.1093/europace/eux186. FI1. [DOI] [PubMed] [Google Scholar]
  • 21.. Viskin S, Zeltser D, Ish-Shalom M, Katz A, Glikson M, Justo D, et al. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of QT intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm. 2004;1(5):587-91. [DOI] [PubMed]; Viskin S, Zeltser D, Ish-Shalom M, Katz A, Glikson M, Justo D, et al. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of QT intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm . 2004;1(5):587–591. doi: 10.1016/j.hrthm.2004.07.010. [DOI] [PubMed] [Google Scholar]
  • 22.. Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41(6):567–74. [DOI] [PubMed]; Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol . 2008;41(6):567–574. doi: 10.1016/j.jelectrocard.2008.07.016. [DOI] [PubMed] [Google Scholar]
  • 23.. Marjamaa A, Oikarinen L, Porthan K, Ripatti S, Peloso G, Noseworthy PA, et l. A common variant near the KCNJ2 gene is associated with T-peak to T-end interval. Heart Rhythm. 2012;9(7):1099-103. [DOI] [PMC free article] [PubMed]; Marjamaa A, Oikarinen L, Porthan K, Ripatti S, Peloso G, Noseworthy PA, et al. A common variant near the KCNJ2 gene is associated with T-peak to T-end interval. Heart Rhythm . 2012;9(7):1099–1103. doi: 10.1016/j.hrthm.2012.02.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.. Hassamal S, Fernandez A, Moradi Rekabdarkolaee H, Pandurangi A. QTc Prolongation in Veterans With Heroin Dependence on Methadone Maintenance Treatment. Int J High Risk Behav Addict. 2015;4(2):e23819. [DOI] [PMC free article] [PubMed]; Hassamal S, Fernandez A, Moradi Rekabdarkolaee H, Pandurangi A. QTc Prolongation in Veterans With Heroin Dependence on Methadone Maintenance Treatment. Int J High Risk Behav Addict . 2015;4(2):e23819. doi: 10.5812/ijhrba.4(2)2015.23819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.. Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol. 2017;83(10):2274-82. [DOI] [PMC free article] [PubMed]; Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol . 2017;83(10):2274–2282. doi: 10.1111/bcp.13326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.. Katchman AN, McGroary KA, Kilborn MJ, Kornick CA, Manfredi PL, Woosley RL, et al. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther. 2002; 303(2):688–94. [DOI] [PubMed]; Katchman AN, McGroary KA, Kilborn MJ, Kornick CA, Manfredi PL, Woosley RL, et al. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther . 2002;303(2):688–694. doi: 10.1124/jpet.102.038240. [DOI] [PubMed] [Google Scholar]
  • 27.. Whelan PJ, Remski K. Buprenorphine vs methadone treatment: A review of evidence in both developed and developingworlds. J Neurosci Rural Pract. 2012 Jan;3(1):45-50. [DOI] [PMC free article] [PubMed]; Whelan PJ, Remski K. Buprenorphine vs methadone treatment: A review of evidence in both developed and developingworlds. J Neurosci Rural Pract . 2012 Jan;3(1):45–50. doi: 10.4103/0976-3147.91934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.. Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol. 2017;83(10):2274-82. [DOI] [PMC free article] [PubMed]; Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol . 2017;83(10):2274–2282. doi: 10.1111/bcp.13326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.. Harris SC, Morganroth J, Ripa SR, Thorn MD, Colucci S. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med. 2017;129(1):69-80. [DOI] [PubMed]; Harris SC, Morganroth J, Ripa SR, Thorn MD, Colucci S. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med . 2017;129(1):69–80. doi: 10.1080/00325481.2017.1270156. [DOI] [PubMed] [Google Scholar]
  • 30.. Stallvik M, Nordstrand B, Kristensen Ø, Bathen J, Skogvoll E, Spigset O. Corrected QT interval during treatment with methadone and buprenorphine--relation to doses and serum concentrations. Drug Alcohol Depend. 2013;129(1-2):88-93. [DOI] [PubMed]; Stallvik M, Nordstrand B, Kristensen Ø, Bathen J, Skogvoll E, Spigset O. Corrected QT interval during treatment with methadone and buprenorphine--relation to doses and serum concentrations. Drug Alcohol Depend . 2013 Jan-Feb;129:88–93. doi: 10.1016/j.drugalcdep.2012.09.016. [DOI] [PubMed] [Google Scholar]
  • 31.. Weiss RD, Rao V. The Prescription Opioid Addiction Treatment Study: What have we learned. Drug Alcohol Depend. 2017 Apr 1;173 Suppl 1:S48-S54. [DOI] [PMC free article] [PubMed]; Weiss RD, Rao V. The Prescription Opioid Addiction Treatment Study: What have we learned. Drug Alcohol Depend . 2017 Apr 1;173(Suppl 1):S48–S54. doi: 10.1016/j.drugalcdep.2016.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.. Rook, E.J, van Ree, J.M, van den Brink, W, Hillebrand, M.J, Huitema, A.D, Hendriks, V.M, et al. Pharmacokinetics and pharmacodynamics of high doses of pharmaceutically prepared heroin, by intravenous or by inhalation route in opioid-dependent patients. Basic Clin Pharmacol Toxicol. 2006;98(1):86–96. [DOI] [PubMed]; Rook E.J, van Ree J.M, van den Brink W, Hillebrand M.J, Huitema A.D, Hendriks V.M, et al. Pharmacokinetics and pharmacodynamics of high doses of pharmaceutically prepared heroin, by intravenous or by inhalation route in opioid-dependent patients. Basic Clin Pharmacol Toxicol . 2006;98(1):86–96. doi: 10.1111/j.1742-7843.2006.pto_233.x. [DOI] [PubMed] [Google Scholar]
  • 33.. Smith, M.L., Shimomura, E.T., Summers, J., Paul, B.D., Nichols, D., Shippee, R., et al. Detection times and analytical performance of commercial urine opiate immunoassays following heroin administration. J Analyt Toxicol. 2000; 24(7):522–9. [DOI] [PubMed]; Smith M.L., Shimomura E.T., Summers J., Paul B.D., Nichols D., Shippee R., et al. Detection times and analytical performance of commercial urine opiate immunoassays following heroin administration. J Analyt Toxicol . 2000;24(7):522–529. doi: 10.1093/jat/24.7.522. [DOI] [PubMed] [Google Scholar]
  • 34.. Phillips KA, Hirsch GA, Epstein DH, Preston KL. Cardiac complications of unwitting co-injection of quinine/quinidine with heroin in an intravenous drug user. Gen Intern Med. 2012 Dec;27(12):1722-5.ng strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol. 2018;19(6):388-393. Speckle strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol. 2018;19(6):388-393.; Phillips KA, Hirsch GA, Epstein DH, Preston KL. Cardiac complications of unwitting co-injection of quinine/quinidine with heroin in an intravenous drug user. Gen Intern Med . 2012 Dec;27(12):1722–1725. doi: 10.1007/s11606-012-2089-2. ng strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol. 2018;19(6):388-393. Speckle strain assessment of left ventricular dysfunction in synthetic cannabinoid and heroin users. Anatol J Cardiol. 2018;19(6):388-393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.. Paterna S, Di Pasquale P, Montaina G, Procaccianti P, Antona A, Scaglione R, et al. Effect of heroin and morphine on cardiac performance in isolated and perfused rabbit heart: evaluation of cardiac haemodynamics, myocardial enzyme activity and ultrastructure features. Cardiologia. 1991;36(10):811-5. [PubMed]; Paterna S, Di Pasquale P, Montaina G, Procaccianti P, Antona A, Scaglione R, et al. Effect of heroin and morphine on cardiac performance in isolated and perfused rabbit heart: evaluation of cardiac haemodynamics, myocardial enzyme activity and ultrastructure features. Cardiologia . 1991;36(10):811–815. [PubMed] [Google Scholar]
  • 14.. Dettmeyer R, Friedrich K, Schmidt P, Madea B. Heroin-associated myocardial damages--conventional and immunohistochemical investigations. Forensic Sci Int. 2009;187(1-3):42-6. [DOI] [PubMed]; Dettmeyer R, Friedrich K, Schmidt P, Madea B. Heroin-associated myocardial damages--conventional and immunohistochemical investigations. Forensic Sci Int . 2009 Jan-Mar;187:42–46. doi: 10.1016/j.forsciint.2009.02.014. [DOI] [PubMed] [Google Scholar]
  • 15.. Pavlidis P, Deftereou TE, Karakasi MV, Papadopoulos N, Zissimopoulos A, Pagonopoulou O, et al. Intravenous Heroin Abuse and Acute Myocardial Infarction: Forensic Study. Am J Forensic Med Pathol. 2016;37(2):95-8. [DOI] [PubMed]; Pavlidis P, Deftereou TE, Karakasi MV, Papadopoulos N, Zissimopoulos A, Pagonopoulou O, et al. Intravenous Heroin Abuse and Acute Myocardial Infarction: Forensic Study. Am J Forensic Med Pathol . 2016;37(2):95–98. doi: 10.1097/PAF.0000000000000224. [DOI] [PubMed] [Google Scholar]
  • 16.. Orlando E, Fantini A, D’Antuono G. Echocardiographic study of the left ventricle function in heroin dependence. Clin Ter. 1989;128(2):75-9. [PubMed]; Orlando E, Fantini A, D’Antuono G. Echocardiographic study of the left ventricle function in heroin dependence. Clin Ter . 1989;128(2):75–79. [PubMed] [Google Scholar]
  • 17.. Glauser FL, Downie RL, Smith WR. Electrocardiographic abnormalities in acute heroin overdosage. Bull Narc. 1977;29(1):85-9. [PubMed]; Glauser FL, Downie RL, Smith WR. Electrocardiographic abnormalities in acute heroin overdosage. Bull Narc . 1977;29(1):85–89. [PubMed] [Google Scholar]
  • 18.. Rambod M, Elhanafi S, Mukherjee D. Brugada phenocopy in concomitant ethanol and heroin overdose. Ann Noninvasive Electrocardiol. 2015;20(1):87-90. [DOI] [PMC free article] [PubMed]; Rambod M, Elhanafi S, Mukherjee D. Brugada phenocopy in concomitant ethanol and heroin overdose. Ann Noninvasive Electrocardiol . 2015;20(1):87–90. doi: 10.1111/anec.12171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.. Pereira R, Campuzano O, Sarquella-Brugada G, Cesar S, Iglesias A, Brugada J, et al. Short QT syndrome in pediatrics. Clin Res Cardiol. 2017;106(6):393-400. [DOI] [PubMed]; Pereira R, Campuzano O, Sarquella-Brugada G, Cesar S, Iglesias A, Brugada J, et al. Short QT syndrome in pediatrics. Clin Res Cardiol . 2017;106(6):393–400. doi: 10.1007/s00392-017-1094-1. [DOI] [PubMed] [Google Scholar]
  • 20.. Akdis D, Saguner AM, Medeiros-Domingo A, Schaller A, Balmer C, Steffel J, et al. Multiple clinical profiles of families with the short QT syndrome. Europace. 2018;20(FI1):f113-f121. [DOI] [PubMed]; Akdis D, Saguner AM, Medeiros-Domingo A, Schaller A, Balmer C, Steffel J, et al. Multiple clinical profiles of families with the short QT syndrome. Europace . 2018;20(FI1):f113–f121. doi: 10.1093/europace/eux186. [DOI] [PubMed] [Google Scholar]
  • 21.. Viskin S, Zeltser D, Ish-Shalom M, Katz A, Glikson M, Justo D, et al. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of QT intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm. 2004;1(5):587-91. [DOI] [PubMed]; Viskin S, Zeltser D, Ish-Shalom M, Katz A, Glikson M, Justo D, et al. Is idiopathic ventricular fibrillation a short QT syndrome? Comparison of QT intervals of patients with idiopathic ventricular fibrillation and healthy controls. Heart Rhythm . 2004;1(5):587–591. doi: 10.1016/j.hrthm.2004.07.010. [DOI] [PubMed] [Google Scholar]
  • 22.. Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol. 2008;41(6):567–74. [DOI] [PubMed]; Gupta P, Patel C, Patel H, Narayanaswamy S, Malhotra B, Green JT, et al. T(p-e)/QT ratio as an index of arrhythmogenesis. J Electrocardiol . 2008;41(6):567–574. doi: 10.1016/j.jelectrocard.2008.07.016. [DOI] [PubMed] [Google Scholar]
  • 23.. Marjamaa A, Oikarinen L, Porthan K, Ripatti S, Peloso G, Noseworthy PA, et l. A common variant near the KCNJ2 gene is associated with T-peak to T-end interval. Heart Rhythm. 2012;9(7):1099-103. [DOI] [PMC free article] [PubMed]; Marjamaa A, Oikarinen L, Porthan K, Ripatti S, Peloso G, Noseworthy PA, et al. A common variant near the KCNJ2 gene is associated with T-peak to T-end interval. Heart Rhythm . 2012;9(7):1099–1103. doi: 10.1016/j.hrthm.2012.02.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.. Hassamal S, Fernandez A, Moradi Rekabdarkolaee H, Pandurangi A. QTc Prolongation in Veterans With Heroin Dependence on Methadone Maintenance Treatment. Int J High Risk Behav Addict. 2015;4(2):e23819. [DOI] [PMC free article] [PubMed]; Hassamal S, Fernandez A, Moradi Rekabdarkolaee H, Pandurangi A. QTc Prolongation in Veterans With Heroin Dependence on Methadone Maintenance Treatment. Int J High Risk Behav Addict . 2015;4(2):e23819. doi: 10.5812/ijhrba.4(2)2015.23819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.. Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol. 2017;83(10):2274-82. [DOI] [PMC free article] [PubMed]; Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol . 2017;83(10):2274–2282. doi: 10.1111/bcp.13326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.. Katchman AN, McGroary KA, Kilborn MJ, Kornick CA, Manfredi PL, Woosley RL, et al. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther. 2002; 303(2):688–94. [DOI] [PubMed]; Katchman AN, McGroary KA, Kilborn MJ, Kornick CA, Manfredi PL, Woosley RL, et al. Influence of opioid agonists on cardiac human ether-a-go-go-related gene K(+) currents. J Pharmacol Exp Ther . 2002;303(2):688–694. doi: 10.1124/jpet.102.038240. [DOI] [PubMed] [Google Scholar]
  • 27.. Whelan PJ, Remski K. Buprenorphine vs methadone treatment: A review of evidence in both developed and developingworlds. J Neurosci Rural Pract. 2012 Jan;3(1):45-50. [DOI] [PMC free article] [PubMed]; Whelan PJ, Remski K. Buprenorphine vs methadone treatment: A review of evidence in both developed and developingworlds. J Neurosci Rural Pract . 2012 Jan;3(1):45–50. doi: 10.4103/0976-3147.91934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.. Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol. 2017;83(10):2274-82. [DOI] [PMC free article] [PubMed]; Isbister GK, Brown AL, Gill A, Scott AJ, Calver L, Dunlop AJ. QT interval prolongation in opioid agonist treatment: analysis of continuous 12-lead electrocardiogram recordings. Br J Clin Pharmacol . 2017;83(10):2274–2282. doi: 10.1111/bcp.13326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.. Harris SC, Morganroth J, Ripa SR, Thorn MD, Colucci S. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med. 2017;129(1):69-80. [DOI] [PubMed]; Harris SC, Morganroth J, Ripa SR, Thorn MD, Colucci S. Effects of buprenorphine on QT intervals in healthy subjects: results of 2 randomized positive- and placebo-controlled trials. Postgrad Med . 2017;129(1):69–80. doi: 10.1080/00325481.2017.1270156. [DOI] [PubMed] [Google Scholar]
  • 30.. Stallvik M, Nordstrand B, Kristensen Ø, Bathen J, Skogvoll E, Spigset O. Corrected QT interval during treatment with methadone and buprenorphine--relation to doses and serum concentrations. Drug Alcohol Depend. 2013;129(1-2):88-93. [DOI] [PubMed]; Stallvik M, Nordstrand B, Kristensen Ø, Bathen J, Skogvoll E, Spigset O. Corrected QT interval during treatment with methadone and buprenorphine--relation to doses and serum concentrations. Drug Alcohol Depend . 2013 Jan-Feb;129:88–93. doi: 10.1016/j.drugalcdep.2012.09.016. [DOI] [PubMed] [Google Scholar]
  • 31.. Weiss RD, Rao V. The Prescription Opioid Addiction Treatment Study: What have we learned. Drug Alcohol Depend. 2017 Apr 1;173 Suppl 1:S48-S54. [DOI] [PMC free article] [PubMed]; Weiss RD, Rao V. The Prescription Opioid Addiction Treatment Study: What have we learned. Drug Alcohol Depend . 2017 Apr 1;173(Suppl 1):S48–S54. doi: 10.1016/j.drugalcdep.2016.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.. Rook, E.J, van Ree, J.M, van den Brink, W, Hillebrand, M.J, Huitema, A.D, Hendriks, V.M, et al. Pharmacokinetics and pharmacodynamics of high doses of pharmaceutically prepared heroin, by intravenous or by inhalation route in opioid-dependent patients. Basic Clin Pharmacol Toxicol. 2006;98(1):86–96. [DOI] [PubMed]; Rook E.J, van Ree J.M, van den Brink W, Hillebrand M.J, Huitema A.D, Hendriks V.M, et al. Pharmacokinetics and pharmacodynamics of high doses of pharmaceutically prepared heroin, by intravenous or by inhalation route in opioid-dependent patients. Basic Clin Pharmacol Toxicol . 2006;98(1):86–96. doi: 10.1111/j.1742-7843.2006.pto_233.x. [DOI] [PubMed] [Google Scholar]
  • 33.. Smith, M.L., Shimomura, E.T., Summers, J., Paul, B.D., Nichols, D., Shippee, R., et al. Detection times and analytical performance of commercial urine opiate immunoassays following heroin administration. J Analyt Toxicol. 2000; 24(7):522–9. [DOI] [PubMed]; Smith M.L., Shimomura E.T., Summers J., Paul B.D., Nichols D., Shippee R., et al. Detection times and analytical performance of commercial urine opiate immunoassays following heroin administration. J Analyt Toxicol . 2000;24(7):522–529. doi: 10.1093/jat/24.7.522. [DOI] [PubMed] [Google Scholar]
  • 34.. Phillips KA, Hirsch GA, Epstein DH, Preston KL. Cardiac complications of unwitting co-injection of quinine/quinidine with heroin in an intravenous drug user. Gen Intern Med. 2012 Dec;27(12):1722-5. [DOI] [PMC free article] [PubMed]; Phillips KA, Hirsch GA, Epstein DH, Preston KL. Cardiac complications of unwitting co-injection of quinine/quinidine with heroin in an intravenous drug user. Gen Intern Med . 2012 Dec;27(12):1722–1725. doi: 10.1007/s11606-012-2089-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
Arq Bras Cardiol. 2020 Dec 1;115(6):1135–1141. [Article in English]

Effect of Heroin on Electrocardiographic Parameters

Ersin Yildirim 1, Murat Selcuk 2, Faysal Saylik 2, Ferit Onur Mutluer 2, Ozgur Deniz 2

Abstract

Background

Heroin addiction is currently a significant health problem, and information on the electrocardiographic effects of heroin is limited.

Objetivo

The aim of the present study is to investigate effects of heroin addiction on electrocardiographic parameters.

Methods

A total of 136 individuals, including 66 individuals who smoke heroin as the study group and 70 healthy individuals with no drug addiction as the control group, were included in the study. Individuals who inject heroin were excluded. Electrocardiographic (ECG) evaluation of those using heroin was performed and compared with those of the control group. In addition, pre-treatment and post-treatment ECG of the heroin group were compared. A p-value of <0.05 was accepted as statistically significant.

Results

Heart rate (77.2±12.8 versus 71.4±11.2; p=0.02) were found to be higher in the heroin group compared to the control group. QT (341.50±25.80 versus 379.11±45.23; p=0.01), QTc intervals (385.12±29.11 versus 411.3±51.70; p<0.01), and T peak to end time (Tpe) (65.41±10.82 versus 73.3±10.13; p<0.01) were significantly shorter in the heroin group. No difference was observed between the groups with regard to Tpe/QT and Tpe/QTc ratios. In the subgroup analysis of the heroin group, QT (356.81±37.49 versus 381.18±40.03; p<0.01) and QTc (382.06±26.41 versus 396.06±29.80; p<0.01) intervals were significantly shorter in the pre-treatment period.

Conclusion

Heroin addiction significantly affects the QT, QTc, and Tpe time intervals. The arrhythmia effects of these parameters are well known. More attention to the electrocardiographic parameters of these individuals should be given. (Arq Bras Cardiol. 2020; 115(6):1135-1141)

Keywords: Heroin; Heroin Dependence; Narcotics/toxicity; Long Qt Syndrome; Arrhythmias, Cardiac/adverse effects; Pulmonary Edema; Renal Insufficiency; Leukoencephalopaties

Introduction

Heroin, which is a central nervous system depressant (diacetylmorphine), is a semi-synthetic opiate. Heroin is a highly abused opioid, and heroin addiction incurs a significant detriment to society worldwide. The prevalence of heroin use has increased in recent years. Mortality among heroin users varies between 1 and 3%, and the most effective treatment method of heroin addiction is opioid replacement therapy.1 , 2Its main adverse effect is respiratory distress, which can lead to death. With loss of tolerance, heroin overdose can be lethal after a period of abstinence. The other various complications of heroin addiction, such as pulmonary edema,3shock,4myocardial damage, acute renal failure,5rhabdomyolysis,6and leukoencephalopathy7have been described in the literature. Besides that, heroin has proved to be effective on vagal modulation and autonomic regulation.8However, our knowledge of the cardiac effects of heroin addiction is limited, which is an important public health problem of this extent. There are also some studies in the literature showing the relation between heroin, myocardial toxicity, and arrhythmias.9 , 10Therefore, understanding heroin dependent ECG changes is essential. The aim of the present study is to investigate effects of heroin addiction on electrocardiographic parameters.

Methods

After approval by the Ethics Committee, a total of 136 individuals were included in the study, which included 66 patients who use heroin via smoking and undergoing therapy in the Alcohol and Drug Addiction Treatment and Training Center, between 2014 and 2017, as the study group; and 70 healthy individuals with no drug addiction other than smoking as the control group. Control group was selected consecutively from the patients visiting the cardiology clinic. ECG evaluation of those using heroin was performed and compared to those of the control group. In addition, pre-treatment and post-treatment ECG of the heroin group was evaluated. The clinical and demographic characteristics of patients, status and duration of heroin addiction were collected from patients and their files in the hospital. Only those with heroin use via smoking were included in the study. Electrocardiography (ECG) records of patients were obtained with Schiller Cardiovit AT-102 plus, using the standard 12 derivation (10 mm/mV calibration and 25 mm/s sliding rate) at first admission to the hospital. Only the patients on heroin which was taken within 12 hours of the ECG records obtained were included the study. ECG measurements of QT and Tpe intervals were performed manually by two expert cardiologists, using a magnifying glass to decrease measurement errors. Leads 2 and V5 were selected for measuring QT and Tpe intervals, respectively. The average of the three beats in each ECG leads was calculated. QT interval is calculated as the interval from the beginning of the QRS to the end of the T wave. Tpe interval is defined as the interval from the peak of T wave to the end of T wave. QTc intervals were calculated using the Bazett formula. Complete blood count (CBC) and biochemical tests were performed using a Beckman Coulter LH-750 and a Beckman Coulter L × 20, respectively; the results of each patient were recorded. Echocardiographic evaluations of all patients were made at the first admission to the hospital. All participants underwent 2D and Doppler echocardiographic evaluation (VIVID 3, General Electric, USA) and the left ventricular ejection fraction was calculated using modified Simpson rules. Those who used heroin via the intravenous route, alcohol-dependent, those with coronary artery diseases, cardiac failure, cardiac valve disorders, known arrhythmias, hypertension, congenital cardiac diseases, diabetes, hepatic or renal failure, chronic obstructive pulmonary disease, endocrine diseases, metabolic or electrolyte disorders, acute or chronic infections, or patients that took medications which can affect QT and QTc intervals were excluded from the study.

Statistical Analysis

Statistical analysis was performed with Statistical Package for Social Sciences (SPSS) for Windows 20 (IBM SPSS Inc., Chicago, IL) and Medcalc 11.4.2 (MedCalc Software, Mariakerke, Belgium) programs. Data compliance with the normal distribution was tested using the Kolmogorov-Smirnov test. The normally distributed numeric variables were expressed as mean ± standard deviation. Categorical variables were expressed as numbers and percentages. For the comparisons between the heroin and the control groups, unpaired student’s t test was used. Chi-square and Fisher’s exact tests were carried out to compare categorical variables. For the comparisons of both the pre-treatment and post-treatment periods, McNemar’s test and t-test paired samples were used. A p -value of <0.05 was accepted as statistically significant.

Results

The distribution of the study population (n=136, mean age 30.40±9.58) was as following: 66 (48.52%) Heroin (+) and 70 (51.47%) Heroin (-). Females corresponded to 8.82% of the study population. There was no significant difference in the distribution of mean age between groups. In the heroin group, the mean duration of heroin use was five years. Statistically, there are not significant differences between the groups, related to the gender, smoking, left ventricular ejection fraction, and cerebrovascular disease. No difference was determined in the other demographic and laboratory characteristics between both groups ( Table 1 ).

Table 1. – Groups’ Baseline Characteristics and Laboratory Findings.

Variables Heroin (+) (n= 66) Heroin (-) (n= 70) p-value
Baseline characteristics      
 Age (years old), mean (SD) 30.2±10.1 30.6±9.1 0.808
 Gender (female), n (%) 3(4.5%) 9(12.8%) 0.087
 Current Smoker, n (%) 35(53.0%) 31(44.2%) 0.307
 Coronary Artery disease, n (%) 0 0 -
 Hypertension, n (%) 0 0 -
 Diabetes Mellitus, n (%) 0 0 -
 Cerebrovascular Disease, n (%) 1(1.5%) 2(2.8%) 0.594
 Left ventricular ejection fraction (%) 59.8±2.9 60.4±9.4 0.620
Laboratory Findings      
 Sodium (mmol/dl; SD) 139.48±4.81 140.37±5.20 0.302
 Potassium (mmol/dl; SD) 4.32±0.51 4.45±0.65 0.198
 Calcium (mg/dl; SD) 9.45±0.82 9.53±0.93 0.596
 Magnesium (mg/dl; SD) 1.99±0.30 2.02±0.26 0.533
 Creatinine (mg/dl; SD) 0.77±0.22 0.72±0.23 0.197
 HDL-C (mg/dl; SD) 37.61±8.45 38.89±10.53 0.437
 LDL-C (mg/dl; SD) 137.74±39.81 125.66±45.14 0.101
 Triglyceride (mg/dl; SD) 155.42±96.50 163.44±85.55 0.608
 WBC (x103/µL; SD) 6.89±4.03 7.12±4.35 0.750
 Hemoglobin (g/dL; SD) 14.31±4.38 14.53±2.74 0.724
 Hematocrit, n (%;SD) 42.53±4.11 42.88±5.43 0.673
 Platelets (x103/µL; SD) 253.75±68.32 261.16±77.14 0.555
 RDW% 15.23±2.06 13.88±1.78 0.001
  TSH(uIU/mL) 2.12±1.77 2.16±1.98 0.896

* Independent Samples T-Test, chi-square Test, Fisher’s Exact Test *p<0.05 statistically significant. Continues variables are reported mean ± SD). Categorical variables are reported n (%). HDL-C: High Density Lipoprotein Cholesterol; LDL-C: Low Density Lipoprotein Cholesterol; WBC: White Blood Cell; RDW: Red Cell Distribution Width; TSH: Thyroid Stimulating Hormone.

Comparison of the electrocardiographic findings between the groups revealed that there was no statistically difference between the groups in terms of PR period, nonspecific ST segment-T wave changes, QRS and R wave peak time durations. In heroin (+) group, QT (341.50±25.80 versus 379.11±45.23, p<0.01) and QTc (385.12±29.11 versus 411.3±51.70, p<0.01) intervals were significantly shorter than heroin (-) group. T-peak to T-end time was significantly shorter in the heroin (+) group, compared to the heroin (-) group (65.41±10.82 versus 73.3±10.13, p<0.01). No significant difference was observed between both groups in terms of Tpe/QT and Tpe/QTc ratios ( Table 2 ).

Table 2. – ECG Findings of the Groups.

ECG Findings Heroin (+) (n= 66) Heroin (-) (n= 70) p-value
Heart Rate, beat/min 77.25±12.84 71.43±11.22 0.02
PR, msc 147.83±29.49 151.12±33.19 0.54
Nonspecific ST segment-T wave changes, n (%) 8(12.1%) 4(5.7%) 0.18
QRS, msc 98.82±19.53 100.50±19.87 0.49
QT, msc 341.50±25.80 379.11±45.23 <0.01
QTc, msc 385.12±29.11 411.3±51.70 <0.01
Tpe, msc 65.41±10.82 73.3±10.13 <0.01
R wave peak time, msc 32.18±8.16 34.22±9.32 0.17
Tpe/QT 0.19±0.03 0.2±0.03 0.70
Tpe/QTc 0.17±0.03 0.18±0.03 0.15

*Independent Samples T-Test, Chi-square Test, Fisher’s Exact Test; Continues variables are reported as mean ± SD). Categorical variables are reported as n (%); p<0.05 statistically significant.

A total of 16 patients completed the treatment successfully. In the subgroup analysis of this group, QT (356.81±37.49 versus 381.18±40.03, p<0.01) and QTc (382.06±26.41 versus 396.06±29.80, p<0.01) intervals were significantly shorter in the pre-treatment period. No difference was determined in the other electrocardiographic parameters between both the pre-treatment and posttreatment periods ( Table 3 ).

Table 3. – ECG findings of treated patients.

Variables Before Treatment (n= 16) After Treatment (n= 16) p-value
Heart Rate, beat/min 79.06±9.08 74.81±8.37 0.02
PR, msc 148.75±18.65 150.01±19.15 0.13
Nonspecific ST segment-T wave changes, n (%) 3(18.7) 3(18.7) 1.00
QRS, msc 98.08±10.58 98.68±8.80 0.46
QT, msc 356.81±37.49 381.18±40.03 <0.01
QTc, msc 382.06±26.41 396.06±29.80 <0.01
Tpe, msc 64.75±8.10 66.37±9.68 0.28
R wave peak time, msc 33.06±4.80 33.93±5.10 0.42
Tpe/QT 0.18±0.02 0.17±0.02 0.18
Tpe/QTc 0.17±0.02 0.18±0.02 0.23

* McNemar’s test, paired samples t-test. Continues variables are reported as mean ± SD, and categorical variables are reported as n (%); p<0.05 statistically significant.

Discussion

Today, heroin addiction is a significant health problem. However, despite that, information on the electrocardiographic effects of heroin is limited. To the best of our knowledge, the present study is the first in literature about heroin-dependent electrocardiographic changes. In this study, we showed that heroin addiction significantly affects QT, QTc, and Tpe time intervals.

Heroin addiction is responsible for cardiac events. The effect of heroin use on cardiac functions has been previously investigated in some studies. Heroin use was shown to significantly increase the rate of mitral and tricuspid valve abnormalities.11Demirkıran et al.12demonstrated that synthetic cannabinoids negatively affected the left ventricular function, whereas heroin did not.12Heroin use does not seem to have any effects on the left ventricular functions according to the results of these studies; on the other hand, atrial and myocardial irregularities with histopathological sampling13and interstitial myocardial leukocyte count, T lymphocyte and macrophage counts were observed to promote a five-fold increase in myocardial samples.14The cardiac effects of heroin are not limited to myotoxic effects. Pavlidis et al.15reported that myocardial infarction could be observed, even though rarely, in which the common mechanism is unknown.15Orlando et al.16reported a subclinical reduction in the ejection fraction of the left ventricle in 20 heroin-dependent individuals.16However, these studies do not provide any information about the effect of heroin addiction on electrocardiographic parameters. Furthermore, in studies investigating the mechanisms of heroin-related arrhythmias and subsequent sudden deaths, heroin use did not only lead to myocardial infiltration, but it also led to fibromuscular dysplasia in the sinus node, atrioventricular node and transmission pathways, and to fat infiltration; they concluded that this may be the cause of arrhythmia related to sudden death in heroin-dependent individuals.9 , 10Therefore, revealing heroin-dependent ECG changes has become even more important.

In one of the first studies on the electrocardiographic effects of heroin dependence, Glauser et al.17showed that the most common findings were nonspecific ST-T changes in 17 patients; sinus tachycardia, in 11 patients.17However, electrocardiographic parameters such as QT, QTc, Tpe time, and QSR durations have not been examined in this study. In a case report, authors showed that heroin overdose is a possible cause of Brugada phenocopy.18Although some studies have been performed on mice and dogs, there is not much literature information about electrocardiograms in humans. In the present study, heroin addiction was shown to significantly decrease QT, QTc, and Tpe time intervals. The short QT syndrome, such as QT prolongation, is also well known for its association to severe cardiac arrhythmias and sudden cardiac death.19 - 21In addition, the Tpe interval has been proposed as a non-invasive marker of arrhythmic risk. T-peak to T-end interval on the electrocardiogram (ECG) is a measure of myocardial dispersion of repolarization. Increasing evidence suggests that Tpe interval may predict arrhythmia susceptibility in patients with various cardiovascular diseases.22Marjamaa et al.23concluded that the minor allele of common variant rs7219669 is associated to Tpe interval shortening in two independent study populations, thus being a candidate to modulate arrhythmia susceptibility at population level.23In the present study, heroin use was found to have a significant effect on these important parameters. Heroin users show reduced cardiac vagal modulation, and methadone therapy raised vagal activity directly in individuals who had recently relapsed into heroin use.8In addition to the increased myocardium inflammatory findings, we also believe that this decrease in vagal activity may be responsible for ECG changes. Most studies on heroin addiction and ECG are about methadone. Methadone is used in the treatment of heroin addiction, and one of its most important known effects is the prolongation of QT and QTc durations.24 , 25Methadone is an inhibitor of the cardiac ion channel KCNH226 and causes QT prolongation in a dose-dependent manner.26On the other hand, it can increase vagal activity and prolong QT duration.8After the present study, we believe that a part of methadone’s effects may be related to the neutralization of the heroin effect. Our study demonstrated that heroin addiction significantly changed QT, QTc, and Tpe intervals independent from the effect of adulterants and methadone. In addition to heroin dependent individuals, methadone is also known to prolong QT. However, in heroin user group, this result should be taken into consideration when discussing the QT prolonging effect of methadone in those who depend on heroin. Although the effect of heroin on potassium channels is unknown, the effect on vagal activity has been shown.8With these results, even though it is not responsible for all QT prolongation mechanism, we think that neutralizing heroin effects significantly contributes to QT prolongation. With the present study, we cannot explain exactly whether QT prolongation is the direct effect of methadone or the result of the neutralization of the heroin effect in previous studies. In terms of bringing a new point of view, it is an important subject in guiding the other studies. On the other hand, methadone is a complete opioid agonist, and overdose deaths are a major problem. Buprenorphine, a partial opioid agonist, has become an increasingly popular option in clinical practice in our country and all over the world. Buprenorphine is probably the safer agent due to its unique pharmacological action and has been declared a new dawn for treating heroin dependence with less abuse potential and low overdose risk.27Therapeutic doses of buprenorphine were shown to have no effects on QT and QTc duration,28 , 29and buprenorphine in commonly used doses is a suitable alternative to methadone, with regard to the risk of QTc prolongation.30Therefore, individuals from the present study were treated with buprenorphine instead of methadone. Buprenorphine had no significant effects on QT and QTc durations, which was one of our study advantages. Seen that, we observed the effects of heroin on ECG more clearly. When we look at the treatment subgroup, there is a significant change in QT and QTc durations because of heroin discontinuation. If these individuals were treated with methadone, understanding whether this effect was due to heroin or methadone would be very difficult. Unfortunately, like in other countries, the most important disadvantage in this subgroup is the proportion of patients who can complete medical heroin-addiction treatment, which is insufficient in our study.31Most patients could not complete the treatment, and that is why the number of individuals in the study subgroup decreased significantly. Although there was a significant change in QT and QTc in the post-treatment group, there was only a numerical increase in Tpe duration, and this increase did not reach statistical significance. We assume this is due to insufficient number of individuals who have completed the treatment. However, studies with a larger number of participants are needed to make a definite decision on this issue.

Heroin has an extremely short half-life in blood (less than five minutes), and is immediately converted to the active metabolite 6-acetylmorphine (6-AM), which is further metabolized to morphine.32In urine, active metabolite 6-AM can be detected for a longer period, possibly up to 12 hours.33Therefore, patients who had used heroin only in the last 12 hours were included in the present study. On the other hand, when heroin is used via the intravenous route, it is administered together with additional chemical substances, named as adulterants (acetaminophen, caffeine, diphenhydramine, methorphan, alprazolam, quetiapine, chloroquine, diltiazem, cocaine, procaine, lidocaine, quinine/quinidine, phenacetine, and thiamine), and the potential cardiac effects of these substances complicate the evaluation of heroin electrocardiographic effects.34Thus, in order to investigate the cardiac effects of only heroin, we excluded those who used heroin by intravenous injection. The present study demonstrated that heroin use significantly decreased the QT, QTc and Tpe intervals independent from the effect of adulterants.

Study limitations

Our study had some limitations: the single-center design and the relatively lower number of individuals are the most important ones.

Conclusion

Heroin use is a serious public health issue, which significantly affects the QT, QTc, and Tpe time intervals. The arrhythmia effects of these parameters are well known, and we should be more alert to the electrocardiographic parameters of these individuals. Given that the present knowledge on the effects of heroin use on cardiac functions is limited, studying the matter is imperative for its contribution to the literature. Nonetheless, further studies with larger sample sizes are needed for a consensus and clear results.

Study Association

This study is not associated with any thesis or dissertation work.

Sources of Funding .There were no external funding sources for this study.


Articles from Arquivos Brasileiros de Cardiologia are provided here courtesy of Sociedade Brasileira de Cardiologia

RESOURCES