Skip to main content
Bioscience Reports logoLink to Bioscience Reports
. 2021 May 21;41(5):BSR20210617. doi: 10.1042/BSR20210617

Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus

Varun Alur 1, Varshita Raju 2, Basavaraj Vastrad 3, Anandkumar Tengli 4, Chanabasayya Vastrad 5,, Shivakumar Kotturshetti 5
PMCID: PMC8145272  PMID: 33890634

Abstract

Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.

Keywords: bioinformatics analysis, differentially expressed genes, gestational diabetes mellitus, novel biomarkers, small drug molecules

Introduction

Gestational diabetes mellitus (GDM) is the metabolic disorder diagnosed during pregnancy, affecting 2–5% of pregnant women worldwide [1,2]. Risk factors of GDM include obesity, previous occurrence of diabetes, family history of type 2 diabetes, preeclampsia, hypertension, cardiovascular diseases and genetic factors [3]. At third trimester of pregnancy, blood glucose levels are drastically elevated [4]. Moreover, the elevated glucose level in pregnancy is closely linked with detrimental consequences in the newborn babies includes fetal hyperglycemia and cardiovascular disease [5]. Therefore, it is essential to examine the factual molecular targets included in occurrence and advancement of GDM, in order to make an improvement to the diagnosis, prognosis and treatment of GDM.

The molecular mechanisms of GDM initiation and development remain unclear. It is therefore essential to identify new genes and pathways that are linked with GDM progression and patient prognosis, which might not only help to explicate the underlying molecular mechanisms associated, but also to discover new diagnostic molecular markers and therapeutic targets. Transcription profiling by array can rapidly detect gene expression on a global basis and are particularly useful in screening for differentially expressed genes (DEGs) [6]. Gene chips allow the analysis of gene expression in a high-throughput way with great sensitivity, specificity and repeatability. A symbolic amount of data have been produced via the use of gene chips and the majority of such gene expression datasets have been uploaded and stored in public databases includes ArrayExpress database and NCBI‐Gene Expression Omnibus (NCBI‐GEO) database. Previous investigation concerning GDM transcription profiling by array have found hundreds of DEGs [7,8]. The availability of bioinformatics analysis based on high-throughput technology enabled the investigation of altered gene expression and the interaction between genes in GDM, to provide novel insights for further in-depth investigations.

In the current investigation, public transcription profiling by array data of E-MTAB-6418 from ArrayExpress database was downloaded. A total of 38 patients with GDM and 70 non-GDM candidates data in E-MTAB-6418 were available. DEGs between patients with GDM and non-GDM candidates were filtered and obtained using bioconductor package limma in R software. Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. The functions of the DEGs were further assessed by PPI network and module analyses to identify the hub genes in GDM. Subsequently, miRNA–hub gene regulatory network and TF–hub gene regulatory network were constructed and analyzed to find out the hub genes, miRNAs and TFs in GDM. Further, hub genes were validated by receiver operating characteristic curve (ROC) analysis and RT-PCR. Finally, a molecular docking study was performed for prediction of small drug molecules. Collectively, the findings of the current investigation highlighted hub genes and pathways that might contribute to the pathology of GDM. These might provide a basis for the advancement of future diagnostic, prognostic and therapeutic targets for GDM.

Materials and methods

Transcription profiling by array data information

The mRNA expression profile E-MTAB-6418 [9] based on A-MEXP-2072—Illumina HumanHT-12_V4_0_R2_15002873_B was downloaded from the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/) [10], which included 38 patients with GDM and 70 non-GDM candidates.

Identification of DEGs

To obtain DEGs between GDM and non-GDM samples. After limma package in R analysis [11], results including adjusted P-values (adj. P. Val) and log FC were provided. Cut-off criterion was set as adj. P. Val <0.05, |log FC| > 1.158 for up-regulated genes and |log FC| < −0.83 for down-regulated genes. A list of candidate DEGs was obtained via the above methods.

Gene ontology and pathway enrichment of DEGs analysis

Gene ontology (GO) analysis (http://geneontology.org/) [12] and REACTOME (https://reactome.org/) [13] pathway enrichment analysis were both integrated in the ToppGene (ToppFun) (https://toppgene.cchmc.org/enrichment.jsp) [14] program. Therefore, ToppGene was capable of providing comprehensive annotations for functional and pathway interpretations. In this experiment, DEGs were uploaded on to ToppGene in order to perform related GO and REACTOME pathway enrichment analyses. The cut-off criterion was set as P<0.05.

PPI network establishment and modules selection

Search Tool for the Retrieval of Interacting Genes StringDB interactome (https://string-db.org/) is a database of known and predicted protein–protein interactions (PPIs) [15]. All candidate DEGs were posted into the STRING website, with a confidence score of ≥0.4 set as the cut-off criterion for PPI network construction. Then, Cytoscape (version 3.8.2, http://www.cytoscape.org/) [16] software was utilized to construct protein interaction relationship network. The Network Analyzer plugin was performed to scale node degree [17], betweenness centrality [18], stress centrality [19] and closeness centrality [20] of the PPI network. Significant modules in the visible PPI network were screened using the PEWCC1 (http://apps.cytoscape.org/apps/PEWCC1) [21] plugin. Degree cutoff = 2, node score cutoff = 0.2, k-core = 2 and max depth = 100 were set as the cut-off criterion. Three highest degree modules were extracted, and the potential mechanisms of each module were investigated with ToppGene. A degree of ≥10 was set as the filter criterion. Hub genes with high degree were selected as the potential key genes and biomarkers.

miRNA–hub gene regulatory network construction

The miRNet database (https://www.mirnet.ca/) [22] is an open-source platform mainly focusing on miRNA–target interactions. miRNet utilizes 14 established miRNA–target prediction databases, including TarBase, miRTarBase, miRecords, miRanda, miR2Disease, HMDD, PhenomiR, SM2miR, PharmacomiR, EpimiR, starBase, TransmiR, ADmiRE and TAM 2.0. In the present study, miRNAs were considered the targeted miRNAs of hub genes. Subsequently, the network of the hub genes and their targeted miRNAs was visualized by Cytoscape software.

TF–hub gene regulatory network construction

The NetworkAnalyst database (https://www.networkanalyst.ca/) [23] is an open-source platform mainly focusing on TF–target interactions. NetworkAnalyst utilizes three established TF–target prediction databases, including ENCODE, JASPAR, ChEA. In the present study, TFs were considered the targeted TFs of hub genes based on ChEA database. Subsequently, the network of the hub genes and their targeted TFs was visualized by Cytoscape software.

Receiver operating characteristic curve analysis

The receiver operating characteristic curve (ROC) was constructed by predicting the probability of a diagnosis being of high or low integrated score of significant hub gene expression in GDM. Area under curve (AUC) analysis was operated to calculate the diagnostic ability by using the statistical package pROC in R software [24].

RT-PCR analysis

The HTR­8/SVneo (ATCC CRL3271) cell line procured from ATCC. For normal HTR­8/SVneo (ATCC CRL3271) cell line was grown in RPMI-1640 medium added with 10% fetal bovine serum, containing 5.5 mM glucose, and 1% penicillin/streptomycin. This cell line was incubated at 37°C in a 5% CO2 in humidified cell culture incubator. Similarly, for GDM HTR­8/SVneo (ATCC CRL3271) cell line was grown in RPMI-1640 medium added with 10% fetal bovine serum, containing 5.5 mM glucose, and 1% penicillin/streptomycin. This cell line was incubated at 37°C in a 5% CO2 in humidified cell culture incubator for 24 h, then stimulated with various concentrations 40 mM of d-glucose for 6 h. TRIzol (cat. no. 9109; Takara Bio, Inc.) was used to isolate total RNA from HTR­8/SVneo cell line and HTR­8/SVneo cell line treated with glucose according to the manufacturer’s instructions. TRI Reagent (Sigma, U.S.A.). was used to isolate total RNA from each tissue sample according to the manufacturer’s instructions. Then, total RNA was reverse transcribed into cDNAs using the FastQuant RT kit (with gDNase; Tiangen Biotech Co., Ltd.). RT-PCR was performed to measure the levels of cDNAs using a QuantStudio 7 Flex real-time PCR system (Thermo Fisher Scientific, Waltham, MA, U.S.A.). RT-PCR procedure was performed as follows: pre-denaturation at 95°C for 30 s for 1 cycle followed by 40 cycles of 95°C for 5 s and 60°C for 20 s. The relative expression level of the hub genes was calculated following comparative CT method [25]. β-actin was used to normalize the mRNA expression level. The primer sequences are listed in Table 1.

Table 1. The sequences of primers for quantitative RT-PCR.

Genes Forward primers Reverse primers
HSP90AA1 AGGAGGTTGAGACGTTCGC AGAGTTCGATCTTGTTTGTTCGG
EGFR AGGCACGAGTAACAAGCTCAC ATGAGGACATAACCAGCCACC
RPS13 TCCCAGTCGGCTTTACCCTAT CAGGATTACACCGATCTGTGAAG
RBX1 TTGTGGTTGATAACTGTGCCAT GACGCCTGGTTAGCTTGACAT
PAK1 CAGCCCCTCCGATGAGAAATA CAAAACCGACATGAATTGTGTGT
FYN ATGGGCTGTGTGCAATGTAAG GAAGCTGGGGTAGTGCTGAG
ABL1 AAGCCGCTCGTTGGAACTC AGACCCGGAGCTTTTCACCT
SMAD3 TGGACGCAGGTTCTCCAAAC CCGGCTCGCAGTAGGTAAC
STAT3 CAGCAGCTTGACACACGGTA AAACACCAAAGTGGCATGTGA
PRKCA GTCCACAAGAGGTGCCATGAA AAGGTGGGGCTTCCGTAAGT

Molecular docking experiments

Molecular docking was used to find biologically active hits among the designed ligands. Using perpetual software module BIOVIA Discovery Studio (Perpetual), Surflex-Docking docking studies were conducted on active constituents. The lowest binding energy conformation was presumed to form a stable complex within the active site of the overexpressed proteins. The 2D structures were sketched using Chemdraw software, imported and saved into sdf. format using Open Babelfree software. The protein structure was processed after introduction of the protein, the co-crystallized ligand and all the water molecules were excluded from the crystal structure; more hydrogen was added and refined the side chain. The present study employed CDOCKER, a grid-based molecular docking approach that utilizes the CHARMm force field. A higher number indicates a stronger bond. The CDOCKER score is expressed as a negative number (–CDOCKER ENERGY). The H-bonds, van der Waals and electrostatic interactions between the target protein and the ligand were used to measure the CDOCKER energy. The modeled protein’s binding site was determined using the template protein’s crystal data and proteins which did not co-crystallize ligand generated binding site automatically. To make it easier for ligands to interact with amino acids, the binding site sphere center was set at 9 Å radius. Furthermore, using smart minimizer algorithm, CHARMm force field was applied followed by energy minimization to define local minima (lowest energy conformation) of the modeled over expressed proteins with an energy gradient of 0.1 kcal mol−1−1, respectively. The energy minimized receptor protein and the set of 44 natural molecules which was reported as effective in diabetes mellitus and the well-known commonly used allopathic drugs, Metformin and Glyburide, were used as standard and to compare the binding interactions with natural molecules on overexpressed proteins in gestational diabetes. The binding site sphere radius set at X = 29.50, Y = −31.38 and Z = −38.79 were submitted to the CDOCKER parameter and also calculated binding energy. The X-ray co-crystallized structures were extracted from Protein Data Bank of PDB code of 4UV7, 5NJX, 3Q4Z and 3FNI of overexpressed genes of Epidermal growth factor receptor (EGFR), Heat shock protein 90 α family class A member 1 (HSP90AA1), P21 RAC1 activated kinase 1 (PAK1) and Ring-box 1 (RBX1), respectively, in gestational diabetes were selected for docking studies [26–29]. The best position was inserted into the molecular area between the protein and the ligand. The 2D and 3D interaction of amino acid molecules was achieved using the free online Discovery Studio Visualizer.

Results

Identification of DEGs

Transcription profiling by array datasets was obtained from the ArrayExpress database containing GDM and non-GDM samples; E-MTAB-6418. Then, the R package named ‘limma’ was processed for analysis with adjusted P<0.05, |log FC| > 1.158 for up-regulated genes and |log FC| < −0.83 for down-regulated genes. All DEGs were displayed in volcano maps (Figure 1). A total of 869 genes were finally obtained including 439 up-regulated and 430 down-regulated genes in the GDM samples compared with the non-GDM samples and are listed in Table 2. Top 869 genes in this dataset were displayed in the heatmap (Figure 2).

Figure 1. Volcano plot of DEGs.

Figure 1

Genes with a significant change of more than two-fold were selected. Green dot represented up-regulated significant genes and red dot represented down-regulated significant genes.

Table 2. The statistical metrics for key DEGs.

IlluminaID GeneSymbol logFC pValue adj.P.Val tvalue Regulation GeneName
ILMN_3246433 RNY5 1.462757 5.68E-06 0.002906 4.775349 Up RNA, Ro60-associated Y5
ILMN_1691647 CGB5 1.297516 0.000781 0.021869 3.457767 Up chorionic gonadotropin subunit β 5
ILMN_1668035 CRH 1.29002 0.001459 0.029715 3.266769 Up corticotropin releasing hormone
ILMN_1716238 PSG6 1.284052 0.00171 0.032189 3.217109 Up pregnancy specific β-1-glycoprotein 6
ILMN_1772768 PSG7 1.257768 0.001767 0.032784 3.206816 Up pregnancy specific β-1-glycoprotein 7 (gene/pseudogene)
ILMN_2413473 GH2 1.248351 0.002276 0.037103 3.126124 Up growth hormone 2
ILMN_1801776 PSG9 1.204077 0.002468 0.038662 3.100092 Up pregnancy specific β-1-glycoprotein 9
ILMN_1798000 PSG1 1.147959 0.000469 0.017456 3.608336 Up pregnancy specific β-1-glycoprotein 1
ILMN_1728734 PSG5 1.143624 0.000969 0.024168 3.392528 Up pregnancy specific β-1-glycoprotein 5
ILMN_2387860 CYP19A1 1.130568 0.00132 0.028092 3.297762 Up cytochrome P450 family 19 subfamily A member 1
ILMN_1764483 PSG2 1.123521 0.003218 0.044644 3.013539 Up pregnancy specific β-1-glycoprotein 2
ILMN_1706911 PSG11 1.115865 0.002642 0.040078 3.07808 Up pregnancy specific β-1-glycoprotein 11
ILMN_1765187 LHB 1.086528 0.002327 0.037529 3.118995 Up luteinizing hormone subunit β
ILMN_1693397 PSG4 1.079921 0.002644 0.040091 3.077764 Up pregnancy specific β-1-glycoprotein 4
ILMN_1785393 ADAM12 1.058143 0.003796 0.048669 2.958837 Up ADAM metallopeptidase domain 12
ILMN_1749078 TIMP2 1.029031 0.001077 0.025325 3.360515 Up TIMP metallopeptidase inhibitor 2
ILMN_2406299 SEMA3B 1.019814 0.001424 0.029234 3.274226 Up semaphorin 3B
ILMN_1691937 CSH2 0.93195 0.003208 0.044568 3.014577 Up chorionic somatomammotropin hormone 2
ILMN_2044645 CGB1 0.914238 0.003818 0.048801 2.956891 Up chorionic gonadotropin subunit β 1
ILMN_2083578 CGB7 0.902725 0.001095 0.025576 3.355412 Up chorionic gonadotropin subunit β 7
ILMN_1754207 PLAC1 0.846799 0.003832 0.048867 2.955674 Up placenta enriched 1
ILMN_1698318 LGALS14 0.831948 0.001715 0.032189 3.216166 Up galectin 14
ILMN_2068104 TFPI2 0.817524 0.003376 0.04562 2.997767 Up tissue factor pathway inhibitor 2
ILMN_2316236 HOPX 0.817388 0.000335 0.014808 3.70535 Up HOP homeobox
ILMN_1789638 MFSD2A 0.815456 0.002488 0.038799 3.097506 Up major facilitator superfamily domain containing 2A
ILMN_1786908 KRTAP26-1 0.796216 0.00037 0.01533 3.677008 Up keratin associated protein 26-1
ILMN_1659597 LOC100506358 0.792699 0.000395 0.015895 3.658029 Up uncharacterized LOC100506358
ILMN_2118663 ERV3-1 0.791098 0.001056 0.025169 3.366462 Up endogenous retrovirus group 3 member 1, envelope
ILMN_1712066 EXPH5 0.790876 0.000584 0.01904 3.543961 Up exophilin 5
ILMN_1674696 OLAH 0.774415 0.00023 0.012505 3.811374 Up oleoyl-ACP hydrolase
ILMN_2233454 SPTLC3 0.771167 0.000748 0.021335 3.470437 Up serine palmitoyltransferase long chain base subunit 3
ILMN_1693530 PSG3 0.760751 0.002195 0.036289 3.137778 Up pregnancy specific β-1-glycoprotein 3
ILMN_1784824 LINC01118 0.760468 0.001118 0.025812 3.349058 Up long intergenic non-protein coding RNA 1118
ILMN_1813350 HSD11B2 0.758705 0.002101 0.035634 3.151814 Up hydroxysteroid 11-β dehydrogenase 2
ILMN_2352921 BPGM 0.755678 0.000432 0.016748 3.631747 Up bisphosphoglyceratemutase
ILMN_1678710 PHYHIPL 0.750771 0.000149 0.010164 3.932405 Up phytanoyl-CoA 2-hydroxylase interacting protein like
ILMN_1794842 LGALS13 0.737107 0.002229 0.036621 3.132873 Up galectin 13
ILMN_2188862 GDF15 0.733888 0.003343 0.045512 3.000989 Up growth differentiation factor 15
ILMN_1702858 ADHFE1 0.733838 0.000566 0.018799 3.553236 Up alcohol dehydrogenase iron containing 1
ILMN_2187746 EMX2 0.724034 0.002408 0.038098 3.108039 Up empty spiracles homeobox 2
ILMN_1780693 HSD3B1 0.713165 0.003003 0.043117 3.03634 Up hydroxy-δ-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 1
ILMN_1814737 LNPEP 0.699558 0.001327 0.028154 3.296246 Up leucyl and cystinylaminopeptidase
ILMN_1807277 IFI30 0.696224 0.000433 0.01676 3.631088 Up IFI30 lysosomalthiolreductase
ILMN_1756443 INHA 0.693534 0.000602 0.019237 3.535224 Up inhibin subunit α
ILMN_1748090 SLC2A11 0.691618 0.000104 0.008561 4.029682 Up solute carrier family 2 member 11
ILMN_1774287 CFB 0.689441 0.002619 0.039846 3.080829 Up complement factor B
ILMN_1768662 UCK2 0.666106 0.00056 0.018724 3.556095 Up uridine-cytidine kinase 2
ILMN_1720540 INSL4 0.662317 0.001009 0.024621 3.380194 Up insulin like 4
ILMN_1797744 TPPP3 0.660409 0.000586 0.019062 3.543117 Up tubulin polymerization promoting protein family member 3
ILMN_1680139 MAFF 0.655013 0.001413 0.02907 3.276627 Up MAF bZIP transcription factor F
ILMN_2368188 TRPV6 0.647442 0.001158 0.02618 3.338062 Up transient receptor potential cation channel subfamily V member 6
ILMN_1740466 TENT5A 0.645318 0.000443 0.016957 3.624672 Up terminal nucleotidyltransferase 5A
ILMN_1800412 BMP1 0.634772 0.000459 0.017315 3.614562 Up bone morphogenetic protein 1
ILMN_1727633 NECTIN3 0.633198 0.002322 0.037503 3.11981 Up nectin cell adhesion molecule 3
ILMN_1664855 PPP1R14C 0.629794 0.001066 0.025246 3.363473 Up protein phosphatase 1 regulatory inhibitor subunit 14C
ILMN_1695562 ZNF471 0.623497 0.000993 0.024402 3.38509 Up zinc finger protein 471
ILMN_1714586 VGLL3 0.618471 0.001854 0.033507 3.191522 Up vestigial like family member 3
ILMN_1744949 RHOBTB3 0.61326 0.001612 0.031272 3.235567 Up Rho related BTB domain containing 3
ILMN_1703284 SPIRE2 0.612933 0.00328 0.045007 3.007246 Up spire type actin nucleation factor 2
ILMN_1704376 GLDN 0.605249 0.002329 0.037531 3.118817 Up gliomedin
ILMN_2415421 SLC30A2 0.602925 0.002569 0.039356 3.087159 Up solute carrier family 30 member 2
ILMN_1757406 H1-2 0.598625 0.001243 0.027166 3.316284 Up H1.2 linker histone, cluster member
ILMN_1651496 H2BC5 0.597413 0.000105 0.008597 4.027633 Up H2B clustered histone 5
ILMN_1773125 ENTPD1 0.596924 0.003282 0.045007 3.007041 Up ectonucleoside triphosphate diphosphohydrolase 1
ILMN_1790228 FURIN 0.595716 0.001344 0.028402 3.292157 Up furin, paired basic amino acid cleaving enzyme
ILMN_1741143 TXK 0.593669 0.001359 0.028533 3.288903 Up TXK tyrosine kinase
ILMN_1787750 CD200 0.592992 0.001168 0.02622 3.335461 Up CD200 molecule
ILMN_1795106 PSG8 0.59239 0.002853 0.041916 3.053083 Up pregnancy specific β-1-glycoprotein 8
ILMN_1672908 TWIST1 0.585791 0.002193 0.036269 3.138064 Up twist family bHLH transcription factor 1
ILMN_1787691 CITED4 0.583851 0.000456 0.017275 3.616082 Up Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4
ILMN_1740917 SCNN1B 0.580064 0.00208 0.035516 3.155039 Up sodium channel epithelial 1 β subunit
ILMN_1681248 TCHH 0.579544 0.000868 0.023007 3.42568 Up trichohyalin
ILMN_1713397 NCCRP1 0.577054 0.001607 0.031251 3.236641 Up NCCRP1, F-box associated domain containing
ILMN_1771019 MTMR4 0.575772 0.000998 0.024462 3.383725 Up myotubularin related protein 4
ILMN_1792689 H2AC6 0.572844 0.000198 0.011571 3.853384 Up H2A clustered histone 6
ILMN_1732071 H2BC21 0.571255 0.000494 0.01788 3.593188 Up H2B clustered histone 21
ILMN_1777934 MORN3 0.570881 0.000392 0.015793 3.660351 Up MORN repeat containing 3
ILMN_1754126 SH2D5 0.567064 0.000548 0.018452 3.562897 Up SH2 domain containing 5
ILMN_1768820 CYP11A1 0.562921 0.002281 0.037107 3.125417 Up cytochrome P450 family 11 subfamily A member 1
ILMN_1721842 RYBP 0.560609 0.001133 0.026002 3.344898 Up RING1 and YY1 binding protein
ILMN_2323172 CSF3R 0.55608 0.002173 0.03615 3.140995 Up colony stimulating factor 3 receptor
ILMN_1693789 ALPP 0.554751 0.003332 0.045427 3.002056 Up alkaline phosphatase, placental
ILMN_2129015 AFF1 0.5529 0.003097 0.043799 3.026214 Up AF4/FMR2 family member 1
ILMN_1807652 STRA6 0.548925 0.001375 0.028697 3.285192 Up stimulated by retinoic acid 6
ILMN_1746517 KYNU 0.547309 0.002021 0.035003 3.164234 Up kynureninase
ILMN_1793695 ITIH5 0.543721 0.002744 0.041015 3.065788 Up inter-α-trypsin inhibitor heavy chain 5
ILMN_1814600 DEPDC1B 0.542445 0.001287 0.027725 3.305687 Up DEP domain containing 1B
ILMN_1708340 DAPK1 0.541376 0.003167 0.04426 3.018827 Up death associated protein kinase 1
ILMN_2204545 ST3GAL4 0.537233 0.001733 0.032379 3.212881 Up ST3 β-galactoside α-2,3-sialyltransferase 4
ILMN_1794239 ODAPH 0.533324 0.000498 0.017895 3.590399 Up odontogenesis associated phosphoprotein
ILMN_2315780 TACC2 0.532522 0.000106 0.00868 4.024113 Up transforming acidic coiled-coil containing protein 2
ILMN_2309446 RBBP6 0.528104 0.000254 0.013135 3.783862 Up RB binding protein 6, ubiquitin ligase
ILMN_1791545 KRT23 0.527971 0.000209 0.011919 3.838417 Up keratin 23
ILMN_1798458 KAZN 0.51384 0.001255 0.027297 3.313396 Up kazrin, periplakin interacting protein
ILMN_1777683 ADAMTSL4 0.513545 0.00031 0.014326 3.727088 Up ADAMTS like 4
ILMN_1811593 NIPAL1 0.509377 0.000573 0.018927 3.549631 Up NIPA like domain containing 1
ILMN_3236821 HSPB1 0.507177 0.000829 0.022503 3.439718 Up heat shock protein family B (small) member 1
ILMN_1774229 SLC7A4 0.504867 0.003047 0.043409 3.031496 Up solute carrier family 7 member 4
ILMN_1795838 C4orf19 0.503581 0.000615 0.019397 3.528742 Up chromosome 4 open reading frame 19
ILMN_1689004 TNFRSF12A 0.50273 0.000813 0.022284 3.44546 Up TNF receptor superfamily member 12A
ILMN_1702105 EFS 0.502312 0.001688 0.032021 3.221088 Up embryonal Fyn-associated substrate
ILMN_1725831 TINCR 0.502082 0.001143 0.026058 3.342141 Up TINCR ubiquitin domain containing
ILMN_1726597 RIPOR2 0.501684 0.000791 0.022033 3.453621 Up RHO family interacting cell polarization regulator 2
ILMN_1746618 PAQR7 0.498553 0.000293 0.014028 3.743357 Up progestin and adipoQ receptor family member 7
ILMN_2351638 BEX4 0.49812 1.22E-05 0.003404 4.586051 Up brain expressed X-linked 4
ILMN_1762207 SGSM1 0.495004 0.000544 0.018404 3.565008 Up small G protein signaling modulator 1
ILMN_1802690 GULP1 0.492328 0.002712 0.040738 3.069508 Up GULP PTB domain containing engulfment adaptor 1
ILMN_1679041 SLC3A2 0.486676 0.001058 0.025186 3.365946 Up solute carrier family 3 member 2
ILMN_1728677 CREB5 0.486008 0.000136 0.009772 3.957019 Up cAMP responsive element binding protein 5
ILMN_2390609 ANK3 0.481205 0.001627 0.031404 3.232619 Up ankyrin 3
ILMN_1740170 CHCHD10 0.479287 0.002374 0.03792 3.11261 Up coiled-coil-helix-coiled-coil-helix domain containing 10
ILMN_1813139 ANKDD1A 0.477831 0.000338 0.014847 3.702751 Up ankyrin repeat and death domain containing 1A
ILMN_2194448 STT3B 0.477537 0.00228 0.037103 3.125635 Up STT3 oligosaccharyltransferase complex catalytic subunit B
ILMN_2079991 ERVW-1 0.468734 0.000211 0.01196 3.835811 Up endogenous retrovirus group W member 1, envelope
ILMN_1684034 STAT5B 0.466134 0.000495 0.01788 3.59265 Up signal transducer and activator of transcription 5B
ILMN_1796423 CLIC3 0.465597 0.001265 0.027404 3.31097 Up chloride intracellular channel 3
ILMN_3280402 GLRX 0.464843 0.000542 0.018404 3.56612 Up glutaredoxin
ILMN_1753931 CDO1 0.464443 0.000182 0.011037 3.877815 Up cysteine dioxygenase type 1
ILMN_2065690 GRAMD2B 0.464402 0.000499 0.017901 3.589918 Up GRAM domain containing 2B
ILMN_1752510 FAM13A 0.463446 0.000335 0.014808 3.705566 Up family with sequence similarity 13 member A
ILMN_2384857 DHRS2 0.460744 0.001634 0.031474 3.23133 Up dehydrogenase/reductase 2
ILMN_1720771 STX11 0.459749 0.002149 0.035892 3.144568 Up syntaxin 11
ILMN_1807563 FKBP2 0.457573 0.000724 0.02097 3.480237 Up FKBP prolylisomerase 2
ILMN_1669557 CRYBG2 0.4569 0.001328 0.028154 3.296056 Up crystallin β-γ domain containing 2
ILMN_1699206 FHDC1 0.455751 0.00209 0.035562 3.153528 Up FH2 domain containing 1
ILMN_1806149 C16orf74 0.455006 0.000426 0.016582 3.636053 Up chromosome 16 open reading frame 74
ILMN_1751120 H4C8 0.45076 0.000764 0.021605 3.464112 Up H4 clustered histone 8
ILMN_1740604 RAB11FIP5 0.450629 0.003974 0.049778 2.943476 Up RAB11 family interacting protein 5
ILMN_3195497 ADIRF-AS1 0.448015 0.002142 0.035854 3.145598 Up ADIRF antisense RNA 1
ILMN_1813625 TRIM25 0.445493 0.000114 0.00893 4.005574 Up tripartite motif containing 25
ILMN_1753515 SRR 0.44366 0.003251 0.044884 3.010168 Up serine racemase
ILMN_1772627 NSG1 0.441643 0.001427 0.029273 3.273602 Up neuronal vesicle trafficking associated 1
ILMN_2364700 ENSA 0.441237 1.88E-05 0.004187 4.477906 Up endosulfine α
ILMN_1674243 TFRC 0.43767 0.003549 0.046989 2.981226 Up transferrin receptor
ILMN_1779448 EFHD1 0.435614 0.003381 0.045635 2.997287 Up EF-hand domain family member D1
ILMN_1798975 EGFR 0.434921 0.002718 0.040787 3.068785 Up epidermal growth factor receptor
ILMN_1802053 ZNF91 0.433844 0.000914 0.023507 3.410338 Up zinc finger protein 91
ILMN_1797557 PLEKHA6 0.43335 0.003538 0.046906 2.982198 Up pleckstrin homology domain containing A6
ILMN_1814333 SERPINI1 0.433318 0.00355 0.046989 2.981082 Up serpin family I member 1
ILMN_1683211 NCAN 0.430909 0.002311 0.037392 3.121301 Up neurocan
ILMN_2142353 GRTP1 0.430742 0.001078 0.025332 3.360135 Up growth hormone regulated TBC protein 1
ILMN_1809477 CARHSP1 0.428795 0.001041 0.024977 3.370793 Up calcium regulated heat stable protein 1
ILMN_1767365 PAK1 0.427899 0.000143 0.009932 3.94428 Up p21 (RAC1) activated kinase 1
ILMN_1759792 CLIP4 0.427572 0.000478 0.017642 3.60267 Up CAP-Gly domain containing linker protein family member 4
ILMN_2143685 CLDN7 0.426872 0.000634 0.019679 3.519853 Up claudin 7
ILMN_2074860 RN7SK 0.425278 0.000506 0.017919 3.586106 Up RNA component of 7SK nuclear ribonucleoprotein
ILMN_1742538 PCDHGC4 0.422624 0.00088 0.023184 3.421715 Up protocadherin γ subfamily C, 4
ILMN_1689817 LCOR 0.419011 0.001391 0.028854 3.281687 Up ligand dependent nuclear receptor corepressor
ILMN_1667994 AMD1 0.418735 0.00061 0.019374 3.531034 Up adenosylmethionine decarboxylase 1
ILMN_1683598 ACSL4 0.416616 0.003954 0.04961 2.945175 Up acyl-CoA synthetase long chain family member 4
ILMN_1796206 KMT2C 0.415266 8.27E-05 0.007525 4.092148 Up lysine methyltransferase 2C
ILMN_1729417 GNE 0.413507 0.001169 0.02622 3.335407 Up glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase
ILMN_1778956 STS 0.411932 0.000347 0.014977 3.695049 Up steroid sulfatase
ILMN_2405254 GRB7 0.408773 0.00026 0.013186 3.777315 Up growth factor receptor bound protein 7
ILMN_1813314 H2BC12 0.408761 0.002651 0.04015 3.076962 Up H2B clustered histone 12
ILMN_2346339 FOLR1 0.407865 0.000266 0.013333 3.771078 Up folate receptor α
ILMN_1747112 GPAA1 0.407772 1.5E-05 0.003692 4.534163 Up glycosylphosphatidylinositol anchor attachment 1
ILMN_1736863 TMEM140 0.40612 0.000597 0.019237 3.537542 Up transmembrane protein 140
ILMN_3226388 PSG10P 0.399644 0.00336 0.045553 2.999338 Up pregnancy specific β-1-glycoprotein 10, pseudogene
ILMN_1769092 EVA1B 0.398688 0.002925 0.042546 3.044952 Up eva-1 homolog B
ILMN_1654322 ATP1B3 0.398471 0.00148 0.029861 3.262353 Up ATPase Na+/K+ transporting subunit β 3
ILMN_1699674 ZNF703 0.397878 0.003462 0.046339 2.989443 Up zinc finger protein 703
ILMN_2159730 GABRB1 0.396679 0.000663 0.020103 3.506538 Up γ-aminobutyric acid type A receptor β1 subunit
ILMN_2342437 KLHL5 0.395369 0.003031 0.043318 3.033257 Up kelch like family member 5
ILMN_1704472 EID2 0.394584 8.47E-06 0.00295 4.677314 Up EP300 interacting inhibitor of differentiation 2
ILMN_2374865 ATF3 0.394537 0.001939 0.034245 3.177337 Up activating transcription factor 3
ILMN_1652540 RELL2 0.39244 0.00081 0.022284 3.446717 Up RELT like 2
ILMN_1697642 BCAP29 0.391558 0.000201 0.011654 3.849685 Up B cell receptor associated protein 29
ILMN_2382974 CCDC7 0.391544 0.000891 0.023304 3.4178 Up coiled-coil domain containing 7
ILMN_1742260 ITPRID2 0.39091 0.000176 0.010925 3.886377 Up ITPR interacting domain containing 2
ILMN_2060145 GRHL2 0.389706 0.000397 0.015954 3.656341 Up grainyhead like transcription factor 2
ILMN_2195821 CREBRF 0.389024 0.000261 0.013186 3.77657 Up CREB3 regulatory factor
ILMN_1746676 CLDN8 0.388757 0.002765 0.041192 3.063276 Up claudin 8
ILMN_1700583 ZNF750 0.388452 0.000505 0.017918 3.586783 Up zinc finger protein 750
ILMN_1655913 NUCB2 0.386679 0.002616 0.039837 3.081247 Up nucleobindin 2
ILMN_1701393 TBX3 0.381209 1.9E-05 0.004198 4.474884 Up T-box transcription factor 3
ILMN_1769201 ELF3 0.380808 0.002808 0.041529 3.058207 Up E74 like ETS transcription factor 3
ILMN_1791280 HSPB8 0.380526 0.002023 0.03504 3.163783 Up heat shock protein family B (small) member 8
ILMN_2149292 TMEM40 0.378498 0.000676 0.020287 3.500728 Up transmembrane protein 40
ILMN_1707088 DENND2D 0.37794 7.09E-05 0.007061 4.133296 Up DENN domain containing 2D
ILMN_2179778 PHLDB2 0.377513 0.000242 0.012762 3.797837 Up pleckstrin homology like domain family B member 2
ILMN_1801216 S100P 0.375994 0.00042 0.016421 3.640526 Up S100 calcium binding protein P
ILMN_1699254 PLEKHH1 0.374597 0.000398 0.015954 3.656068 Up pleckstrin homology, MyTH4 and FERM domain containing H1
ILMN_1710954 FBXL19-AS1 0.37328 0.000271 0.013483 3.765506 Up FBXL19 antisense RNA 1
ILMN_2376502 RHOBTB1 0.372696 0.001027 0.024813 3.374907 Up Rho related BTB domain containing 1
ILMN_1673455 RASAL2 0.372204 6.16E-05 0.006575 4.170741 Up RAS protein activator like 2
ILMN_3194638 EVA1A 0.371837 0.001826 0.033257 3.196396 Up eva-1 homolog A, regulator of programmed cell death
ILMN_1710284 HES1 0.370834 0.000842 0.022673 3.435074 Up hes family bHLH transcription factor 1
ILMN_2064655 CXorf40A 0.369875 3.68E-05 0.005267 4.305465 Up chromosome X open reading frame 40A
ILMN_2373566 PJA1 0.365283 0.001767 0.032784 3.206709 Up praja ring finger ubiquitin ligase 1
ILMN_1779648 H2AW 0.365117 0.002673 0.040354 3.074252 Up H2A.W histone
ILMN_2333107 TLE5 0.363987 0.003586 0.047223 2.977803 Up TLE family member 5, transcriptional modulator
ILMN_1722025 CPEB4 0.363264 0.000601 0.019237 3.535255 Up cytoplasmic polyadenylation element binding protein 4
ILMN_1670263 CNST 0.362857 0.001654 0.031635 3.227556 Up consortin, connexin sorting protein
ILMN_2214678 MXD1 0.36052 0.003377 0.04562 2.997692 Up MAX dimerization protein 1
ILMN_2324202 GABRE 0.359786 0.001796 0.032966 3.20158 Up γ-aminobutyric acid type A receptor epsilon subunit
ILMN_2049727 OSER1 0.358697 0.000322 0.014545 3.716924 Up oxidative stress responsive serine rich 1
ILMN_1704377 USP27X 0.35826 0.00113 0.025976 3.34568 Up ubiquitin specific peptidase 27 X-linked
ILMN_3233388 RELL1 0.357964 0.002177 0.036172 3.1404 Up RELT like 1
ILMN_1670878 YTHDC1 0.357534 1.29E-06 0.001955 5.128971 Up YTH domain containing 1
ILMN_1815445 IDS 0.356888 0.002505 0.038937 3.095289 Up iduronate 2-sulfatase
ILMN_1775448 PFN2 0.353131 0.000871 0.023045 3.424684 Up profilin 2
ILMN_1657423 SPG21 0.353073 0.000213 0.011986 3.833747 Up SPG21 abhydrolase domain containing, maspardin
ILMN_2162799 AHR 0.353025 0.002516 0.039016 3.093903 Up aryl hydrocarbon receptor
ILMN_1698323 PLEKHB2 0.352741 0.00209 0.035562 3.153476 Up pleckstrin homology domain containing B2
ILMN_1725718 ZSCAN4 0.352414 0.000589 0.019114 3.541628 Up zinc finger and SCAN domain containing 4
ILMN_2414325 TNFAIP8 0.351941 4.64E-05 0.005784 4.245233 Up TNF α induced protein 8
ILMN_1656291 TSKS 0.350101 3.27E-05 0.005189 4.336503 Up testis specific serine kinase substrate
ILMN_3245236 FBRS 0.349549 0.002921 0.042546 3.045346 Up fibrosin
ILMN_3243972 SNORA70B 0.349376 0.00036 0.015127 3.684829 Up small nucleolar RNA, H/ACA box 70B
ILMN_1687519 SNAP23 0.349045 0.000691 0.020442 3.494035 Up synaptosome associated protein 23
ILMN_3307729 CXXC5 0.347435 0.003855 0.04893 2.953691 Up CXXC finger protein 5
ILMN_2359601 CAMK2G 0.346831 1.67E-06 0.001955 5.068099 Up calcium/calmodulin dependent protein kinase II γ
ILMN_2358541 RBMS1 0.346578 0.001495 0.030009 3.259102 Up RNA binding motif single stranded interacting protein 1
ILMN_1812262 DDR1 0.345856 0.001274 0.027548 3.308776 Up discoidin domain receptor tyrosine kinase 1
ILMN_1655702 ABHD5 0.34552 0.000199 0.011583 3.852742 Up abhydrolase domain containing 5
ILMN_1730294 INO80C 0.345306 0.000584 0.01904 3.543858 Up INO80 complex subunit C
ILMN_1729095 PDZD2 0.34383 0.000816 0.022314 3.444388 Up PDZ domain containing 2
ILMN_1775405 ARL4A 0.3433 0.000509 0.017937 3.584468 Up ADP ribosylation factor like GTPase 4A
ILMN_1680937 H2BC4 0.342683 0.003302 0.045124 3.005054 Up H2B clustered histone 4
ILMN_1689578 TLR3 0.342449 0.002261 0.036968 3.128251 Up toll like receptor 3
ILMN_2278335 AKR1B15 0.342114 0.001891 0.033788 3.185343 Up aldo-ketoreductase family 1 member B15
ILMN_1721922 NAB2 0.340891 0.00057 0.018862 3.551119 Up NGFI-A binding protein 2
ILMN_1691237 CAP2 0.339551 0.00234 0.037639 3.117244 Up cyclase associated actin cytoskeleton regulatory protein 2
ILMN_2395389 PSMC4 0.336399 0.000477 0.017642 3.602967 Up proteasome 26S subunit, ATPase 4
ILMN_2173919 MYO9A 0.33636 0.003286 0.045007 3.006655 Up myosin IXA
ILMN_1661809 PRRG4 0.336227 0.00211 0.035643 3.150489 Up proline rich and Gla domain 4
ILMN_2307455 UBE2A 0.334363 0.001495 0.030009 3.259139 Up ubiquitin conjugating enzyme E2 A
ILMN_3307700 SPCS3 0.333342 0.002825 0.041676 3.056249 Up signal peptidase complex subunit 3
ILMN_1654370 TESK2 0.333053 3.57E-05 0.005231 4.313565 Up testis associated actin remodelling kinase 2
ILMN_1742824 SPATA13 0.331307 0.000114 0.008925 4.006357 Up spermatogenesis associated 13
ILMN_1688755 AAK1 0.329844 7.89E-05 0.007387 4.104652 Up AP2 associated kinase 1
ILMN_1781374 TUFT1 0.328884 4.48E-06 0.002802 4.832739 Up tuftelin 1
ILMN_2124386 RGL2 0.327869 1.43E-05 0.003559 4.547271 Up ral guanine nucleotide dissociation stimulator like 2
ILMN_1803939 YIPF6 0.327011 0.000892 0.023304 3.417647 Up Yip1 domain family member 6
ILMN_2170949 SNX10 0.326909 0.002527 0.039088 3.092476 Up sorting nexin 10
ILMN_1775304 DNAJB1 0.326714 0.001071 0.025282 3.362025 Up DnaJ heat shock protein family (Hsp40) member B1
ILMN_1657515 RPS6KA5 0.32621 0.003592 0.047263 2.977249 Up ribosomal protein S6 kinase A5
ILMN_1690826 TNKS1BP1 0.321786 0.001116 0.025804 3.349443 Up tankyrase 1 binding protein 1
ILMN_1814002 TEAD3 0.320268 7.41E-05 0.007229 4.121364 Up TEA domain transcription factor 3
ILMN_1768958 RASGRP1 0.31925 0.003686 0.047951 2.968625 Up RAS guanyl releasing protein 1
ILMN_2077623 RRAS2 0.319214 0.001037 0.024918 3.371789 Up RAS related 2
ILMN_1693014 CEBPB 0.318883 0.002995 0.043063 3.037146 Up CCAAT enhancer binding protein β
ILMN_3235340 ACER2 0.318499 3.54E-05 0.005231 4.315633 Up alkaline ceramidase 2
ILMN_2403458 SMARCB1 0.318053 0.002694 0.040563 3.071724 Up SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1
ILMN_1805395 LTBP3 0.317611 0.000756 0.021442 3.467486 Up latent transforming growth factor β binding protein 3
ILMN_1804148 TMED4 0.317228 0.001133 0.026002 3.344761 Up transmembrane p24 trafficking protein 4
ILMN_1702447 IGF2BP2 0.316952 0.000692 0.020442 3.493585 Up insulin like growth factor 2 mRNA binding protein 2
ILMN_1717195 MBD2 0.316258 0.000121 0.009233 3.98994 Up methyl-CpG binding domain protein 2
ILMN_1747451 PLCXD1 0.316197 3.44E-05 0.005189 4.323024 Up phosphatidylinositol specific phospholipase C X domain containing 1
ILMN_1777439 TCL6 0.313824 4.13E-05 0.005607 4.275901 Up T cell leukemia/lymphoma 6
ILMN_2358457 ATF4 0.312963 5E-06 0.002879 4.806336 Up activating transcription factor 4
ILMN_1694233 ACYP1 0.312484 8.05E-06 0.00295 4.689698 Up acylphosphatase 1
ILMN_1675937 ANKRD9 0.312142 0.000113 0.008909 4.008887 Up ankyrin repeat domain 9
ILMN_1670304 FAM156A 0.311579 0.002344 0.03767 3.116659 Up family with sequence similarity 156 member A
ILMN_1717234 CAST 0.310235 0.000968 0.024163 3.392908 Up calpastatin
ILMN_1710136 PUDP 0.309696 0.000391 0.015793 3.661101 Up pseudouridine 5′-phosphatase
ILMN_1750969 FAM120AOS 0.309171 0.001969 0.034468 3.172477 Up family with sequence similarity 120A opposite strand
ILMN_1717046 MOB3B 0.309072 0.001014 0.024678 3.378711 Up MOB kinase activator 3B
ILMN_1684042 BET1 0.307537 0.000168 0.010659 3.898957 Up Bet1 golgi vesicular membrane trafficking protein
ILMN_1664303 HTATIP2 0.306236 0.00063 0.019629 3.521367 Up HIV-1 Tat interactive protein 2
ILMN_3263225 CRIM1-DT 0.305254 0.000552 0.018547 3.560684 Up CRIM1 divergent transcript
ILMN_1763127 ACKR2 0.305224 0.001928 0.03416 3.179209 Up atypical chemokine receptor 2
ILMN_1708611 RDX 0.30478 0.001592 0.031099 3.239468 Up radixin
ILMN_2190414 ZNF83 0.304639 0.003774 0.048525 2.960719 Up zinc finger protein 83
ILMN_3184978 ST8SIA6-AS1 0.304228 3.46E-05 0.005189 4.321517 Up ST8SIA6 antisense RNA 1
ILMN_1746494 FNTA 0.303227 2.43E-05 0.00477 4.412621 Up farnesyltransferase, CAAX box, α
ILMN_3238854 RGPD8 0.302737 0.000139 0.00984 3.950626 Up RANBP2 like and GRIP domain containing 8
ILMN_2322498 RORA 0.302665 5.91E-05 0.006473 4.181545 Up RAR related orphan receptor A
ILMN_2181892 BEX2 0.301932 0.000691 0.020442 3.494243 Up brain expressed X-linked 2
ILMN_1716988 OPN3 0.300318 0.002185 0.036205 3.139321 Up opsin 3
ILMN_1780382 SPCS2P4 0.299459 0.003743 0.048256 2.963549 Up signal peptidase complex subunit 2 pseudogene 4
ILMN_1782685 DDB1 0.298269 0.003647 0.047663 2.972203 Up damage specific DNA binding protein 1
ILMN_1801020 ADK 0.298209 0.000201 0.011664 3.849125 Up adenosine kinase
ILMN_1653793 PDPK1 0.297954 0.002793 0.041395 3.059925 Up 3-phosphoinositide dependent protein kinase 1
ILMN_1805225 LPCAT3 0.296395 6.38E-06 0.00295 4.746876 Up lysophosphatidylcholineacyltransferase 3
ILMN_1741371 PGAP6 0.296064 0.003279 0.045007 3.007377 Up post-glycosylphosphatidylinositol attachment to proteins 6
ILMN_2187718 COX17 0.295972 0.000244 0.01284 3.795442 Up cytochrome c oxidase copper chaperone COX17
ILMN_2263466 ACADVL 0.295932 0.000784 0.021918 3.456584 Up acyl-CoA dehydrogenase very long chain
ILMN_1687947 H2BC6 0.295728 0.000669 0.020173 3.503643 Up H2B clustered histone 6
ILMN_1723843 CSNK2A2 0.294128 0.002683 0.040473 3.073056 Up casein kinase 2 α 2
ILMN_1662578 C1GALT1 0.294084 0.00014 0.00984 3.949908 Up core 1 synthase, glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase 1
ILMN_1807423 IGF2BP3 0.293802 0.000826 0.02247 3.440691 Up insulin like growth factor 2 mRNA binding protein 3
ILMN_3204734 STAG3L5P-PVRIG2P-PILRB 0.293124 0.003136 0.044111 3.022076 Up STAG3L5P-PVRIG2P-PILRB readthrough
ILMN_1754145 CAPRIN1 0.293108 0.00032 0.014545 3.71836 Up cell cycle associated protein 1
ILMN_1730794 SERTAD4 0.292851 9.6E-05 0.008175 4.051978 Up SERTA domain containing 4
ILMN_2394250 PLEKHA1 0.291747 0.002354 0.03774 3.115333 Up pleckstrin homology domain containing A1
ILMN_2078389 SLC4A2 0.291257 0.001113 0.025759 3.35042 Up solute carrier family 4 member 2
ILMN_2220403 GINM1 0.290762 0.000493 0.01788 3.593513 Up glycoprotein integral membrane 1
ILMN_1710027 PNMT 0.290062 0.0003 0.014133 3.736366 Up phenylethanolamine N-methyltransferase
ILMN_1734478 PIP5K1B 0.289858 5.33E-06 0.002879 4.790836 Up phosphatidylinositol-4-phosphate 5-kinase type 1 β
ILMN_1758034 ETFDH 0.288994 0.000644 0.019798 3.514851 Up electron transfer flavoprotein dehydrogenase
ILMN_1666713 LYPLA1 0.287789 0.00059 0.019114 3.541151 Up lysophospholipase 1
ILMN_1797964 ARL6IP6 0.287061 0.000378 0.015488 3.670358 Up ADP ribosylation factor like GTPase 6 interacting protein 6
ILMN_3290211 PIGH 0.286739 0.00285 0.041916 3.053413 Up phosphatidylinositol glycan anchor biosynthesis class H
ILMN_1687546 HSP90AA1 0.286692 0.000957 0.02406 3.396413 Up heat shock protein 90 α family class A member 1
ILMN_1719344 NRBF2 0.286671 0.002233 0.036626 3.132293 Up nuclear receptor binding factor 2
ILMN_1734655 ATG9B 0.286517 0.000583 0.01904 3.544278 Up autophagy related 9B
ILMN_1711408 ANXA4 0.286403 0.002191 0.036239 3.138437 Up annexin A4
ILMN_1811178 SCAPER 0.286258 0.002028 0.035067 3.163085 Up S-phase cyclin A associated protein in the ER
ILMN_1669281 CLN3 0.285791 0.000543 0.018404 3.565093 Up CLN3 lysosomal/endosomaltransmembrane protein, battenin
ILMN_1686985 MTM1 0.284755 0.00147 0.029797 3.264326 Up myotubularin 1
ILMN_1781560 ST3GAL6 0.284681 0.000826 0.02247 3.440705 Up ST3 β-galactoside α-2,3-sialyltransferase 6
ILMN_1734229 SPPL2A 0.283933 0.001105 0.025674 3.352613 Up signal peptide peptidase like 2A
ILMN_2094166 CHMP5 0.282317 0.002279 0.037103 3.125771 Up charged multivesicular body protein 5
ILMN_1773849 ATP6V0C 0.282222 0.000886 0.023276 3.419682 Up ATPase H+ transporting V0 subunit c
ILMN_1739876 RAB3GAP1 0.281181 0.001209 0.026753 3.324924 Up RAB3 GTPase activating protein catalytic subunit 1
ILMN_1797594 NFAT5 0.28094 0.002689 0.040538 3.072332 Up nuclear factor of activated T cells 5
ILMN_1734542 OVGP1 0.280116 0.00204 0.035106 3.161242 Up oviductal glycoprotein 1
ILMN_1665982 AKTIP 0.277649 0.001862 0.03357 3.190258 Up AKT interacting protein
ILMN_1679268 PELI1 0.277477 0.001777 0.032803 3.204955 Up pellino E3 ubiquitin protein ligase 1
ILMN_3249846 LIMS3-LOC440895 0.276865 0.001178 0.026374 3.333032 Up LIMS3-LOC440895 readthrough
ILMN_2323526 WAC 0.276545 0.000268 0.013383 3.769114 Up WW domain containing adaptor with coiled-coil
ILMN_1748077 DDX59 0.275827 0.00214 0.035854 3.145909 Up DEAD-box helicase 59
ILMN_1782444 YIPF4 0.275515 0.001307 0.027959 3.300882 Up Yip1 domain family member 4
ILMN_2339284 CHD2 0.27514 0.000192 0.011354 3.862717 Up chromodomain helicase DNA binding protein 2
ILMN_1706342 ZNF746 0.274797 0.001538 0.03037 3.250211 Up zinc finger protein 746
ILMN_3215367 PPP4R2 0.274625 0.000744 0.021279 3.472213 Up protein phosphatase 4 regulatory subunit 2
ILMN_1687279 DHPS 0.274317 0.000812 0.022284 3.445971 Up deoxyhypusine synthase
ILMN_1685678 EEF1B2 0.273865 0.001055 0.025169 3.366614 Up eukaryotic translation elongation factor 1 β 2
ILMN_1690066 TIGD2 0.273626 0.000317 0.014515 3.720901 Up tigger transposable element derived 2
ILMN_1736752 COMTD1 0.273513 0.001712 0.032189 3.216644 Up catechol-O-methyltransferase domain containing 1
ILMN_2387090 CGGBP1 0.273351 0.000341 0.01488 3.699974 Up CGG triplet repeat binding protein 1
ILMN_2194627 GMCL1 0.273232 0.000277 0.013644 3.759819 Up germ cell-less 1, spermatogenesis associated
ILMN_3241234 S100A11 0.273188 0.000851 0.022765 3.431703 Up S100 calcium binding protein A11
ILMN_1678454 CASP4 0.27189 0.00153 0.030267 3.25192 Up caspase 4
ILMN_1705907 NUP153 0.271384 0.000255 0.013135 3.782266 Up nucleoporin 153
ILMN_2106265 GDPD1 0.271243 0.003428 0.046055 2.992682 Up glycerophosphodiesterphosphodiesterase domain containing 1
ILMN_1699357 SLC22A5 0.270646 0.003156 0.044202 3.019938 Up solute carrier family 22 member 5
ILMN_3282768 PPP1R14B 0.270021 0.001182 0.026432 3.331779 Up protein phosphatase 1 regulatory inhibitor subunit 14B
ILMN_1784655 TLCD1 0.269664 0.001698 0.03211 3.219351 Up TLC domain containing 1
ILMN_1809344 BTBD10 0.269367 0.003946 0.049535 2.945897 Up BTB domain containing 10
ILMN_1651268 BORCS5 0.268841 0.000523 0.0181 3.576152 Up BLOC-1 related complex subunit 5
ILMN_1676385 PAK2 0.268282 0.000156 0.010361 3.920545 Up p21 (RAC1) activated kinase 2
ILMN_1658337 AKIRIN1 0.268214 0.003147 0.04417 3.020957 Up akirin 1
ILMN_2137464 DVL3 0.267864 0.0012 0.026647 3.327306 Up dishevelled segment polarity protein 3
ILMN_1721833 IER5 0.26766 0.003092 0.043799 3.026706 Up immediate early response 5
ILMN_1781431 GLCCI1 0.267281 8.05E-05 0.007462 4.099378 Up glucocorticoid induced 1
ILMN_1808824 NEBL 0.266945 0.001597 0.031164 3.238616 Up nebulette
ILMN_1813028 CBX5 0.266695 4.39E-05 0.005755 4.259566 Up chromobox 5
ILMN_1717745 TIAL1 0.266333 6.37E-06 0.00295 4.747368 Up TIA1 cytotoxic granule associated RNA binding protein like 1
ILMN_1695110 BCAT2 0.266237 0.002867 0.042043 3.051398 Up branched chain amino acid transaminase 2
ILMN_1735052 ULK1 0.266063 0.002947 0.042626 3.042442 Up unc-51 like autophagy activating kinase 1
ILMN_1666670 RBX1 0.265833 9.11E-06 0.003026 4.659225 Up ring-box 1
ILMN_1801476 CDS1 0.265788 0.002179 0.036176 3.140131 Up CDP-diacylglycerol synthase 1
ILMN_1707350 TUSC1 0.265484 0.002186 0.036205 3.139179 Up tumor suppressor candidate 1
ILMN_1671265 ING2 0.264936 0.000146 0.010103 3.937352 Up inhibitor of growth family member 2
ILMN_1776297 GOLGA4 0.262744 0.001009 0.024621 3.380238 Up golgin A4
ILMN_1717063 FBXO9 0.262663 5.06E-06 0.002879 4.803593 Up F-box protein 9
ILMN_1791826 RAB25 0.262537 0.003142 0.04417 3.021403 Up RAB25, member RAS oncogene family
ILMN_1704550 AZIN1 0.262282 0.002375 0.03792 3.112496 Up antizyme inhibitor 1
ILMN_1660111 UCHL3 0.262244 4.55E-05 0.005773 4.250481 Up ubiquitin C-terminal hydrolase L3
ILMN_1709043 PLGRKT 0.26194 0.001065 0.025246 3.363896 Up plasminogen receptor with a C-terminal lysine
ILMN_1695961 CLK3 0.261157 6.84E-05 0.006944 4.142743 Up CDC like kinase 3
ILMN_3197097 TSTD1 0.260702 0.000162 0.010401 3.909022 Up thiosulfate sulfurtransferase like domain containing 1
ILMN_1792497 AGFG1 0.259601 0.000823 0.022397 3.442009 Up ArfGAP with FG repeats 1
ILMN_1684346 TNFAIP8L1 0.259593 0.001641 0.031522 3.229929 Up TNF α induced protein 8 like 1
ILMN_1737475 ABHD11 0.259331 0.002117 0.035667 3.149412 Up abhydrolase domain containing 11
ILMN_1682147 HOOK2 0.258381 0.000116 0.009 4.000611 Up hook microtubule tethering protein 2
ILMN_1736154 LZTS3 0.257357 0.000288 0.013983 3.747905 Up leucine zipper tumor suppressor family member 3
ILMN_2328776 STK26 0.257332 0.003144 0.04417 3.021189 Up serine/threonine kinase 26
ILMN_3246900 LINC01278 0.255848 0.002475 0.03872 3.09914 Up long intergenic non-protein coding RNA 1278
ILMN_1702407 SPIN1 0.255702 0.001221 0.026874 3.322 Up spindlin 1
ILMN_2344956 ACP1 0.255631 0.001788 0.032895 3.202956 Up acid phosphatase 1
ILMN_1685415 HBP1 0.25552 0.00362 0.04748 2.974605 Up HMG-box transcription factor 1
ILMN_2399264 SEPTIN6 0.25419 0.000112 0.008891 4.010048 Up septin 6
ILMN_2055523 CSGALNACT1 0.253386 0.002808 0.041529 3.058213 Up chondroitin sulfate N-acetylgalactosaminyltransferase 1
ILMN_3279712 SMS 0.252553 0.001715 0.032189 3.216153 Up spermine synthase
ILMN_1701514 TRAF3IP2 0.252377 0.003172 0.044294 3.018317 Up TRAF3 interacting protein 2
ILMN_3227529 RPS13 0.252336 0.000401 0.01601 3.65339 Up ribosomal protein S13
ILMN_1680397 CXCR2 0.251961 0.000716 0.020858 3.483454 Up C-X-C motif chemokine receptor 2
ILMN_1661142 TMF1 0.251932 0.000831 0.02251 3.439126 Up TATA element modulatory factor 1
ILMN_2228044 TBC1D23 0.251655 5.18E-06 0.002879 4.797583 Up TBC1 domain family member 23
ILMN_2352326 COASY 0.25148 0.003205 0.044541 3.014949 Up Coenzyme A synthase
ILMN_1753457 PKP3 0.251362 0.000802 0.02216 3.449557 Up plakophilin 3
ILMN_2081673 INSL6 0.250409 6.77E-06 0.00295 4.732468 Up insulin like 6
ILMN_1743396 ACOX3 0.250377 0.001149 0.026102 3.340671 Up acyl-CoA oxidase 3, pristanoyl
ILMN_1711786 NFE2 0.250104 0.001205 0.026691 3.326009 Up nuclear factor, erythroid 2
ILMN_3289090 CAPZA1 0.24988 0.001472 0.029809 3.263922 Up capping actin protein of muscle Z-line subunit α 1
ILMN_2151056 BORCS7 0.249315 0.000261 0.013186 3.776529 Up BLOC-1 related complex subunit 7
ILMN_1716195 H2BC8 0.248687 0.00072 0.020871 3.481999 Up H2B clustered histone 8
ILMN_2366864 JUP 0.248584 0.003341 0.045507 3.001191 Up junction plakoglobin
ILMN_1709026 PXDC1 0.248166 0.00183 0.033266 3.19572 Up PX domain containing 1
ILMN_1690894 HSP90B3P 0.248104 0.001371 0.028675 3.2861 Up heat shock protein 90 β family member 3, pseudogene
ILMN_1662880 LINC01554 0.248026 0.000163 0.010418 3.908142 Up long intergenic non-protein coding RNA 1554
ILMN_1664560 DYRK1A 0.248006 0.003816 0.048801 2.957108 Up dual specificity tyrosine phosphorylation regulated kinase 1A
ILMN_3241665 SERTAD4-AS1 0.247969 2.49E-05 0.004816 4.406676 Up SERTAD4 antisense RNA 1
ILMN_2347541 NIN 0.24778 0.002743 0.041015 3.065875 Up ninein
ILMN_3185198 ACTR3C 0.247744 0.000969 0.024168 3.392602 Up actin related protein 3C
ILMN_2274420 SPTLC1 0.247643 0.001511 0.030094 3.255789 Up serine palmitoyltransferase long chain base subunit 1
ILMN_2356654 LGALS8 0.247618 0.000254 0.013135 3.783998 Up galectin 8
ILMN_1711792 GPBP1 0.246944 0.000145 0.010064 3.939077 Up GC-rich promoter binding protein 1
ILMN_1785765 TM9SF2 0.246663 0.003558 0.047012 2.980358 Up transmembrane 9 superfamily member 2
ILMN_1739967 TBK1 0.246267 0.000318 0.01452 3.72025 Up TANK binding kinase 1
ILMN_1737005 SMG9 0.245801 9.57E-06 0.003088 4.647172 Up SMG9 nonsense mediated mRNA decay factor
ILMN_3243514 PP12613 0.245456 5.23E-05 0.006073 4.213967 Up uncharacterized LOC100192379
ILMN_2113938 TOR1AIP2 0.245454 0.001286 0.027708 3.306016 Up torsin 1A interacting protein 2
ILMN_1669905 DCP2 0.24544 0.001721 0.032249 3.215129 Up decapping mRNA 2
ILMN_1667977 TAF1B 0.245081 0.000116 0.009 4.001937 Up TATA-box binding protein associated factor, RNA polymerase I subunit B
ILMN_1765212 LARP1B 0.244844 0.001587 0.031031 3.240414 Up La ribonucleoprotein 1B
ILMN_2275248 ECE2 0.244549 0.000156 0.010362 3.919402 Up endothelin converting enzyme 2
ILMN_1697864 CXorf38 0.243864 7.18E-05 0.007104 4.130027 Up chromosome X open reading frame 38
ILMN_1771286 PDE4DIP 0.242808 0.001603 0.031243 3.237261 Up phosphodiesterase 4D interacting protein
ILMN_1804064 ESRRG 0.242656 2.74E-05 0.004869 4.381513 Up estrogen related receptor γ
ILMN_1808860 STX5 0.241476 0.001945 0.034306 3.176409 Up syntaxin 5
ILMN_2359345 NET1 0.241323 0.001147 0.026081 3.341062 Up neuroepithelial cell transforming 1
ILMN_2324157 UBA3 0.24102 0.000534 0.018273 3.570218 Up ubiquitin like modifier activating enzyme 3
ILMN_1778803 ZFAND6 0.239907 0.002388 0.037999 3.110718 Up zinc finger AN1-type containing 6
ILMN_1810782 SH3KBP1 0.239001 0.003315 0.045247 3.003739 Up SH3 domain containing kinase binding protein 1
ILMN_1666258 AMFR 0.238013 0.002066 0.035418 3.157186 Up autocrine motility factor receptor
ILMN_1776154 COG3 0.237721 0.001616 0.031301 3.234779 Up component of oligomericgolgi complex 3
ILMN_2387553 PSMA3 0.237489 0.000128 0.009505 3.973908 Up proteasome 20S subunit α 3
ILMN_1730630 CXorf56 0.236626 0.002038 0.035103 3.1615 Up chromosome X open reading frame 56
ILMN_1673380 GNG12 0.236565 0.003033 0.04332 3.033043 Up G protein subunit γ 12
ILMN_3247111 LRRC69 0.233635 0.000701 0.020587 3.489939 Up leucine rich repeat containing 69
ILMN_1757956 PCGF1 0.23308 0.000729 0.021012 3.478289 Up polycomb group ring finger 1
ILMN_1759460 TAF7 0.232964 1.99E-06 0.002078 5.027658 Up TATA-box binding protein associated factor 7
ILMN_1747241 IWS1 0.232787 0.00339 0.045729 2.996419 Up interacts with SUPT6H, CTD assembly factor 1
ILMN_1676763 PIPSL 0.232594 0.000323 0.014545 3.715885 Up PIP5K1A and PSMD4 like (pseudogene)
ILMN_1813148 TOM1 0.23244 0.002966 0.04284 3.040312 Up target of myb1 membrane trafficking protein
ILMN_3240721 TDG 0.231924 0.000256 0.013135 3.782108 Up thymine DNA glycosylase
ILMN_1682919 PAFAH2 0.231731 0.002527 0.039088 3.09253 Up platelet activating factor acetylhydrolase 2
ILMN_2306077 USP33 0.231641 1.33E-05 0.00347 4.564689 Up ubiquitin specific peptidase 33
ILMN_2413572 MARK2 0.231373 0.003901 0.049215 2.94973 Up microtubule affinity regulating kinase 2
ILMN_2320853 UBE2D3 0.230668 0.001111 0.025736 3.351016 Up ubiquitin conjugating enzyme E2 D3
ILMN_1760256 RBM22 0.230632 0.001806 0.033086 3.199833 Up RNA binding motif protein 22
ILMN_1658743 CCNDBP1 0.229972 9.97E-05 0.008353 4.04187 Up cyclin D1 binding protein 1
ILMN_1717294 PTPN3 0.229265 0.002347 0.037683 3.116328 Up protein tyrosine phosphatase non-receptor type 3
ILMN_2101920 HNRNPH1 0.229246 0.000147 0.010107 3.93673 Up heterogeneous nuclear ribonucleoprotein H1
ILMN_1736234 CHTOP 0.228517 0.001144 0.026058 3.341855 Up chromatin target of PRMT1
ILMN_1700384 KIAA1522 0.228516 0.000577 0.018974 3.547666 Up KIAA1522
ILMN_1719237 SPDYE8P 0.228465 0.00384 0.048887 2.954952 Up speedy/RINGO cell cycle regulator family member E8, pseudogene
ILMN_1701724 GET4 0.228197 0.000247 0.012906 3.79222 Up guided entry of tail-anchored proteins factor 4
ILMN_1785852 NABP1 0.227819 0.002071 0.035437 3.156321 Up nucleic acid binding protein 1
ILMN_1755649 SLC16A5 0.227432 0.001462 0.029722 3.266055 Up solute carrier family 16 member 5
ILMN_1742118 RNASE12 0.226586 0.000101 0.008365 4.039673 Up ribonuclease A family member 12 (inactive)
ILMN_1701169 HP1BP3 0.226445 0.000651 0.019899 3.512006 Up heterochromatin protein 1 binding protein 3
ILMN_1754179 AP1G2 0.226367 0.000599 0.019237 3.536286 Up adaptor related protein complex 1 subunit γ 2
ILMN_2396813 BABAM1 0.226351 0.000283 0.013823 3.753519 Up BRISC and BRCA1 A complex member 1
ILMN_1726589 CD248 −0.87731 6.86E-05 0.006945 −4.14215 Down CD248 molecule
ILMN_1658356 PAMR1 −0.77303 1.88E-07 0.000867 −5.57122 Down peptidase domain containing associated with muscle regeneration 1
ILMN_1701308 COL1A1 −0.77213 5.05E-07 0.001127 −5.34677 Down collagen type I α 1 chain
ILMN_1723522 APOLD1 −0.75887 0.00051 0.017953 −3.58362 Down apolipoprotein L domain containing 1
ILMN_1779875 THY1 −0.75181 3.89E-05 0.005414 −4.29148 Down Thy-1 cell surface antigen
ILMN_1696347 CTSC −0.73439 0.000361 0.015151 −3.68404 Down cathepsin C
ILMN_1706505 COL5A1 −0.68289 8.23E-08 0.000792 −5.75462 Down collagen type V α 1 chain
ILMN_3237946 PXDN −0.68073 4.96E-06 0.002879 −4.80838 Down peroxidasin
ILMN_1673639 ABI3BP −0.67199 0.000934 0.023743 −3.40373 Down ABI family member 3 binding protein
ILMN_1766914 MFAP4 −0.66612 4.35E-06 0.002772 −4.84032 Down microfibril associated protein 4
ILMN_1795325 ACTG2 −0.65224 0.000984 0.024307 −3.38785 Down actin γ 2, smooth muscle
ILMN_1757604 TPM2 −0.65 0.00014 0.00984 −3.94965 Down tropomyosin 2
ILMN_1706643 COL6A3 −0.64553 2.54E-05 0.004833 −4.40149 Down collagen type VI α 3 chain
ILMN_1725193 IGFBP2 −0.63091 0.001035 0.024881 −3.3724 Down insulin like growth factor binding protein 2
ILMN_1720231 TNNT3 −0.61868 0.000693 0.020442 −3.49345 Down troponin T3, fast skeletal type
ILMN_2104356 COL1A2 −0.60473 8.52E-06 0.00295 −4.67573 Down collagen type I α 2 chain
ILMN_1773079 COL3A1 −0.6033 5.14E-06 0.002879 −4.79969 Down collagen type III α 1 chain
ILMN_1707070 PCOLCE −0.59908 1.55E-06 0.001955 −5.0867 Down procollagen C-endopeptidase enhancer
ILMN_1797776 PRSS23 −0.59791 1.36E-06 0.001955 −5.11653 Down serine protease 23
ILMN_2390919 FBLN2 −0.59331 6.9E-06 0.00295 −4.72775 Down fibulin 2
ILMN_1712046 CPXM1 −0.59179 0.000142 0.009889 −3.94586 Down carboxypeptidase X, M14 family member 1
ILMN_1670379 ANTXR1 −0.59159 3.06E-05 0.005173 −4.35299 Down ANTXR cell adhesion molecule 1
ILMN_1743445 FAM107A −0.58708 0.001007 0.02461 −3.38091 Down family with sequence similarity 107 member A
ILMN_1697268 EMILIN2 −0.58178 2.61E-05 0.004833 −4.39456 Down elastin microfibrilinterfacer 2
ILMN_1756071 MFGE8 −0.58136 0.00023 0.012505 −3.81152 Down milk fat globule-EGF factor 8 protein
ILMN_2115125 CCN2 −0.56274 0.00135 0.028444 −3.29078 Down cellular communication network factor 2
ILMN_1700690 VAT1 −0.55561 1.38E-05 0.003478 −4.55564 Down vesicle amine transport 1
ILMN_1761968 PPP1R14A −0.55382 6.36E-06 0.00295 −4.74771 Down protein phosphatase 1 regulatory inhibitor subunit 14A
ILMN_1783909 COL6A2 −0.55352 3.46E-05 0.005189 −4.32174 Down collagen type VI α 2 chain
ILMN_2384056 GPER1 −0.55173 0.001275 0.027557 −3.30852 Down G protein-coupled estrogen receptor 1
ILMN_1688642 LAMC3 −0.54794 0.000167 0.010606 −3.90071 Down laminin subunit γ 3
ILMN_1779558 GAS6 −0.54545 4.6E-07 0.001127 −5.36823 Down growth arrest specific 6
ILMN_1800787 RFTN1 −0.54246 9.71E-06 0.003091 −4.6434 Down raftlin, lipid raft linker 1
ILMN_1665909 LASP1 −0.53453 1.44E-06 0.001955 −5.10383 Down LIM and SH3 protein 1
ILMN_1811313 SLIT3 −0.53304 5.6E-08 0.000792 −5.83956 Down slit guidance ligand 3
ILMN_1793476 CAVIN3 −0.5317 2.2E-05 0.004675 −4.43772 Down caveolae associated protein 3
ILMN_2307903 VCAM1 −0.53139 8.12E-05 0.007511 −4.09693 Down vascular cell adhesion molecule 1
ILMN_1656560 PARM1 −0.53103 0.00016 0.010366 −3.91255 Down prostate androgen-regulated mucin-like protein 1
ILMN_1672611 CDH11 −0.52302 0.000212 0.011964 −3.83473 Down cadherin 11
ILMN_1765557 OLFML2B −0.52097 4.2E-06 0.00273 −4.84868 Down olfactomedin like 2B
ILMN_1815057 PDGFRB −0.52016 1.82E-05 0.004138 −4.48559 Down platelet derived growth factor receptor β
ILMN_1736178 AEBP1 −0.5199 3.33E-05 0.005189 −4.33169 Down AE binding protein 1
ILMN_1748124 TSC22D3 −0.51824 0.000928 0.02368 −3.40564 Down TSC22 domain family member 3
ILMN_1723978 LGALS1 −0.51718 0.000364 0.015227 −3.68144 Down galectin 1
ILMN_1738147 NES −0.51576 8.77E-06 0.003014 −4.6686 Down nestin
ILMN_2301722 PDE8B −0.51488 2.73E-05 0.004869 −4.38289 Down phosphodiesterase 8B
ILMN_1687301 VCAN −0.51483 0.000221 0.012223 −3.82288 Down versican
ILMN_1778523 KLF9 −0.50597 5.25E-05 0.006073 −4.21296 Down Kruppel like factor 9
ILMN_2062468 IGFBP7 −0.50184 0.000947 0.023893 −3.3994 Down insulin like growth factor binding protein 7
ILMN_1748323 CXCL14 −0.49871 0.000454 0.017215 −3.61778 Down C-X-C motif chemokine ligand 14
ILMN_1751326 FAM162B −0.49815 0.00278 0.041278 −3.06149 Down family with sequence similarity 162 member B
ILMN_2373791 ENPP2 −0.49776 6.94E-05 0.006958 −4.13908 Down ectonucleotidepyrophosphatase/phosphodiesterase 2
ILMN_1752968 LAMB2 −0.49708 0.000303 0.014156 −3.73363 Down laminin subunit β 2
ILMN_1654324 HEYL −0.49611 0.000102 0.008419 −4.03652 Down hes related family bHLH transcription factor with YRPW motif like
ILMN_1667295 VASN −0.49482 1.16E-05 0.003364 −4.5987 Down vasorin
ILMN_1812618 ARAP3 −0.49404 0.003139 0.044148 −3.0217 Down ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 3
ILMN_1661599 DDIT4 −0.49301 0.002513 0.039003 −3.09422 Down DNA damage inducible transcript 4
ILMN_1713496 ST3GAL5 −0.492 8.48E-05 0.007599 −4.08534 Down ST3 β-galactoside α-2,3-sialyltransferase 5
ILMN_1665865 IGFBP4 −0.49057 0.002826 0.041676 −3.05613 Down insulin like growth factor binding protein 4
ILMN_1687652 TGFB3 −0.48958 0.002071 0.035437 −3.15638 Down transforming growth factor β 3
ILMN_1801616 EMP1 −0.48942 0.000266 0.013333 −3.77097 Down epithelial membrane protein 1
ILMN_1733259 TMIGD3 −0.48909 0.00024 0.012746 −3.79958 Down transmembrane and immunoglobulin domain containing 3
ILMN_1670490 PDPN −0.48881 0.000138 0.009821 −3.95297 Down podoplanin
ILMN_1665219 LTBP4 −0.4882 1.05E-07 0.000838 −5.70174 Down latent transforming growth factor β binding protein 4
ILMN_1738578 FILIP1L −0.48742 0.000178 0.010961 −3.88315 Down filamin A interacting protein 1 like
ILMN_1654109 EGFLAM −0.48718 0.000239 0.012746 −3.80108 Down EGF like, fibronectin type III and laminin G domains
ILMN_1796734 SPARC −0.48641 1.76E-05 0.004057 −4.49427 Down secreted protein acidic and cysteine rich
ILMN_1675797 EPDR1 −0.48638 0.002889 0.0423 −3.04891 Down ependymin related 1
ILMN_1752755 VWF −0.48403 0.000698 0.02056 −3.491 Down von Willebrand factor
ILMN_1743836 MXRA7 −0.48256 0.000135 0.009758 −3.9585 Down matrix remodeling associated 7
ILMN_1732151 COL6A1 −0.48252 0.000537 0.018298 −3.56848 Down collagen type VI α 1 chain
ILMN_1699695 TNFRSF21 −0.48252 3.82E-07 0.001058 −5.41081 Down TNF receptor superfamily member 21
ILMN_1671703 ACTA2 −0.48127 0.001006 0.024602 −3.3812 Down actin α 2, smooth muscle
ILMN_1777190 CFD −0.48004 0.001794 0.032947 −3.20188 Down complement factor D
ILMN_1785646 PMP22 −0.47862 1.24E-05 0.003412 −4.58237 Down peripheral myelin protein 22
ILMN_1795166 PTH1R −0.47706 1.22E-05 0.003404 −4.58718 Down parathyroid hormone 1 receptor
ILMN_1779182 TMEM98 −0.47485 3.81E-06 0.002678 −4.87203 Down transmembrane protein 98
ILMN_3248591 LTBP2 −0.47272 3.28E-05 0.005189 −4.33519 Down latent transforming growth factor β binding protein 2
ILMN_1672503 DPYSL2 −0.47143 5.37E-06 0.002879 −4.78877 Down dihydropyrimidinase like 2
ILMN_2223941 FBLN5 −0.47095 1.94E-06 0.002072 −5.03358 Down fibulin 5
ILMN_1688480 CCND1 −0.46977 0.000483 0.017744 −3.59964 Down cyclin D1
ILMN_1808114 LYVE1 −0.46936 0.003925 0.049436 −2.9477 Down lymphatic vessel endothelial hyaluronan receptor 1
ILMN_2087692 CYBRD1 −0.46894 2.69E-05 0.004861 −4.38626 Down cytochrome b reductase 1
ILMN_1808707 FSCN1 −0.46767 3.69E-05 0.005267 −4.30499 Down fascin actin-bundling protein 1
ILMN_1660808 WFDC1 −0.46665 0.000163 0.010418 −3.90783 Down WAP four-disulfide core domain 1
ILMN_2337655 WARS1 −0.4653 4.87E-05 0.005873 −4.23248 Down tryptophanyl-tRNAsynthetase 1
ILMN_2347145 DCN −0.46414 8.34E-05 0.007533 −4.08985 Down decorin
ILMN_1694840 MATN2 −0.46405 0.000542 0.018404 −3.56578 Down matrilin 2
ILMN_1729117 COL5A2 −0.46318 0.000177 0.010947 −3.88468 Down collagen type V α 2 chain
ILMN_1681983 RSPO3 −0.46314 0.000248 0.012955 −3.79059 Down R-spondin 3
ILMN_3246401 AIF1L −0.46241 0.000187 0.011245 −3.86955 Down allograft inflammatory factor 1 like
ILMN_1778668 TAGLN −0.46167 0.001483 0.029912 −3.26159 Down transgelin
ILMN_1700183 APLNR −0.46027 0.000159 0.010362 −3.91414 Down apelin receptor
ILMN_2413158 PODXL −0.45912 0.000113 0.008916 −4.0078 Down podocalyxin like
ILMN_1701877 AXL −0.45803 3.57E-05 0.005231 −4.31359 Down AXL receptor tyrosine kinase
ILMN_1676893 ADCY3 −0.45717 5.23E-05 0.006073 −4.21395 Down adenylatecyclase 3
ILMN_1660086 MYH11 −0.45693 0.00135 0.028444 −3.29091 Down myosin heavy chain 11
ILMN_1781149 INMT −0.45264 0.000222 0.012233 −3.82134 Down indolethylamine N-methyltransferase
ILMN_1671928 PROS1 −0.45214 5.66E-05 0.006347 −4.19283 Down protein S
ILMN_2377900 MAP1B −0.45172 0.000292 0.014028 −3.74419 Down microtubule associated protein 1B
ILMN_1691127 VTN −0.45044 5.91E-06 0.002933 −4.76576 Down vitronectin
ILMN_1701441 LPAR1 −0.45043 2.49E-05 0.004816 −4.40602 Down lysophosphatidic acid receptor 1
ILMN_1734190 TCEAL3 −0.45031 0.000148 0.010152 −3.93406 Down transcription elongation factor A like 3
ILMN_1696749 LMNA −0.44963 7.46E-06 0.00295 −4.70841 Down lamin A/C
ILMN_3236825 RAPGEF5 −0.4488 0.00152 0.030129 −3.25398 Down Rap guanine nucleotide exchange factor 5
ILMN_1791890 SPON1 −0.44793 0.000369 0.01532 −3.67762 Down spondin 1
ILMN_1656951 APCDD1 −0.44608 5.84E-05 0.006463 −4.18452 Down APC down-regulated 1
ILMN_1723480 BST2 −0.44433 3.39E-05 0.005189 −4.32664 Down bone marrow stromal cell antigen 2
ILMN_1651429 SELENOM −0.44235 0.000729 0.021012 −3.47803 Down selenoprotein M
ILMN_1758164 STC1 −0.44235 5.34E-05 0.006098 −4.20849 Down stanniocalcin 1
ILMN_1728197 CLDN5 −0.44196 0.002297 0.037268 −3.1232 Down claudin 5
ILMN_1663866 TGFBI −0.44055 0.000185 0.011135 −3.87297 Down transforming growth factor β induced
ILMN_2057479 EGFL6 −0.44039 0.002923 0.042546 −3.04508 Down EGF like domain multiple 6
ILMN_1784863 CD36 −0.43914 0.001443 0.029457 −3.27014 Down CD36 molecule
ILMN_1789492 ZDHHC8 −0.43853 1.97E-05 0.004301 −4.4659 Down zinc finger DHHC-type containing 8
ILMN_1790689 CRISPLD2 −0.43782 0.000578 0.018974 −3.54695 Down cysteine rich secretory protein LCCL domain containing 2
ILMN_1795442 LAMA4 −0.43771 8.57E-05 0.007637 −4.08249 Down laminin subunit α 4
ILMN_1702501 RPS6KA2 −0.43678 2.81E-06 0.002369 −4.94542 Down ribosomal protein S6 kinase A2
ILMN_1671106 GJA4 −0.43644 0.000331 0.014708 −3.70883 Down gap junction protein α 4
ILMN_1692058 NDN −0.43561 2.4E-05 0.004755 −4.41545 Down necdin, MAGE family member
ILMN_1668629 C4orf48 −0.43536 3.2E-05 0.005189 −4.34205 Down chromosome 4 open reading frame 48
ILMN_1697448 TXNIP −0.43462 4.43E-05 0.005755 −4.25718 Down thioredoxin interacting protein
ILMN_1798360 ACKR3 −0.43355 0.000768 0.021647 −3.46258 Down atypical chemokine receptor 3
ILMN_1671565 RNASET2 −0.43033 0.000961 0.024096 −3.39507 Down ribonuclease T2
ILMN_1676449 SLIT2 −0.42992 0.000142 0.009889 −3.94603 Down slit guidance ligand 2
ILMN_1687978 PHLDA1 −0.42734 1.82E-05 0.004138 −4.48565 Down pleckstrin homology like domain family A member 1
ILMN_1715991 CAVIN2 −0.42665 0.001128 0.025959 −3.34614 Down caveolae associated protein 2
ILMN_2067656 CCND2 −0.42587 0.000216 0.012027 −3.82966 Down cyclin D2
ILMN_1680037 RIPOR1 −0.42581 3.23E-06 0.002557 −4.91159 Down RHO family interacting cell polarization regulator 1
ILMN_1669409 VSIG4 −0.42564 0.000387 0.015721 −3.66386 Down V-set and immunoglobulin domain containing 4
ILMN_1673566 ADAMTS1 −0.42513 0.000988 0.024354 −3.3866 Down ADAM metallopeptidase with thrombospondin type 1 motif 1
ILMN_1709486 SRPX −0.42497 0.000723 0.020945 −3.48076 Down sushi repeat containing protein X-linked
ILMN_2308849 MYADM −0.42477 0.00028 0.013713 −3.75666 Down myeloid associated differentiation marker
ILMN_1742534 COL4A5 −0.42458 3.49E-05 0.005194 −4.31961 Down collagen type IV α 5 chain
ILMN_1662419 COX7A1 −0.42139 0.001898 0.033868 −3.1842 Down cytochrome c oxidase subunit 7A1
ILMN_1666894 CSPG4 −0.42081 0.000309 0.014326 −3.72785 Down chondroitin sulfate proteoglycan 4
ILMN_1681679 TSPO −0.41878 0.000143 0.009968 −3.9429 Down translocator protein
ILMN_2410929 PAPSS2 −0.41817 0.000199 0.011586 −3.85207 Down 3′-phosphoadenosine 5′-phosphosulfate synthase 2
ILMN_1675936 HIGD1B −0.41805 0.002299 0.037268 −3.12291 Down HIG1 hypoxia inducible domain family member 1B
ILMN_1800697 LDB2 −0.41769 0.000812 0.022284 −3.44608 Down LIM domain binding 2
ILMN_1695959 EVA1C −0.41726 1.48E-06 0.001955 −5.09704 Down eva-1 homolog C
ILMN_1815700 WNT3A −0.41588 0.000685 0.020354 −3.49693 Down Wnt family member 3A
ILMN_1672878 ABR −0.41554 1.42E-06 0.001955 −5.1066 Down ABR activator of RhoGEF and GTPase
ILMN_1653203 EFEMP2 −0.41486 1.59E-05 0.003762 −4.52062 Down EGF containing fibulin extracellular matrix protein 2
ILMN_1705442 CMTM3 −0.41405 3.33E-05 0.005189 −4.33163 Down CKLF like MARVEL transmembrane domain containing 3
ILMN_1678353 FARP1 −0.41327 3.99E-06 0.002688 −4.86121 Down FERM, ARH/RhoGEF and pleckstrin domain protein 1
ILMN_1745963 FOLR2 −0.4129 0.002926 0.042546 −3.04483 Down folate receptor β
ILMN_2189027 LIPG −0.41278 0.002567 0.039356 −3.08744 Down lipase G, endothelial type
ILMN_1673352 IFITM2 −0.41277 1.45E-05 0.003584 −4.54291 Down interferon induced transmembrane protein 2
ILMN_1814327 AGTR1 −0.4127 0.003348 0.045512 −3.00053 Down angiotensin II receptor type 1
ILMN_1727532 OLFML3 −0.41123 0.000299 0.014133 −3.73746 Down olfactomedin like 3
ILMN_1764964 IFNGR2 −0.41058 0.000123 0.009352 −3.98429 Down interferon γ receptor 2
ILMN_1756573 NDUFA4L2 −0.40838 0.001643 0.031536 −3.22967 Down NDUFA4 mitochondrial complex associated like 2
ILMN_1653466 HES4 −0.40777 0.000111 0.008868 −4.013 Down hes family bHLH transcription factor 4
ILMN_2396875 IGFBP3 −0.40708 0.001143 0.026058 −3.34212 Down insulin like growth factor binding protein 3
ILMN_2038775 TUBB2A −0.40565 0.001946 0.03431 −3.17614 Down tubulin β 2A class IIa
ILMN_1812031 PALM −0.40551 1.37E-05 0.003478 −4.55698 Down paralemmin
ILMN_1709307 GPSM1 −0.4053 3.66E-05 0.005267 −4.30712 Down G protein signaling modulator 1
ILMN_3246214 B4GAT1 −0.40496 3.87E-07 0.001058 −5.40781 Down β-1,4-glucuronyltransferase 1
ILMN_1802411 ITGA1 −0.4038 3.16E-05 0.005189 −4.34541 Down integrin subunit α 1
ILMN_1714861 CD68 −0.40235 0.001299 0.027871 −3.30268 Down CD68 molecule
ILMN_1666819 PHLDB1 −0.40159 2.35E-05 0.004738 −4.42152 Down pleckstrin homology like domain family B member 1
ILMN_1723481 CHST3 −0.40156 5.39E-06 0.002879 −4.78828 Down carbohydrate sulfotransferase 3
ILMN_1724994 COL4A2 −0.40135 0.000401 0.01601 −3.65332 Down collagen type IV α 2 chain
ILMN_1768483 KCNK3 −0.40133 4.77E-05 0.005826 −4.23792 Down potassium two pore domain channel subfamily K member 3
ILMN_1717934 SYT11 −0.40115 2.98E-05 0.005073 −4.35983 Down synaptotagmin 11
ILMN_1812968 SOX18 −0.40033 0.000526 0.018141 −3.57485 Down SRY-box transcription factor 18
ILMN_2173611 MT1E −0.39988 0.000353 0.015039 −3.69035 Down metallothionein 1E
ILMN_1668283 HYAL2 −0.39864 0.000646 0.019821 −3.51392 Down hyaluronidase 2
ILMN_1757440 DIPK1B −0.39796 0.00033 0.014704 −3.70918 Down divergent protein kinase domain 1B
ILMN_1773059 ADGRA2 −0.39739 0.000911 0.023503 −3.41136 Down adhesion G protein-coupled receptor A2
ILMN_1795429 VCL −0.39693 0.000348 0.014991 −3.69401 Down vinculin
ILMN_1789733 CLIP3 −0.39665 1.53E-05 0.00373 −4.53031 Down CAP-Gly domain containing linker protein 3
ILMN_1675062 MYL9 −0.39519 0.001559 0.030619 −3.24612 Down myosin light chain 9
ILMN_1711566 TIMP1 −0.39465 0.001568 0.030761 −3.24426 Down TIMP metallopeptidase inhibitor 1
ILMN_1682781 TEAD2 −0.39462 2.27E-05 0.004675 −4.42977 Down TEA domain transcription factor 2
ILMN_1806733 COL18A1 −0.39225 0.000595 0.019227 −3.53859 Down collagen type XVIII α 1 chain
ILMN_1769091 PRCP −0.39168 0.000281 0.013751 −3.75557 Down prolylcarboxypeptidase
ILMN_1691376 JAG1 −0.39137 0.000108 0.008727 −4.02057 Down jagged canonical Notch ligand 1
ILMN_1808238 RBPMS2 −0.39047 2.27E-05 0.004675 −4.43015 Down RNA binding protein, mRNA processing factor 2
ILMN_1684391 PLOD1 −0.38987 5.67E-06 0.002906 −4.77593 Down procollagen-lysine,2-oxoglutarate 5-dioxygenase 1
ILMN_1755657 RASIP1 −0.38985 0.00111 0.025736 −3.35121 Down Ras interacting protein 1
ILMN_1754795 FAT1 −0.38928 0.000803 0.02216 −3.44913 Down FAT atypical cadherin 1
ILMN_1723684 ACKR1 −0.38904 0.000258 0.013173 −3.77982 Down atypical chemokine receptor 1 (Duffy blood group)
ILMN_1763640 NCKAP5L −0.38828 4.47E-05 0.005755 −4.25481 Down NCK associated protein 5 like
ILMN_2066151 TEK −0.38809 0.001131 0.025976 −3.34543 Down TEK receptor tyrosine kinase
ILMN_1730995 AFAP1L2 −0.38806 6.29E-05 0.006657 −4.16513 Down actin filament associated protein 1 like 2
ILMN_1676846 ABCE1 −0.38772 0.002141 0.035854 −3.14571 Down ATP binding cassette subfamily E member 1
ILMN_2306540 PDE9A −0.38716 0.000255 0.013135 −3.78258 Down phosphodiesterase 9A
ILMN_1756920 ADAM15 −0.38698 2.31E-05 0.004723 −4.4258 Down ADAM metallopeptidase domain 15
ILMN_1667460 SULF2 −0.38575 0.000356 0.015084 −3.68742 Down sulfatase 2
ILMN_1778681 EBF1 −0.38542 0.000387 0.015721 −3.66397 Down EBF transcription factor 1
ILMN_1810852 LAMC1 −0.38297 0.000107 0.008689 −4.02291 Down laminin subunit γ 1
ILMN_1723123 FGFR3 −0.38138 0.000151 0.010247 −3.92785 Down fibroblast growth factor receptor 3
ILMN_1741632 RAB3IL1 −0.381 1.3E-05 0.003464 −4.57014 Down RAB3A interacting protein like 1
ILMN_2230025 PDLIM3 −0.381 0.000642 0.019792 −3.51588 Down PDZ and LIM domain 3
ILMN_1772612 ANGPTL2 −0.37902 2.69E-05 0.004861 −4.38663 Down angiopoietin like 2
ILMN_1810844 RARRES2 −0.37881 0.000884 0.023267 −3.42025 Down retinoic acid receptor responder 2
ILMN_1738816 FOXO1 −0.37837 0.000525 0.018141 −3.57509 Down forkhead box O1
ILMN_1689953 CD81 −0.37702 1.74E-07 0.000867 −5.58795 Down CD81 molecule
ILMN_1651950 TPST1 −0.37597 3.72E-05 0.005297 −4.30272 Down tyrosylproteinsulfotransferase 1
ILMN_1692731 TTYH3 −0.37535 3.37E-05 0.005189 −4.32847 Down tweety family member 3
ILMN_1658835 CAV2 −0.37448 0.001154 0.026156 −3.33932 Down caveolin 2
ILMN_1680453 ITM2C −0.37416 0.000588 0.019112 −3.54215 Down integral membrane protein 2C
ILMN_1702835 SH3BGRL −0.37249 0.000342 0.01488 −3.69952 Down SH3 domain binding glutamate rich protein like
ILMN_1732923 SIPA1L2 −0.37207 0.000758 0.021475 −3.46637 Down signal induced proliferation associated 1 like 2
ILMN_1797009 F3 −0.37136 0.00032 0.014545 −3.71818 Down coagulation factor III, tissue factor
ILMN_1738263 PIGU −0.37121 0.00019 0.011345 −3.86457 Down phosphatidylinositol glycan anchor biosynthesis class U
ILMN_1739946 VKORC1 −0.3684 0.000138 0.009805 −3.95412 Down vitamin K epoxide reductase complex subunit 1
ILMN_1803312 DIMT1 −0.36765 2.11E-05 0.004531 −4.44861 Down DIMT1 rRNAmethyltransferase and ribosome maturation factor
ILMN_2089752 ALKAL2 −0.3669 0.003884 0.049065 −2.95119 Down ALK and LTK ligand 2
ILMN_1729563 UGDH −0.36578 0.00195 0.034354 −3.1755 Down UDP-glucose 6-dehydrogenase
ILMN_1695290 FERMT2 −0.36562 8.34E-06 0.00295 −4.68113 Down fermitin family member 2
ILMN_1748473 GIMAP4 −0.3654 0.000178 0.010961 −3.88275 Down GTPase, IMAP family member 4
ILMN_3242038 GPX8 −0.36483 0.000302 0.014133 −3.73508 Down glutathione peroxidase 8 (putative)
ILMN_1781256 LEFTY2 −0.36409 0.001663 0.031713 −3.2258 Down left-right determination factor 2
ILMN_1718607 TSPAN4 −0.36243 0.000121 0.009241 −3.98826 Down tetraspanin 4
ILMN_1653028 COL4A1 −0.36243 0.000251 0.013046 −3.78705 Down collagen type IV α 1 chain
ILMN_1806403 RASL12 −0.3617 0.000182 0.011037 −3.87729 Down RAS like family 12
ILMN_1770338 TM4SF1 −0.36154 0.002035 0.035083 −3.16202 Down transmembrane 4 L six family member 1
ILMN_1757552 CAVIN1 −0.36036 1.87E-05 0.004187 −4.47961 Down caveolae associated protein 1
ILMN_2148944 ADCY4 −0.36032 0.002039 0.035103 −3.16139 Down adenylatecyclase 4
ILMN_2346997 RAB23 −0.36006 4.72E-05 0.005816 −4.241 Down RAB23, member RAS oncogene family
ILMN_1803429 CD44 −0.35802 0.001453 0.029623 −3.268 Down CD44 molecule (Indian blood group)
ILMN_1757845 SPIRE1 −0.35788 0.000136 0.009769 −3.9577 Down spire type actin nucleation factor 1
ILMN_2063168 MALL −0.35738 0.000348 0.014991 −3.69453 Down mal, T cell differentiation protein like
ILMN_1794492 HOXC6 −0.35691 2.08E-05 0.004478 −4.45271 Down homeobox C6
ILMN_2089073 ATP9A −0.35669 0.000323 0.014545 −3.71549 Down ATPase phospholipid transporting 9A (putative)
ILMN_1676897 HSPA12B −0.35655 0.001255 0.027297 −3.31351 Down heat shock protein family A (Hsp70) member 12B
ILMN_1720158 ETS2 −0.35607 1.88E-05 0.004187 −4.47844 Down ETS proto-oncogene 2, transcription factor
ILMN_1767448 LHFPL6 −0.35579 0.000815 0.022307 −3.44483 Down LHFPL tetraspan subfamily member 6
ILMN_3238560 IFI27L2 −0.35573 2.7E-05 0.004861 −4.38599 Down interferon α inducible protein 27 like 2
ILMN_1784871 FASN −0.35492 1.19E-06 0.001926 −5.14833 Down fatty acid synthase
ILMN_1680874 TUBB2B −0.35438 2.27E-05 0.004675 −4.42951 Down tubulin β 2B class IIb
ILMN_2081682 SMAP2 −0.35276 6.18E-05 0.006575 −4.16954 Down small ArfGAP2
ILMN_1774982 CDC42EP5 −0.35271 4.66E-05 0.005784 −4.24433 Down CDC42 effector protein 5
ILMN_1788019 LAMA2 −0.35245 0.00276 0.041163 −3.0638 Down laminin subunit α 2
ILMN_1783276 NEXN −0.35153 0.000177 0.010947 −3.88438 Down nexilin F-actin binding protein
ILMN_1676088 MSRB3 −0.35012 0.000365 0.015248 −3.68065 Down methionine sulfoxidereductase B3
ILMN_1795183 RNASE1 −0.34959 0.003183 0.044326 −3.01723 Down ribonuclease A family member 1, pancreatic
ILMN_1704537 PHGDH −0.34957 8.55E-05 0.007633 −4.08329 Down phosphoglycerate dehydrogenase
ILMN_1805543 ADAMTS9 −0.34922 0.001219 0.026853 −3.32252 Down ADAM metallopeptidase with thrombospondin type 1 motif 9
ILMN_2127605 LRP3 −0.3484 9.59E-07 0.001775 −5.19866 Down LDL receptor related protein 3
ILMN_2410523 DDR2 −0.34789 0.000108 0.008756 −4.019 Down discoidin domain receptor tyrosine kinase 2
ILMN_2389876 TGFB1I1 −0.34786 0.000225 0.012343 −3.81789 Down transforming growth factor β 1 induced transcript 1
ILMN_3241758 POTEF −0.34764 0.001247 0.027181 −3.31554 Down POTE ankyrin domain family member F
ILMN_1770454 AGRN −0.34742 0.00053 0.018229 −3.57218 Down agrin
ILMN_1752249 PIEZO1 −0.34641 0.000798 0.022091 −3.45127 Down piezo type mechanosensitive ion channel component 1
ILMN_1663080 LFNG −0.34636 5.26E-05 0.006073 −4.21211 Down LFNG O-fucosylpeptide 3-β-N-acetylglucosaminyltransferase
ILMN_1672389 CRYZ −0.3461 0.000537 0.018298 −3.56835 Down crystallin zeta
ILMN_1776724 LYPD6 −0.34584 1.34E-05 0.00347 −4.56326 Down LY6/PLAUR domain containing 6
ILMN_1777397 MSX1 −0.34534 0.000377 0.015431 −3.67168 Down mshhomeobox 1
ILMN_1783593 CCL13 −0.34534 0.001155 0.026177 −3.33892 Down C-C motif chemokine ligand 13
ILMN_2398159 DKK3 −0.34528 0.003364 0.045581 −2.99896 Down dickkopf WNT signaling pathway inhibitor 3
ILMN_1743367 FZD4 −0.34522 0.000443 0.016957 −3.62449 Down frizzled class receptor 4
ILMN_2186061 PFKFB3 −0.34512 0.000537 0.018294 −3.56884 Down 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
ILMN_1662340 ZNF358 −0.34471 3.09E-06 0.002517 −4.9227 Down zinc finger protein 358
ILMN_1778991 NFIB −0.34285 0.001613 0.031272 −3.23532 Down nuclear factor I B
ILMN_1812926 ANTXR2 −0.3415 5.68E-05 0.006347 −4.19218 Down ANTXR cell adhesion molecule 2
ILMN_1657632 TMEM35B −0.33999 8.22E-05 0.007511 −4.09378 Down transmembrane protein 35B
ILMN_1778226 EXTL3 −0.33995 0.001652 0.03162 −3.22796 Down exostosin like glycosyltransferase 3
ILMN_1782938 SLC16A10 −0.33976 0.002898 0.042362 −3.04796 Down solute carrier family 16 member 10
ILMN_2193325 MMP23B −0.33959 0.000713 0.020805 −3.48474 Down matrix metallopeptidase 23B
ILMN_1739496 PRRX1 −0.33948 0.000146 0.010103 −3.93722 Down paired related homeobox 1
ILMN_1865764 ZMAT3 −0.33777 1.18E-06 0.001926 −5.14964 Down zinc finger matrin-type 3
ILMN_1794863 CAMK2N1 −0.33759 0.001093 0.025566 −3.35581 Down calcium/calmodulin dependent protein kinase II inhibitor 1
ILMN_1735877 EFEMP1 −0.33701 0.003 0.043103 −3.03665 Down EGF containing fibulin extracellular matrix protein 1
ILMN_2120247 SLC2A10 −0.33689 0.001012 0.02466 −3.37924 Down solute carrier family 2 member 10
ILMN_1803423 ARHGEF6 −0.33673 0.001997 0.034749 −3.16805 Down Rac/Cdc42 guanine nucleotide exchange factor 6
ILMN_2201533 TMEM256 −0.3363 9.84E-05 0.008273 −4.04548 Down transmembrane protein 256
ILMN_1698934 CMTM7 −0.33562 6.8E-05 0.006927 −4.14452 Down CKLF like MARVEL transmembrane domain containing 7
ILMN_1697409 TNFRSF14 −0.33559 0.000266 0.013333 −3.77075 Down TNF receptor superfamily member 14
ILMN_1778240 GFOD1 −0.33518 0.00062 0.019425 −3.52642 Down glucose-fructose oxidoreductase domain containing 1
ILMN_1743373 DLL1 −0.3346 0.000177 0.010936 −3.88539 Down δ like canonical Notch ligand 1
ILMN_2216582 LYL1 −0.3343 0.000484 0.017744 −3.59922 Down LYL1 basic helix-loop-helix family member
ILMN_1765641 SEMA3A −0.33427 0.000485 0.017744 −3.59859 Down semaphorin 3A
ILMN_1890614 INKA2 −0.33389 7.18E-06 0.00295 −4.71805 Down inka box actin regulator 2
ILMN_2095133 SPTAN1 −0.33345 7.54E-05 0.007229 −4.11685 Down spectrin α, non-erythrocytic 1
ILMN_1783681 MRPL34 −0.33294 0.001535 0.030319 −3.25087 Down mitochondrial ribosomal protein L34
ILMN_1705302 FCGRT −0.33153 0.00135 0.028444 −3.29084 Down Fc fragment of IgG receptor and transporter
ILMN_1682738 SMAD3 −0.33045 6.58E-05 0.006811 −4.15297 Down SMAD family member 3
ILMN_2059535 PPM1F −0.3304 0.001065 0.025246 −3.36391 Down protein phosphatase, Mg2+/Mn2+ dependent 1F
ILMN_1790953 TBCB −0.3301 2.21E-05 0.004675 −4.43726 Down tubulin folding cofactor B
ILMN_1764788 TNFRSF1B −0.32976 0.003169 0.044269 −3.0186 Down TNF receptor superfamily member 1B
ILMN_1754660 ZCCHC24 −0.32898 0.000101 0.008387 −4.03815 Down zinc finger CCHC-type containing 24
ILMN_2252309 DPP7 −0.32892 0.001126 0.025921 −3.34674 Down dipeptidyl peptidase 7
ILMN_1674160 BIN1 −0.32855 0.000214 0.012004 −3.83144 Down bridging integrator 1
ILMN_1675656 PPFIBP2 −0.32771 0.00043 0.016689 −3.63326 Down PPFIA binding protein 2
ILMN_1728512 YWHAH −0.32748 6.04E-05 0.006541 −4.17595 Down tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta
ILMN_1789171 EEF2K −0.32709 1.05E-05 0.003154 −4.62387 Down eukaryotic elongation factor 2 kinase
ILMN_1680973 FOXF1 −0.3269 0.000111 0.008868 −4.01194 Down forkhead box F1
ILMN_1805750 IFITM3 −0.3253 0.000765 0.021605 −3.46392 Down interferon induced transmembrane protein 3
ILMN_2298365 PPP2R2B −0.3252 0.000614 0.019397 −3.52901 Down protein phosphatase 2 regulatory subunit Bβ
ILMN_1814194 TCF4 −0.32479 0.00114 0.026051 −3.34287 Down transcription factor 4
ILMN_1769520 UBE2L6 −0.32451 0.001765 0.032784 −3.20703 Down ubiquitin conjugating enzyme E2 L6
ILMN_1730487 CALD1 −0.32449 0.000631 0.019631 −3.52115 Down caldesmon 1
ILMN_1804929 OXTR −0.32448 0.000803 0.02216 −3.44941 Down oxytocin receptor
ILMN_2174127 DCBLD2 −0.32399 6.83E-06 0.00295 −4.73008 Down discoidin, CUB and LCCL domain containing 2
ILMN_1703477 ARHGEF2 −0.32314 7.85E-05 0.007364 −4.10614 Down Rho/Rac guanine nucleotide exchange factor 2
ILMN_1804277 SPRED1 −0.32305 0.002215 0.036485 −3.13485 Down sprouty related EVH1 domain containing 1
ILMN_1712075 SYNM −0.32231 0.002466 0.038662 −3.10033 Down synemin
ILMN_1770290 CNN2 −0.3223 0.000584 0.01904 −3.54398 Down calponin 2
ILMN_2064725 METTL7B −0.32199 0.000739 0.021238 −3.474 Down methyltransferase like 7B
ILMN_2343097 NCALD −0.32174 5.26E-06 0.002879 −4.7939 Down neurocalcin δ
ILMN_1676515 IMPDH1 −0.32151 2.8E-06 0.002369 −4.94609 Down inosine monophosphate dehydrogenase 1
ILMN_1685540 SHROOM3 −0.32144 9.41E-05 0.008052 −4.05753 Down shroom family member 3
ILMN_1839019 LPP −0.32071 0.000295 0.01409 −3.74125 Down LIM domain containing preferred translocation partner in lipoma
ILMN_1747223 FRYL −0.32039 0.000312 0.014386 −3.72536 Down FRY like transcription coactivator
ILMN_1779735 LAMTOR4 −0.32032 0.001384 0.028811 −3.28315 Down late endosomal/lysosomal adaptor, MAPK and MTOR activator 4
ILMN_2316386 GPBAR1 −0.31949 0.000134 0.009736 −3.96066 Down G protein-coupled bile acid receptor 1
ILMN_1810559 RHOQ −0.31922 9.79E-05 0.008252 −4.04665 Down ras homolog family member Q
ILMN_1804498 BRAT1 −0.31861 0.000157 0.010362 −3.91859 Down BRCA1 associated ATM activator 1
ILMN_1785618 SMTN −0.31794 0.000103 0.008513 −4.03259 Down smoothelin
ILMN_1778444 FKBP5 −0.31765 0.003284 0.045007 −3.00692 Down FKBP prolylisomerase 5
ILMN_1704154 TNFRSF19 −0.31706 0.000322 0.014545 −3.71667 Down TNF receptor superfamily member 19
ILMN_2104141 FGD5 −0.317 0.000237 0.012746 −3.80302 Down FYVE, RhoGEF and PH domain containing 5
ILMN_2149226 CAV1 −0.31687 0.002907 0.042449 −3.04697 Down caveolin 1
ILMN_1654398 RGL1 −0.31678 0.000409 0.016197 −3.64795 Down ral guanine nucleotide dissociation stimulator like 1
ILMN_3307892 PARVA −0.31677 1.15E-05 0.003353 −4.60138 Down parvin α
ILMN_3241262 PABPC4L −0.3167 0.001528 0.030233 −3.2524 Down poly(A) binding protein cytoplasmic 4 like
ILMN_1730229 CGNL1 −0.31553 0.000937 0.02378 −3.40267 Down cingulin like 1
ILMN_1779071 FEZ1 −0.31546 3.78E-05 0.005357 −4.29902 Down fasciculation and elongation protein zeta 1
ILMN_1775330 CCDC9B −0.31511 8.78E-05 0.007748 −4.07615 Down coiled-coil domain containing 9B
ILMN_1701204 VEGFC −0.31459 0.000186 0.011194 −3.87116 Down vascular endothelial growth factor C
ILMN_1777881 TSPAN17 −0.31456 4.57E-05 0.005773 −4.24941 Down tetraspanin 17
ILMN_1677200 CYFIP2 −0.31396 0.0005 0.017901 −3.58965 Down cytoplasmic FMR1 interacting protein 2
ILMN_2056032 CD99 −0.3134 0.001609 0.031251 −3.23623 Down CD99 molecule (Xg blood group)
ILMN_1752591 LEPROTL1 −0.3128 0.001734 0.032382 −3.21268 Down leptin receptor overlapping transcript like 1
ILMN_1757338 PLSCR4 −0.31123 0.000327 0.014624 −3.7118 Down phospholipid scramblase 4
ILMN_3245564 ARHGAP44 −0.3111 4.92E-05 0.005917 −4.22987 Down Rho GTPase activating protein 44
ILMN_1699980 TSPAN18 −0.31001 0.000286 0.013944 −3.74989 Down tetraspanin 18
ILMN_3232894 CNRIP1 −0.30921 0.00187 0.033574 −3.18876 Down cannabinoid receptor interacting protein 1
ILMN_1771800 PRKCA −0.30913 3.17E-05 0.005189 −4.34465 Down protein kinase C α
ILMN_2397954 PARP3 −0.30902 1.52E-06 0.001955 −5.09076 Down poly(ADP-ribose) polymerase family member 3
ILMN_1808777 EHD2 −0.30827 0.0001 0.008353 −4.04098 Down EH domain containing 2
ILMN_1758128 CYGB −0.30813 3.22E-05 0.005189 −4.34001 Down cytoglobin
ILMN_1668514 PIP5K1C −0.30797 0.000323 0.014545 −3.71537 Down phosphatidylinositol-4-phosphate 5-kinase type 1 γ
ILMN_3236344 BMS1P4 −0.30771 0.000204 0.011804 −3.84512 Down BMS1 pseudogene 4
ILMN_1708743 NT5DC2 −0.30746 7.44E-05 0.007229 −4.12035 Down 5′-nucleotidase domain containing 2
ILMN_1760493 LIMS2 −0.30721 0.000139 0.00984 −3.95143 Down LIM zinc finger domain containing 2
ILMN_1736670 PPP1R3C −0.30647 0.001626 0.031392 −3.23287 Down protein phosphatase 1 regulatory subunit 3C
ILMN_1671295 CCDC3 −0.3059 0.001513 0.030094 −3.25547 Down coiled-coil domain containing 3
ILMN_2102330 COL8A2 −0.3057 0.000112 0.008882 −4.01107 Down collagen type VIII α 2 chain
ILMN_2359945 CES1 −0.30559 0.00016 0.010366 −3.91273 Down carboxylesterase 1
ILMN_1780057 RENBP −0.3052 0.000155 0.010361 −3.92141 Down renin binding protein
ILMN_1658847 NRARP −0.30411 0.000766 0.021608 −3.46347 Down NOTCH regulated ankyrin repeat protein
ILMN_1718303 NECTIN2 −0.30407 0.000344 0.014909 −3.69776 Down nectin cell adhesion molecule 2
ILMN_1764410 GUCD1 −0.30401 0.001226 0.026935 −3.3206 Down guanylylcyclase domain containing 1
ILMN_1691717 RHBDF2 −0.30355 0.000467 0.017456 −3.60933 Down rhomboid 5 homolog 2
ILMN_1766675 CDH6 −0.30348 5.65E-05 0.006347 −4.19354 Down cadherin 6
ILMN_1752046 SH2B3 −0.30284 0.003129 0.044068 −3.02278 Down SH2B adaptor protein 3
ILMN_1656300 GFRA2 −0.30283 0.000222 0.012233 −3.82121 Down GDNF family receptor α 2
ILMN_2148459 B2M −0.30266 0.003487 0.046567 −2.98705 Down β-2-microglobulin
ILMN_1795639 MGMT −0.30229 0.000215 0.012004 −3.83117 Down O-6-methylguanine-DNA methyltransferase
ILMN_1687335 FLNA −0.30213 0.00045 0.017125 −3.62022 Down filamin A
ILMN_2049536 TRPV2 −0.30191 5E-05 0.005957 −4.22548 Down transient receptor potential cation channel subfamily V member 2
ILMN_1668721 CCND3 −0.30153 0.003431 0.046061 −2.99245 Down cyclin D3
ILMN_1801226 DOCK6 −0.30138 0.000109 0.008759 −4.01846 Down dedicator of cytokinesis 6
ILMN_3238196 CYTH4 −0.30118 0.001775 0.0328 −3.20526 Down cytohesin 4
ILMN_1760667 POLR3GL −0.30114 0.000115 0.009 −4.00214 Down RNA polymerase III subunit G like
ILMN_2367707 PKN1 −0.30078 1.76E-05 0.004057 −4.49419 Down protein kinase N1
ILMN_1756439 SCRN1 −0.30064 2.03E-05 0.004408 −4.45788 Down secernin 1
ILMN_1746704 TRIM8 −0.30043 1.71E-06 0.001955 −5.06366 Down tripartite motif containing 8
ILMN_1727043 COLGALT1 −0.30041 1.61E-06 0.001955 −5.0774 Down collagen β(1-O)galactosyltransferase 1
ILMN_1789639 FMOD −0.29998 0.000703 0.020621 −3.48914 Down fibromodulin
ILMN_1759513 RND3 −0.2987 0.00056 0.018724 −3.5563 Down Rho family GTPase 3
ILMN_2339294 LILRB5 −0.29854 0.000286 0.013933 −3.75069 Down leukocyte immunoglobulin like receptor B5
ILMN_2205896 MEIS3P1 −0.29849 3.51E-05 0.005215 −4.31774 Down Meishomeobox 3 pseudogene 1
ILMN_1677404 RAP2A −0.29848 1.01E-05 0.003119 −4.63287 Down RAP2A, member of RAS oncogene family
ILMN_1716678 NPC2 −0.29813 0.000259 0.013173 −3.77819 Down NPC intracellular cholesterol transporter 2
ILMN_1686555 FYN −0.29766 6.74E-05 0.006914 −4.14687 Down FYN proto-oncogene, Src family tyrosine kinase
ILMN_1853824 MGAT3 −0.29749 0.000891 0.023304 −3.4178 Down β-1,4-mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase
ILMN_1661264 SHMT2 −0.29747 0.000466 0.017456 −3.61015 Down serine hydroxymethyltransferase 2
ILMN_1748206 CCM2L −0.29721 0.001703 0.032137 −3.21833 Down CCM2 like scaffold protein
ILMN_1724480 AXIN2 −0.29689 0.000111 0.008868 −4.01392 Down axin 2
ILMN_1776157 SEPTIN4 −0.29638 0.000337 0.014847 −3.70339 Down septin 4
ILMN_1775734 SH2D3C −0.29607 0.001157 0.02618 −3.33856 Down SH2 domain containing 3C
ILMN_1761159 ESYT1 −0.29576 9.88E-06 0.003091 −4.63908 Down extended synaptotagmin 1
ILMN_1770824 ARHGAP4 −0.29525 0.000371 0.015365 −3.67562 Down Rho GTPase activating protein 4
ILMN_1713732 ABL1 −0.29499 1.21E-05 0.003404 −4.58941 Down ABL proto-oncogene 1, non-receptor tyrosine kinase
ILMN_1687440 HIPK2 −0.2942 0.001881 0.033734 −3.1869 Down homeodomain interacting protein kinase 2
ILMN_1694539 MAP3K6 −0.29418 7.48E-05 0.007229 −4.11899 Down mitogen-activated protein kinase kinasekinase 6
ILMN_2381697 P4HA2 −0.29305 0.000174 0.010872 −3.88914 Down prolyl 4-hydroxylase subunit α 2
ILMN_1803348 EHBP1 −0.29305 0.000173 0.010825 −3.89106 Down EH domain binding protein 1
ILMN_1776464 PARP4 −0.29295 4.71E-05 0.005816 −4.24138 Down poly(ADP-ribose) polymerase family member 4
ILMN_1671404 SVIL −0.29228 0.00024 0.012746 −3.79968 Down supervillin
ILMN_1769118 SEPTIN9 −0.29218 0.000231 0.012551 −3.81002 Down septin 9
ILMN_2315789 PTPRD −0.292 0.000226 0.012397 −3.81635 Down protein tyrosine phosphatase receptor type D
ILMN_2401978 STAT3 −0.29197 2.58E-06 0.002346 −4.96523 Down signal transducer and activator of transcription 3
ILMN_1785424 ABLIM1 −0.29182 0.002923 0.042546 −3.04516 Down actin binding LIM protein 1
ILMN_2082585 SNAI2 −0.29137 0.000937 0.02378 −3.40282 Down snail family transcriptional repressor 2
ILMN_1809850 RCN3 −0.2896 0.000133 0.009736 −3.96254 Down reticulocalbin 3
ILMN_3246065 CCDC151 −0.28935 0.000122 0.009241 −3.98798 Down coiled-coil domain containing 151
ILMN_1745806 PEMT −0.28934 0.000161 0.010372 −3.91073 Down phosphatidylethanolamine N-methyltransferase
ILMN_1791226 NXN −0.28912 6.77E-05 0.006914 −4.14567 Down nucleoredoxin
ILMN_1758315 SLC9A9 −0.28902 0.000259 0.013173 −3.77817 Down solute carrier family 9 member A9
ILMN_1661194 CLDN14 −0.28826 0.000466 0.017456 −3.61005 Down claudin 14
ILMN_3225591 RPL14 −0.28806 0.000665 0.020117 −3.50549 Down ribosomal protein L14
ILMN_2232712 MYO10 −0.28774 0.001061 0.02524 −3.36484 Down myosin X
ILMN_1913060 CMKLR1 −0.28763 0.00032 0.014545 −3.71847 Down chemerin chemokine-like receptor 1
ILMN_1789502 GPC4 −0.28702 0.001807 0.033091 −3.19966 Down glypican 4
ILMN_2047599 TMEM50B −0.28576 0.001003 0.024564 −3.38214 Down transmembrane protein 50B
ILMN_1719543 MAF −0.28566 0.000438 0.016832 −3.62816 Down MAF bZIP transcription factor
ILMN_1748625 TCEAL4 −0.2856 0.000494 0.01788 −3.59303 Down transcription elongation factor A like 4
ILMN_1670134 FADS1 −0.28515 0.000296 0.01409 −3.74097 Down fatty acid desaturase 1
ILMN_1660871 NEK6 −0.28507 0.000893 0.023304 −3.41739 Down NIMA related kinase 6
ILMN_1674385 YWHAQ −0.28455 2.86E-05 0.004971 −4.37044 Down tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta
ILMN_1681515 CRLF1 −0.2833 0.002663 0.04025 −3.07546 Down cytokine receptor like factor 1
ILMN_1782086 AOC3 −0.28296 0.000461 0.01734 −3.61347 Down amine oxidase copper containing 3
ILMN_1768110 MAP3K20 −0.28275 0.00124 0.027121 −3.31715 Down mitogen-activated protein kinase kinasekinase 20
ILMN_1733538 RGS10 −0.28222 0.001065 0.025246 −3.36393 Down regulator of G protein signaling 10
ILMN_2185884 DHRS4 −0.28207 0.001328 0.028154 −3.29599 Down dehydrogenase/reductase 4
ILMN_2381899 OPTN −0.28193 0.000301 0.014133 −3.73615 Down optineurin
ILMN_3202024 FTL −0.28175 0.00324 0.044809 −3.01128 Down ferritin light chain
ILMN_1815500 ITPR3 −0.28174 0.002482 0.038752 −3.09823 Down inositol 1,4,5-trisphosphate receptor type 3
ILMN_1684554 COL16A1 −0.28149 0.001102 0.025658 −3.35341 Down collagen type XVI α 1 chain
ILMN_1709590 PGM5 −0.28126 0.000681 0.020348 −3.49848 Down phosphoglucomutase 5
ILMN_1669033 NCOA1 −0.28125 2.76E-05 0.00487 −4.37959 Down nuclear receptor coactivator 1
ILMN_1913678 IRAK3 −0.28034 0.002099 0.035634 −3.15202 Down interleukin 1 receptor associated kinase 3
ILMN_1815745 SOX4 −0.27903 4.4E-05 0.005755 −4.25887 Down SRY-box transcription factor 4
ILMN_3236858 NYNRIN −0.2784 4.66E-05 0.005784 −4.24391 Down NYN domain and retroviral integrase containing
ILMN_1800634 NME4 −0.27818 0.000791 0.022033 −3.4539 Down NME/NM23 nucleoside diphosphate kinase 4
ILMN_1714170 SPSB1 −0.27787 0.001682 0.031939 −3.22231 Down splA/ryanodine receptor domain and SOCS box containing 1
ILMN_1698725 FRMD3 −0.27757 0.002954 0.042707 −3.04173 Down FERM domain containing 3
ILMN_1695946 TRNP1 −0.27716 1.26E-05 0.003423 −4.57872 Down TMF1 regulated nuclear protein 1
ILMN_1654065 ATOH8 −0.27686 0.001152 0.02613 −3.33982 Down atonal bHLH transcription factor 8
ILMN_1739885 SLC41A3 −0.27657 2.16E-07 0.000867 −5.53926 Down solute carrier family 41 member 3
ILMN_1693826 HAVCR2 −0.27451 0.003493 0.046607 −2.98647 Down hepatitis A virus cellular receptor 2
ILMN_1775931 EPHA3 −0.27402 0.002521 0.039049 −3.09318 Down EPH receptor A3
ILMN_1659206 RARA −0.27351 0.00249 0.038808 −3.09718 Down retinoic acid receptor α

Figure 2. Heat map of DEGs.

Figure 2

Legend on the top left indicates log fold change of genes (A1– A38, GDM; B1–B70, GDM).

Gene ontology and pathway enrichment of DEGs analysis

To clarify the major functions of these DEGs, we first explored the associated biological processes and REACTOME pathways. The top highly enriched GO terms were divided into three categories: biological process (BP), cellular component (CC) and molecular function (MF) and are listed in Table 3. The most enriched GO terms in BP was reproduction, macromolecule catabolic process, cell adhesion and localization of cell, that in CC was nuclear outer membrane–endoplasmic reticulum membrane network, Golgi apparatus, supramolecular complex and cell junction, and that in MF had identical protein binding, molecular function regulator, signaling receptor binding and molecular function regulator. In the REACTOME pathway enrichment analysis, the DEGs were mostly enriched in cell surface interactions at the vascular wall, epigenetic regulation of gene expression, extracellular matrix organization and axon guidance and are listed in Table 4.

Table 3. The enriched GO terms of the up- and down-regulated DEGs.

GO ID CATEGORY GO Name P Value FDR B and H FDR B and Y Bonferroni Gene count Gene
Up-regulated genes
GO:0000003 BP reproduction 1.54E-05 1.92E-02 1.75E-01 7.69E-02 59 CEBPB, GRHL2, ACSL4, S100A11, KMT2C, UBE2A, TESK2, AGFG1, AHR, HES1, MAFF, HSD11B2, PAQR7, RHOBTB3, NECTIN3, CRH, SLC4A2, STS, CSNK2A2, SLC22A5, GABRB1, PLAC1, SPIRE2, PSG1, PSG2, ING2, PSG3, INHA, PSG4, PSG5, PSG6, PSG7, PSG9, CYP11A1, PSG11, CYP19A1, YTHDC1, SEPTIN6, STAT5B, CREBRF, NFE2, SPIN1, STRA6, MBD2, DDR1, TBX3, CAST, CGB7, TEAD3, LHB, GMCL1, OVGP1, TIAL1, EGFR, INSL6, LNPEP, TLR3, TMF1, PLEKHA1
GO:0009057 BP macromolecule catabolic process 5.89E-04 1.28E-01 1.00E+00 1.00E+00 48 CARHSP1, RPS13, WAC, UBE2A, UBE2D3, CLN3, UCHL3, LYPLA1, HSPB1, HSP90AA1, AMFR, DCP2, IDS, AZIN1, IGF2BP3, IGF2BP2, GET4, CSNK2A2, MTM1, NCAN, TNKS1BP1, USP33, TRIM25, PSMA3, PSMC4, DDB1, CREBRF, PTPN3, STX5, FBXO9, SMG9, PJA1, USP27X, RBX1, RBBP6, CAST, RDX, PELI1, NCCRP1, STT3B, RYBP, OVGP1, EGFR, TIMP2, LNPEP, PKP3, FURIN, TMF1
GO:0042175 CC nuclear outer membrane- endoplasmic reticulum membrane network 1.06E-03 1.69E-01 1.00E+00 6.75E-01 38 SPTLC3, CDS1, BET1, ACSL4, SPCS3, PIGH, EVA1A, CLN3, HSD3B1, ULK1, HSD11B2, FKBP2, AMFR, FOLR1, SPTLC1, RAB3GAP1, STS, NSG1, GDPD1, GPAA1, CYP19A1, STX5, BCAP29, NUP153, TOR1AIP2, CAMK2G, NUCB2, CASP4, TMED4, STT3B, RASGRP1, MFSD2A, SPPL2A, EGFR, LPCAT3, FURIN, TLR3, PAFAH2
GO:0005794 CC Golgi apparatus 1.36E-02 3.09E-01 1.00E+00 1.00E+00 46 SGSM1, CNST, BET1, SPG21, ST3GAL6, CLN3, AMFR, ANK3, FOLR1, GDF15, YIPF4, RHOBTB3, ST3GAL4, RAB3GAP1, STS, NCAN, NSG1, PDE4DIP, RAB11FIP5, FHDC1, TBC1D23, STX11, CSGALNACT1, ECE2, USP33, ACER2, ATP6V0C, ING2, STK26, C1GALT1, COG3, BMP1, STX5, AP1G2, TAF7, GOLGA4, YIPF6, NUCB2, TMED4, LHB, RASGRP1, EGFR, FURIN, TLR3, TMF1, ELF3
GO:0042802 MF identical protein binding 4.89E-03 2.96E-01 1.00E+00 1.00E+00 59 CEBPB, IER5, TWIST1, S100A11, S100P, H2BC8, H2BC6, H2BC4, TLE5, CLK3, AHR, UCK2, TRPV6, HES1, HOOK2, ULK1, HSPB1, CAP2, HSP90AA1, AMFR, GDF15, ANXA4, SRR, CLDN7, NECTIN3, CGGBP1, TBK1, GRAMD2B, ATF3, RIPOR2, STK26, NAB2, DAPK1, BMP1, JUP, DHPS, SMG9, KYNU, HSPB8, NUP153, YIPF6, CAMK2G, DYRK1A, GRB7, RDX, UBA3, TDG, CLDN8, TFRC, GMCL1, RASGRP1, SPPL2A, EGFR, CBX5, ENTPD1, TLR3, PAK1, PAK2, SPATA13
GO:0098772 MF molecular function regulator 1.03E-02 2.96E-01 1.00E+00 1.00E+00 55 SGSM1, NET1, PDPK1, DENND2D, SERPINI1, AGFG1, TNFAIP8, HSPB1, RASAL2, HSP90AA1, DNAJB1, FNTA, GDF15, ANXA4, CRH, AZIN1, RAB3GAP1, CSH2, PPP4R2, ATP1B3, DEPDC1B, RIPOR2, INHA, MYO9A, INSL4, GH2, BMP1, PTPN3, CGB1, SEMA3B, RGL2, TOR1AIP2, RGPD8, PPP1R14C, TFPI2, FBRS, CAST, CGB7, COX17, PPP1R14B, ITIH5, LHB, RASGRP1, EEF1B2, GRTP1, FAM13A, EGFR, INSL6, TIMP2, FURIN, TLR3, PAK2, MARK2, ENSA, SPATA13
Down-regulated genes
GO:0007155 BP cell adhesion 4.46E-28 8.58E-25 7.92E-24 2.57E-24 104 CLDN14, ABL1, ENPP2, VSIG4, EMILIN2, LAMC3, PGM5, NRARP, FZD4, SLIT2, MFAP4, MFGE8, FAT1, FBLN2, MYL9, CD99, SPON1, JAG1, GPC4, ANTXR1, SRPX, VCAM1, VCL, FOXF1, COL1A1, PMP22, VEGFC, COL3A1, COL5A1, COL6A1, COL6A2, FLNA, COL6A3, COL8A2, FBLN5, VTN, VWF, COL16A1, ABI3BP, PODXL, FOLR2, EGFL6, CYFIP2, LIMS2, PDPN, RND3, IGFBP2, CCM2L, IGFBP7, FEZ1, PPM1F, VCAN, PARVA, SNAI2, AOC3, PRKCA, CCN2, EGFLAM, EPDR1, FYN, NEXN, MYADM, MYO10, AXL, ADAM15, PIEZO1, TNFRSF14, GAS6, ITGA1, TNFRSF21, LYVE1, PTPRD, ADAMTS9, ACKR3, WNT3A, NECTIN2, FERMT2, RARA, SH2B3, DDR2, LAMA2, LAMA4, LAMB2, LAMC1, CAV1, TEK, DLL1, PIP5K1C, LGALS1, TGFB1I1, TGFBI, HAVCR2, COL18A1, THY1, FAM107A, CD36, LPP, CD44, CD81, CLDN5, CDH6, CDH11, SMAD3, EPHA3
GO:0051674 BP localization of cell 2.02E-23 1.67E-20 1.54E-19 1.17E-19 111 ABL1, ABR, MAP1B, APCDD1, PDGFRB, ENPP2, MATN2, ACTA2, CYGB, TMIGD3, SOX18, LAMC3, F3, ADCY3, SEMA3A, SLIT2, FAT1, MGAT3, EFEMP1, CD99, JAG1, AGTR1, GPC4, CCL13, CMKLR1, CNN2, VCAM1, VCL, FOXF1, COL1A1, COL1A2, PMP22, VEGFC, COL3A1, COL5A1, FLNA, DDIT4, VTN, ADAMTS1, PODXL, FOLR2, CXCL14, ADGRA2, PDPN, RND3, ARHGAP4, IGFBP3, PRCP, PPM1F, VCAN, CSPG4, SLIT3, PARVA, SNAI2, AOC3, PRKCA, PKN1, CCN2, EGFLAM, CAVIN1, FSCN1, FYN, NEXN, HYAL2, PROS1, MYADM, SPARC, MYO10, AXL, ADAM15, TNFRSF14, GAS6, TUBB2B, NDN, ITGA1, DCN, STAT3, STC1, ADAMTS9, BST2, ACKR3, TSPO, RIPOR1, BRAT1, RAP2A, RARRES2, CD248, GPER1, DDR2, LAMA2, LAMA4, LAMB2, LAMC1, CAV1, TEK, PIP5K1C, LPAR1, LDB2, COL18A1, ARAP3, THY1, LMNA, FAM107A, TIMP1, ATOH8, CD44, SPRED1, CD81, ARHGEF2, SMAD3, EPHA3
GO:0099080 CC supramolecular complex 3.08E-13 1.81E-11 1.24E-10 1.63E-10 77 TPM2, CYBRD1, MAP1B, ACTA2, ACTG2, TUBB2A, PGM5, TBCB, MFAP4, PARP4, FAT1, MYL9, PEMT, ANTXR1, CCDC151, CNN2, VCAM1, VCL, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL4A5, COL5A1, COL5A2, COL6A1, FLNA, COL6A3, BIN1, SHROOM3, FBLN5, SEPTIN4, PODXL, NCKAP5L, ADGRA2, SMTN, PDPN, ARHGAP4, FEZ1, PARVA, AOC3, FSCN1, FYN, NEXN, HYAL2, NES, MYH11, NEK6, MYO10, SEPTIN9, SPTAN1, TUBB2B, AIF1L, DCN, PTH1R, ITPR3, PDLIM3, SVIL, FERMT2, DPYSL2, CALD1, GPER1, SYNM, TEK, RHOQ, ABLIM1, OXTR, LMNA, FAM107A, FARP1, CD36, LPP, CD44, PALM, ARHGEF2, TNNT3
GO:0030054 CC cell junction 3.95E-13 2.09E-11 1.43E-10 2.09E-10 71 CLDN14, MAP1B, PDGFRB, PGM5, FZD4, FAT1, CAMK2N1, CD99, JAG1, FGFR3, CNN2, ARHGEF6, VCL, PMP22, FLNA, SHROOM3, PODXL, YWHAH, CYFIP2, LIMS2, PDPN, RND3, CSPG4, PARVA, PRKCA, EGFLAM, FSCN1, NEXN, RAB23, MYADM, LYPD6, ADAM15, SPTAN1, B2M, CCND1, AIF1L, ITGA1, RASIP1, GJA4, PDLIM3, SYT11, ARHGAP44, SVIL, NECTIN2, YWHAQ, FERMT2, GPER1, SYNM, DDR2, LASP1, CAV1, CAV2, TEK, DLL1, PIP5K1C, TGFB1I1, HAVCR2, OXTR, THY1, FAM107A, FARP1, LPP, CD44, TSPAN4, CD81, CLDN5, CGNL1, ARHGEF2, AGRN, CDH6, CDH11
GO:0005102 MF signaling receptor binding 6.59E-08 6.11E-06 4.59E-05 6.72E-05 75 CMTM3, ABL1, CRLF1, PDGFRB, ETS2, SEMA3A, SLIT2, MFGE8, EFEMP1, JAG1, AGTR1, CCL13, LTBP4, VCAM1, VEGFC, COL3A1, COL5A1, FLNA, FBLN5, VTN, VWF, COL16A1, CNRIP1, CXCL14, ALKAL2, YWHAH, EGFL6, PDPN, IGFBP2, IGFBP4, SLIT3, NCOA1, PRKCA, PKN1, CCN2, FYN, DKK3, HYAL2, NES, ADAM15, B2M, GAS6, ITGA1, STAT3, STC1, PXDN, PTPRD, WNT3A, PLSCR4, RARA, RARRES2, SH2B3, SH2D3C, LAMA2, LAMA4, LAMB2, CAV1, CAV2, DLL1, TGFB1I1, TGFB3, LEFTY2, TGFBI, RSPO3, ANGPTL2, THY1, TIMP1, CD36, CD44, TSPAN4, PALM, SPRED1, CD81, CMTM7, SMAD3
GO:0098772 MF molecular function regulator 2.41E-05 1.12E-03 8.38E-03 2.46E-02 69 CMTM3, CRLF1, ABR, CTSC, PPP1R14A, SEMA3A, SLIT2, CAMK2N1, EFEMP1, JAG1, CCL13, SIPA1L2, DOCK6, SMAP2, ARHGEF6, VEGFC, FLNA, COL6A3, WARS1, CXCL14, ALKAL2, YWHAH, PPP1R3C, TXNIP, ARHGAP4, PPP2R2B, IGFBP3, LAMTOR4, CCN2, GPSM1, DKK3, HYAL2, CYTH4, PROS1, LYPD6, RAPGEF5, GAS6, CCND1, INKA2, STC1, RGL1, AFAP1L2, PXDN, BST2, WNT3A, ARHGAP44, RIPOR1, FGD5, RAB3IL1, RARA, SH2D3C, WFDC1, RENBP, CAV1, RGS10, CCND2, CCND3, TGFB3, LEFTY2, ARAP3, THY1, TIMP1, ABCE1, FARP1, SPRED1, ARHGEF2, CMTM7, AGRN, PCOLCE

BP, CC and MF.

Table 4. The enriched pathway terms of the up- and down-regulated DEGs.

Pathway ID Pathway Name P-value FDR B& H FDR B&Y Bonferroni Gene Count Gene
Up-regulated genes
1269373 Cell surface interactions at the vascular wall 2.86E-05 4.73E-03 3.47E-02 2.46E-02 13 PSG8, SLC3A2, ATP1B3, PSG1, PSG2, PSG3, PSG4, PSG5, PSG6, PSG7, PSG9, PSG11, GRB7
1269734 Epigenetic regulation of gene expression 8.47E-04 2.18E-02 1.60E-01 7.28E-01 11 H2AC6, H2BC8, H2BC6, H2BC4, H2BC21, H4C8, H2BC12, MBD2, TAF1B, TDG, H2BC5
1270001 Metabolism of lipids and lipoproteins 1.33E-03 2.87E-02 2.10E-01 1.00E+00 33 OLAH, SPTLC3, CDS1, ACADVL, ACOX3, ACSL4, AHR, PIP5K1B, HSD3B1, TNFAIP8, HSD11B2, SH3KBP1, SPTLC1, TNFAIP8L1, PLEKHA6, STS, CSNK2A2, MTM1, ACER2, GDPD1, CYP11A1, CYP19A1, BMP1, TEAD3, LHB, MFSD2A, MTMR4, ABHD5, LPCAT3, FURIN, AKR1B15, PLEKHA1, RORA
1268701 Post-translational protein modification 3.57E-03 6.02E-02 4.41E-01 1.00E+00 38 BET1, WAC, H2AC6, H2BC8, UBE2A, H2BC6, H2BC4, UBE2D3, H2BC21, ST3GAL6, PIGH, UCHL3, ADAMTSL4, H2BC12, AMFR, ANK3, FOLR1, ST3GAL4, STS, BABAM1, USP33, TRIM25, GPAA1, INO80C, PSMA3, PSMC4, C1GALT1, COG3, H2AW, STX5, DHPS, NUP153, RAB25, GNE, TDG, LHB, FURIN, H2BC5
1268677 Metabolism of proteins 1.06E-02 1.30E-01 9.49E-01 1.00E+00 52 ACADVL, BET1, RPS13, WAC, H2AC6, SPCS3, H2BC8, UBE2A, H2BC6, H2BC4, UBE2D3, H2BC21, ST3GAL6, PIGH, H4C8, UCHL3, ADAMTSL4, H2BC12, AMFR, ANK3, FOLR1, DCP2, ST3GAL4, STS, BABAM1, CSNK2A2, ATF3, ATF4, CGB5, USP33, CHCHD10, TRIM25, GPAA1, INO80C, INHA, PSMA3, PSMC4, C1GALT1, COG3, H2AW, STX5, GNG12, DHPS, NUP153, RAB25, GNE, COX17, TDG, LHB, EEF1B2, FURIN, H2BC5
1270302 Developmental Biology 1.79E-02 1.92E-01 1.00E+00 1.00E+00 36 CEBPB, RPS6KA5, PFN2, KMT2C, H2AC6, H2BC8, H2BC6, H2BC4, H2BC21, H4C8, HES1, H2BC12, RASAL2, CAP2, HSP90AA1, ANK3, KRT23, CSNK2A2, NCAN, PSMA3, PSMC4, JUP, KAZN, KRTAP26-1, RBX1, CAMK2G, GRB7, RDX, RASGRP1, TCHH, EGFR, PKP3, FURIN, PAK1, PAK2, H2BC5
Down-regulated genes
1270244 Extracellular matrix organization 1.93E-23 1.40E-20 1.00E-19 1.40E-20 46 LAMC3, MFAP4, FBLN2, EFEMP1, PLOD1, LTBP4, VCAM1, COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, COL4A5, COL5A1, COL5A2, COL6A1, COL6A2, COL6A3, COL8A2, FBLN5, VTN, FMOD, COL16A1, ADAMTS1, EFEMP2, VCAN, PRKCA, SPARC, ADAM15, ITGA1, DCN, ADAMTS9, P4HA2, DDR2, LAMA2, LAMA4, LAMB2, LAMC1, COLGALT1, TGFB3, COL18A1, TIMP1, CD44, LTBP2, AGRN, PCOLCE
1270303 Axon guidance 3.15E-05 1.35E-03 9.67E-03 2.29E-02 31 ABL1, PDGFRB, RPS6KA2, SEMA3A, SLIT2, MYL9, FGFR3, VCL, COL4A1, COL4A2, COL4A5, COL6A1, COL6A2, COL6A3, VWF, SLIT3, PRKCA, FYN, MYH11, MYO10, SPTAN1, ITGA1, GFRA2, DPYSL2, LAMC1, TEK, PIP5K1C, ABLIM1, SPRED1, AGRN, EPHA3
1269478 Signaling by PDGF 2.76E-04 7.15E-03 5.13E-02 2.00E-01 22 PDGFRB, ADCY3, FGFR3, VCL, COL4A1, COL4A2, FOXO1, COL4A5, COL6A1, COL6A2, COL6A3, ADCY4, VWF, PRKCA, FYN, SPTAN1, GFRA2, STAT3, ITPR3, TEK, PIP5K1C, SPRED1
1269340 Hemostasis 1.83E-03 3.51E-02 2.51E-01 1.00E+00 29 ABL1, PDE9A, F3, EHD2, CD99, DOCK6, VCL, VEGFC, FLNA, VWF, PDPN, PRCP, PRKCA, FYN, PROS1, SPARC, GAS6, ITGA1, ITPR3, CFD, RARRES2, SH2B3, CAV1, TEK, TGFB3, LEFTY2, TIMP1, CD36, CD44
1270302 Developmental Biology 6.14E-03 8.76E-02 6.28E-01 1.00E+00 41 ABL1, PDGFRB, RPS6KA2, SEMA3A, SLIT2, MYL9, FGFR3, VCL, COL4A1, COL4A2, FOXO1, COL4A5, COL6A1, COL6A2, COL6A3, VWF, SLIT3, NCOA1, PRKCA, FYN, MYH11, MYO10, SPTAN1, ITGA1, GFRA2, STAT3, TCF4, DPYSL2, RARA, LAMC1, EBF1, TEK, PIP5K1C, CCND3, LEFTY2, ABLIM1, CD36, SPRED1, AGRN, SMAD3, EPHA3
1269310 Cytokine Signaling in Immune system 6.57E-03 9.18E-02 6.58E-01 1.00E+00 31 CRLF1, UBE2L6, PDGFRB, IFITM3, FGFR3, VCAM1, VCL, COL1A2, FOXO1, VWF, IFITM2, IFNGR2, FSCN1, FYN, SPTAN1, B2M, TNFRSF14, CCND1, NDN, GFRA2, STAT3, BST2, TRIM8, TEK, HAVCR2, TIMP1, CD36, CD44, SPRED1, IRAK3, TNFRSF1B

PPI network establishment and modules selection

By using the STRING database, the PPI network of DEGs was established and consisted of 4687 nodes and 11236 edges (Figure 3). A total of ten hub genes were selected for key biomarker identification and are listed in Table 5. They consisted of five up-regulated genes (HSP90AA1, EGFR, RPS13, RBX1 and PAK1) and five down-regulated genes (FYN, ABL1, SMAD3, STAT3 and PRKCA). Then PEWCC1 was used to find clusters in the network. Four modules were calculated according to k-core = 2. Among them, module 1 contained 16 nodes and 32 edges, with the highest score (Figure 4A) and module 2 contained 16 nodes and 34 edges (Figure 4B). We performed the functional analysis for the top 2 modules. In functional enrichment analysis, the DEGs of module 1 were mostly enriched in post-translational protein modification, developmental biology and macromolecule catabolic process; the DEGs of module 2 in supramolecular complex and localization of cell.

Figure 3. PPI network of DEGs.

Figure 3

The PPI network of DEGs was constructed using Cytoscape. Up-regulated genes are marked in green; down-regulated genes are marked in red.

Table 5. Topology table for up- and down-regulated genes.

Regulation Node Degree Betweenness Stress Closeness
Up HSP90AA1 655 0.22721 81351654 0.412863
Up EGFR 324 0.081831 21358048 0.396682
Up RPS13 176 0.040553 21024400 0.332742
Up RBX1 132 0.02978 9542636 0.3408
Up PAK1 115 0.016755 4561194 0.37158
Up CSNK2A2 112 0.026157 6172590 0.354758
Up PAK2 107 0.012051 4334042 0.349858
Up DDB1 105 0.024917 6240978 0.340602
Up PSMC4 101 0.019368 3810802 0.348739
Up DVL3 99 0.017256 5360158 0.344762
Up UBE2D3 96 0.018158 6872298 0.333975
Up SMARCB1 90 0.021042 7085456 0.333215
Up STAT5B 89 0.005633 1782886 0.349937
Up STX5 86 0.021729 5783250 0.327692
Up UBE2A 86 0.01665 6800442 0.330652
Up NUP153 81 0.019493 3839268 0.33388
Up JUP 79 0.012614 3875882 0.320148
Up PSMA3 78 0.009276 2735940 0.330535
Up SH3KBP1 76 0.011315 2648130 0.345321
Up HSPB1 69 0.012593 3676246 0.34167
Up BET1 67 0.013941 4543480 0.325711
Up AMFR 66 0.018899 2411936 0.345907
Up RRAS2 64 0.00438 2166928 0.301914
Up MARK2 63 0.012107 3287228 0.338315
Up CBX5 62 0.015481 3171408 0.327807
Up CEBPB 62 0.007601 2245984 0.350172
Up PDPK1 62 0.005919 1612918 0.342169
Up HNRNPH1 59 0.013608 2423406 0.335625
Up DNAJB1 58 0.00611 1362926 0.344205
Up ATF3 57 0.005226 1555506 0.352755
Up SPATA13 56 0.00717 2217896 0.295759
Up FURIN 55 0.017306 2333572 0.332317
Up RHOBTB1 54 0.005265 891404 0.309798
Up SNAP23 52 0.010301 2133980 0.326551
Up STX11 49 0.006356 1012388 0.276999
Up TBK1 48 0.00946 1612462 0.346521
Up RAB25 48 0.00796 4209932 0.282579
Up ING2 42 0.006848 2338492 0.325236
Up ULK1 42 0.007643 7120856 0.274292
Up UCHL3 42 0.007629 1994146 0.325779
Up PFN2 41 0.004889 1200798 0.329235
Up CAP2 40 0.002011 661156 0.288156
Up UBA3 40 0.005749 1625200 0.326187
Up DYRK1A 40 0.004394 1121650 0.309634
Up RBM22 39 0.01146 1346380 0.322616
Up TXK 38 0.001513 482866 0.300558
Up TAF7 38 0.010147 1476134 0.322972
Up CAMK2G 38 0.007152 1050770 0.341969
Up ATF4 37 0.006742 1255258 0.328036
Up TLR3 36 0.004686 1054636 0.305217
Up MYO9A 36 8.05E-04 406980 0.28752
Up BABAM1 36 0.008431 1423346 0.324044
Up STK26 36 0.008804 1319200 0.323842
Up ACTR3C 35 0.002617 659206 0.282732
Up CREB5 35 0.001154 566084 0.298035
Up NET1 33 0.003076 787876 0.327189
Up EEF1B2 32 0.00465 1484558 0.32501
Up AHR 32 0.003156 847220 0.347858
Up PIP5K1B 31 0.00183 957308 0.326391
Up CLN3 31 0.007159 992822 0.323485
Up HES1 30 0.0035 796872 0.300115
Up RBBP6 29 0.008094 1087968 0.324089
Up AP1G2 29 0.008892 933344 0.321377
Up RDX 29 0.003378 953914 0.325146
Up RGPD8 28 0.002967 626564 0.32295
Up HSD3B1 28 0.009418 6545696 0.230497
Up COG3 27 0.00261 458374 0.24988
Up ATP6V0C 27 0.008472 953284 0.320959
Up TFRC 27 0.004398 847110 0.329004
Up TIAL1 27 0.005954 1083682 0.323485
Up DCP2 27 0.007451 4215608 0.243872
Up CAPZA1 26 0.002869 626878 0.325191
Up FKBP2 25 0.003414 683462 0.282255
Up TWIST1 24 0.001372 488874 0.298643
Up TIMP2 24 0.001662 741652 0.250924
Up SPTLC1 24 0.008272 878220 0.320827
Up DAPK1 24 0.003354 582304 0.3437
Up STT3B 23 0.005888 688678 0.320805
Up RBMS1 23 0.005223 803708 0.322772
Up ANK3 21 0.004965 565126 0.321819
Up TDG 21 0.00124 515588 0.326346
Up CHMP5 20 0.00503 681262 0.320915
Up MBD2 20 0.003168 3223460 0.265195
Up TRIM25 20 0.002013 463938 0.326073
Up TEAD3 20 0.001225 501618 0.323954
Up SLC3A2 20 0.005187 569152 0.332435
Up BMP1 19 0.00311 565522 0.259095
Up RHOBTB3 19 0.002152 346198 0.322439
Up CHD2 19 0.00121 998828 0.256894
Up RYBP 19 0.002415 541940 0.322572
Up GLRX 18 0.00459 583470 0.320959
Up KMT2C 18 0.003676 553422 0.285019
Up YTHDC1 18 0.003349 530960 0.33407
Up GRB7 18 5.17E-04 151894 0.294958
Up IWS1 17 0.004258 1715034 0.236798
Up TRAF3IP2 17 0.001901 398464 0.324246
Up CSF3R 17 0.001832 324530 0.329027
Up AFF1 17 0.003482 1512904 0.247805
Up INO80C 17 0.003498 441732 0.321245
Up CASP4 17 0.002253 931980 0.263822
Up YIPF6 17 0.003441 5013996 0.201367
Up PCGF1 16 0.003259 409788 0.320827
Up CXCR2 16 0.003899 2017434 0.253558
Up ELF3 16 6.72E-04 203260 0.333452
Up USP33 16 0.002932 430028 0.322927
Up AGFG1 15 0.003227 435804 0.321443
Up LNPEP 14 7.10E-04 211470 0.322483
Up RORA 14 0.001493 299584 0.282187
Up LARP1B 14 0.004683 546700 0.321708
Up ACSL4 14 0.005208 423594 0.320388
Up ESRRG 14 0.001317 573474 0.244687
Up MXD1 13 6.21E-04 548286 0.273427
Up GET4 13 0.001988 297146 0.321113
Up NFE2 13 0.001758 361494 0.277475
Up SCNN1B 13 0.001794 293352 0.321863
Up TBX3 11 0.00107 660104 0.254826
Up TAF1B 11 0.00167 339720 0.323106
Up ADK 11 0.003862 318638 0.320257
Up CLK3 11 0.001752 276054 0.272997
Up PELI1 10 0.001025 246998 0.322195
Up PHYHIPL 2 1.23E-05 3410 0.238801
Up MAFF 2 8.27E-06 5370 0.260986
Up TESK2 2 1.97E-05 2606 0.259425
Up MTMR4 1 0 0 0.259138
Up ZFAND6 1 0 0 0.230519
Up ACP1 1 0 0 0.27858
Up EFS 1 0 0 0.27858
Up RAB11FIP5 1 0 0 0.220331
Up CYP11A1 1 0 0 0.187328
Up ADAM12 1 0 0 0.230951
Up FBXO9 1 0 0 0.25419
Up HSPB8 1 0 0 0.254674
Up CCNDBP1 1 0 0 0.256234
Up LTBP3 1 0 0 0.217731
Up FNTA 1 0 0 0.246424
Up ACOX3 1 0 0 0.24266
Up PJA1 1 0 0 0.24372
Up SERTAD4 1 0 0 0.247308
Up EID2 1 0 0 0.259138
Up AKTIP 1 0 0 0.254951
Up SPTLC3 1 0 0 0.242911
Up SGSM1 1 0 0 0.246424
Up LRRC69 1 0 0 0.292236
Down FYN 305 0.060673 15146282 0.386124
Down ABL1 256 0.044808 14298188 0.385806
Down SMAD3 209 0.042609 22810928 0.349754
Down STAT3 202 0.037341 10226766 0.378422
Down PRKCA 182 0.041662 11865040 0.377234
Down ACTA2 161 0.02569 7462512 0.366351
Down YWHAH 149 0.028069 10474112 0.350015
Down ACTG2 131 0.011051 3779892 0.354141
Down RPL14 127 0.022838 13966136 0.331377
Down PDGFRB 123 0.013902 4225738 0.358778
Down CCND1 119 0.017659 8841110 0.344483
Down PPM1F 119 0.016265 6535610 0.32041
Down CAV1 113 0.018938 4593828 0.368628
Down YWHAQ 101 0.013637 4845932 0.355674
Down FOXO1 96 0.015104 5652522 0.349128
Down WNT3A 95 0.013629 4052094 0.299674
Down RHOQ 92 0.016733 3678142 0.331471
Down TUBB2A 91 0.012587 3886552 0.334213
Down FGFR3 83 0.010949 3642512 0.326755
Down RARA 81 0.013223 4465300 0.341869
Down MYH11 72 0.01194 3062450 0.35249
Down HIPK2 72 0.01135 3565432 0.339639
Down HSPA12B 68 0.003037 744544 0.301991
Down RPS6KA2 68 0.005549 2522498 0.317738
Down TEK 66 0.004665 1653094 0.338168
Down NCOA1 65 0.008395 3153458 0.31475
Down VCL 63 0.009681 2780132 0.338217
Down TUBB2B 62 0.00676 1694194 0.343977
Down PPP2R2B 62 0.010479 4191976 0.328542
Down TPM2 62 0.006776 1763750 0.334428
Down SPTAN1 62 0.011399 2596256 0.334046
Down MYL9 60 0.008098 2479906 0.335361
Down DIMT1 58 0.008481 2242228 0.327326
Down TCF4 54 0.009445 2760706 0.330629
Down MRPL34 52 0.006656 17810170 0.236106
Down CCND3 51 0.003239 1601134 0.295927
Down LMNA 47 0.00911 2401846 0.338682
Down PKN1 46 0.003592 1349794 0.299559
Down CD44 46 0.010187 2270300 0.349493
Down DCN 45 0.007594 1930616 0.322283
Down ADCY3 45 0.008618 1694556 0.33133
Down TGFB1I1 45 0.003137 931752 0.325349
Down EPHA3 44 0.002379 661600 0.318884
Down FZD4 43 0.005096 1738748 0.327006
Down RND3 42 0.006152 1123788 0.333832
Down ADCY4 41 0.001819 672196 0.287785
Down ETS2 41 0.004246 1834106 0.329559
Down RAP2A 40 0.007351 1433240 0.326983
Down CCND2 40 0.002601 1155154 0.334046
Down AXIN2 39 0.00394 1203884 0.333618
Down OPTN 37 0.00695 1707428 0.328289
Down UBE2L6 37 0.005601 1462120 0.327189
Down PIP5K1C 37 0.002815 1263578 0.334714
Down MAP1B 34 0.007029 1488054 0.325371
Down AXL 34 0.002374 729250 0.345881
Down IRAK3 33 8.12E-04 865022 0.277229
Down FLNA 33 0.004649 1087030 0.310146
Down COL1A1 32 0.008312 1395294 0.32942
Down DLL1 31 0.006383 1006300 0.324583
Down JAG1 29 0.005281 874336 0.325033
Down PDE9A 29 0.003164 644058 0.281577
Down AGTR1 28 0.004101 926250 0.304088
Down TNNT3 27 1.64E-04 89708 0.268585
Down MYO10 27 0.002183 551478 0.325892
Down GPC4 26 0.001618 1207760 0.258652
Down IGFBP3 26 0.004163 894182 0.300288
Down ABCE1 25 0.007191 831802 0.321973
Down TIMP1 23 0.006574 950444 0.322905
Down VTN 23 0.005502 970948 0.284138
Down ARAP3 23 8.48E-04 298776 0.326642
Down COL1A2 23 0.001462 373484 0.28554
Down B2M 23 0.00758 619198 0.322505
Down TBCB 22 0.002726 428028 0.322705
Down VASN 22 0.003962 582444 0.343574
Down LGALS1 21 0.004371 578082 0.333903
Down CD81 21 0.005039 710796 0.323708
Down VCAM1 21 0.003333 2717522 0.2699
Down THY1 21 0.003795 675432 0.288956
Down PHGDH 21 0.004117 689964 0.323999
Down ITPR3 21 0.003472 727920 0.327326
Down TGFB3 20 0.002631 725004 0.278316
Down BIN1 20 0.002083 351704 0.291835
Down LPAR1 20 0.001469 1296676 0.242258
Down MSX1 20 0.003633 648486 0.289134
Down SLIT2 20 0.001084 281232 0.291273
Down SHMT2 19 0.005637 547666 0.32215
Down COL4A1 19 0.001742 983934 0.257813
Down RAB3IL1 19 0.002314 1857444 0.231054
Down SPARC 17 0.002023 197820 0.275923
Down VCAN 17 0.003487 561304 0.267405
Down LDB2 17 0.003396 1291388 0.254812
Down DPYSL2 17 0.003321 506826 0.325869
Down MAF 17 0.001088 288082 0.289456
Down PARVA 16 0.003041 421786 0.323731
Down TNFRSF1B 16 0.001419 325188 0.32382
Down FBLN2 16 0.001835 589690 0.249987
Down EEF2K 15 0.001411 364288 0.323083
Down TEAD2 15 7.99E-04 352390 0.324066
Down TAGLN 15 0.001241 205764 0.280381
Down FASN 15 0.001757 367956 0.322084
Down CD36 15 0.002116 386412 0.294661
Down NDN 15 0.003831 473694 0.322239
Down ADAM15 15 0.001982 294010 0.331283
Down ARHGEF2 15 9.41E-04 262426 0.330396
Down PEMT 14 0.005116 629532 0.293664
Down VWF 14 0.001828 345586 0.275097
Down OXTR 14 0.001359 1221820 0.23325
Down FRYL 14 0.001994 332012 0.321598
Down AGRN 14 0.001733 263834 0.326482
Down LFNG 13 0.001654 331212 0.264357
Down ARHGEF6 13 0.001032 179796 0.326573
Down TSC22D3 13 1.34E-04 119696 0.32391
Down IMPDH1 13 0.002712 390200 0.321554
Down NME4 12 0.003215 901430 0.228485
Down EHD2 12 0.003128 309602 0.320717
Down RGL1 12 5.53E-04 670384 0.247308
Down COL18A1 12 0.001098 309928 0.266008
Down ADGRA2 12 8.13E-04 196338 0.301583
Down FMOD 11 2.68E-04 98450 0.300385
Down SLIT3 10 6.95E-05 22762 0.24207
Down COL5A1 3 4.31E-05 14682 0.244636
Down TGFBI 3 8.62E-06 14986 0.248607
Down RASIP1 2 1.64E-06 1660 0.251732
Down CAV2 2 0 0 0.285836
Down PCOLCE 2 3.25E-05 6584 0.246761
Down COL4A2 2 0 0 0.208517
Down SVIL 2 0 0 0.262801
Down SMTN 2 7.00E-06 2536 0.261073
Down COL4A5 2 7.45E-06 6672 0.244776
Down FSCN1 2 2.41E-06 2090 0.268585
Down ADAMTS1 2 5.19E-05 3268 0.250857
Down CTSC 1 0 0 0.244559
Down FEZ1 1 0 0 0.21526
Down MALL 1 0 0 0.269357
Down LYL1 1 0 0 0.248489
Down SEMA3A 1 0 0 0.27858
Down ENPP2 1 0 0 0.195022
Down BST2 1 0 0 0.24757
Down F3 1 0 0 0.236738
Down COL16A1 1 0 0 0.204978
Down ANGPTL2 1 0 0 0.252724
Down NCALD 1 0 0 0.250508
Down RASL12 1 0 0 0.228262
Down PPP1R14A 1 0 0 0.273923
Down FCGRT 1 0 0 0.243872
Down CNN2 1 0 0 0.268139
Down EHBP1 1 0 0 0.242848
Down COL3A1 1 0 0 0.216264
Down DDIT4 1 0 0 0.25408
Down ITM2C 1 0 0 0.249441
Down GAS6 1 0 0 0.257007
Down FERMT2 1 0 0 0.252751
Down RAPGEF5 1 0 0 0.246424
Down APCDD1 1 0 0 0.230588
Down MMP23B 1 0 0 0.200599
Down PTPRD 1 0 0 0.274549
Down RSPO3 1 0 0 0.249441
Down COL6A1 1 0 0 0.243745
Down DDR2 1 0 0 0.247805
Down NEK6 1 0 0 0.244776
Down COL5A2 1 0 0 0.205788
Down TSPAN4 1 0 0 0.244559
Down IFITM3 1 0 0 0.27858
Down HES4 1 0 0 0.261875
Down FAT1 1 0 0 0.242521

Figure 4. Modules of isolated form PPI of DEGs.

Figure 4

(A) The most significant module was obtained from PPI network with 16 nodes and 32 edges for up-regulated genes. (B) The most significant module was obtained from PPI network with 16 nodes and 34 edges for down-regulated genes. Up-regulated genes are marked in green; down-regulated genes are marked in red.

MiRNA–hub gene regulatory network construction

miRNet database was applied to screen the targeted miRNAs of the hub genes. Cytoscape software was used to construct the miRNA–hub gene network. As illustrated in Figure 5, the interaction network consists of 307 hub genes and 2280 miRNAs. The hub genes and miRNAs in the network were ranked by their degree of connectivity using Network Analyzer and are listed in Table 6. Based on the expression trend of hub genes in GDM, we found that UBE2D3 was the predicted target of hsa-mir-6127, HSP90AA1 was the predicted target of hsa-let-7d-5p, PAK2 was the predicted target of hsa-mir-8063, DDB1 was the predicted target of hsa-mir-329-3p, DVL3 was the predicted target of hsa-mir-1207-5p, FYN was the predicted target of hsa-mir-4651, ABL1 was the predicted target of hsa-mir-410-5p, SMAD3 was the predicted target of hsa-mir-222-3p, STAT3 was the predicted target of hsa-mir-29c-3p and PRKCA was the predicted target of hsa-mir-663a.

Figure 5. MiRNA–hub gene regulatory network.

Figure 5

The light purple color diamond nodes represent the key miRNAs; up-regulated genes are marked in green; down-regulated genes are marked in red.

Table 6. miRNA–hub gene and TF–hub gene interactions.

Regulation Hub Genes Degree MicroRNA Regulation Hub Genes Degree TF
Up UBE2D3 189 hsa-mir-6127 Up HSP90AA1 45 E2F1
Up HSP90AA1 188 hsa-let-7d-5p Up UBE2D3 43 HCFC1
Up PAK2 158 hsa-mir-8063 Up EGFR 39 SRY
Up DDB1 108 hsa-mir-329-3p Up PSMC4 34 ZFX
Up DVL3 104 hsa-mir-1207-5p Up DDB1 32 RUNX1
Up EGFR 83 hsa-mir-181a-2-3p Up STAT5B 28 ESR1
Up UBE2A 60 hsa-mir-5700 Up PAK2 27 REST
Up PSMC4 47 hsa-mir-665 Up RBX1 27 YY1
Up CSNK2A2 45 hsa-mir-30d-3p Up STX5 24 SREBF2
Up STAT5B 42 hsa-mir-1343-3p Up CSNK2A2 21 SIN3A
Up PAK1 31 hsa-mir-629-3p Up RPS13 19 ASH2L
Up RBX1 29 hsa-mir-4513 Up SMARCB1 18 EGR1
Up SMARCB1 21 hsa-mir-192-5p Up DVL3 17 TTF2
Up STX5 15 hsa-mir-146a-5p Up PAK1 16 TP63
Up RPS13 10 hsa-mir-15b-3p Up UBE2A 11 TRIM28
Down CCND1 396 hsa-mir-4651 Down STAT3 67 SPI1
Down STAT3 148 hsa-mir-410-5p Down CCND1 56 MYBL2
Down FOXO1 124 hsa-mir-222-3p Down SMAD3 53 SUZ12
Down CAV1 115 hsa-mir-29c-3p Down FOXO1 44 TBX3
Down ABL1 112 hsa-mir-663a Down PRKCA 43 YAP1
Down YWHAH 112 hsa-mir-577 Down ABL1 40 TEAD4
Down YWHAQ 111 hsa-mir-16-2-3p Down FYN 39 CEBPD
Down RPL14 99 hsa-mir-3960 Down YWHAQ 38 SOX9
Down PPM1F 99 hsa-mir-638 Down CAV1 36 BMI1
Down SMAD3 78 hsa-mir-744-5p Down YWHAH 31 RCOR3
Down PRKCA 67 hsa-mir-6727-3p Down RPL14 29 LMO2
Down FYN 61 hsa-mir-429 Down PDGFRB 28 TAL1
Down ACTA2 42 hsa-mir-376c-3p Down PPM1F 18 FOXP1
Down PDGFRB 28 hsa-mir-101-3p Down ACTA2 14 E2F4
Down ACTG2 10 hsa-mir-103a-3p Down ACTG2 8 CUX1

TF–hub gene regulatory network construction

NetworkAnalyst database was applied to screen the targeted TFs of the hub genes. Cytoscape software was used to construct the TF–hub gene network. As illustrated in Figure 6, the interaction network consists of 306 hub genes and 195 TFs. The hub genes and TFs in the network were ranked by their degree of connectivity using Network Analyzer and are listed in Table 6. Based on the expression trend of hub genes in GDM, we found that HSP90AA1 was the predicted target of E2F1, UBE2D3 was the predicted target of HCFC1, EGFR was the predicted target of SRY, PSMC4 was the predicted target of ZFX, DDB1 was the predicted target of RUNX1, STAT3 was the predicted target of SPI1, CCND1 was the predicted target of MYBL2, SMAD3 was the predicted target of SUZ12, FOXO1 was the predicted target of TBX3 and PRKCA was the predicted target of YAP1.

Figure 6. TF–hub gene regulatory network.

Figure 6

The yellow color triangle nodes represent the key TFs; up-regulated genes are marked in green; down-regulated genes are marked in red.

ROC curve analysis

ROC curve analysis was implemented to evaluate the capacity of hub genes to distinguish GDM and non-GDM in E-MTAB-6418, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA, exhibiting better diagnostic efficiency for GDM and non-GDM, and the combined diagnosis of these ten hub genes was more effective. The AUC index for the ten hub gene scores were 0.906, 0.838, 0.825, 0.897, 0.863, 0.876, 0.855, 0.880, 0.932 and 0.872, and are shown in Figure 7.

Figure 7. ROC curve validated the sensitivity, specificity of hub genes as a predictive biomarker for GDM prognosis.

Figure 7

(A) HSP90AA1, (B) EGFR, (C) RPS13, (D) RBX1, (E) PAK1, (F) FYN, (G) ABL1, (H) SMAD3, (I) STAT3, (J) PRKCA.

RT-PCR analysis

To further verify the expression level of hub genes in GDM, RT-PCR was performed to calculate the mRNA levels of the ten hub genes identified in the present study (HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA) in GDM. As illustrated in Figure 8, the expressions of HSP90AA1, EGFR, RPS13, RBX1, PAK1 were significantly up-regulated in GDM samples compared with normal, while FYN, ABL1, SMAD3, STAT3 and PRKCA were significantly down-regulated in GDM samples compared with normal. The present RT-PCR results were in-line with the aforementioned bioinformatics analysis, suggesting that these hub genes might be linked to the molecular mechanism underlying GDM.

Figure 8. Validation of hub genes by RT- PCR.

Figure 8

(A) HSP90AA1, (B) EGFR, (C) RPS13, (D) RBX1, (E) PAK1, (F) FYN, (G) ABL1, (H) SMAD3, (I) STAT3, (J) PRKCA.

Molecular docking experiments

In the recent findings, the docking study was performed using Biovia Discovery Studio perpetual software to analyze the binding pattern of the natural plant products such as herbs have the ability to lower blood glucose levels and ameliorate diabetes with decreased adverse side effects. The natural well-known phytoconstituents which decreases the blood sugar level are Malvidin 3-laminaribioside (MLR), Ferulic acid (FRA), Inosporone (INO), Allicin (ALL), Liriodenin (LIR), Azadirachitin (AZA), Sulforaphane, Cajanin (CAJ), Carvone (CAR), Capsaicin (CAP), Terpineol (TER), Phellandrene (PHE), Terpene (TPN), Ellagic acid (ELA), Leucodelphinidin, O-methyltylophorinidine (OMT), Gymnemic acid, β-Carotene (BCR), Leucocyanidin (LEC), Syringin (SYR), Ginsenoside (GNS), Phyllanthin (PHY), Punicalagin (PUC), Punicalin (PUN), Arjunic acid (AJA), Arjunetin (ARJ), Arabic acid (ARA), Arjungenin (ARG), Gingerol (GIN), Shogaol, Aloe emodin (ALE), Arabic acid (ARA), Aloin (ALO), Charantin (CHR), Cinnamic acid (CIN), Curcumin (CUR), Euginol (EUG), Gymnemagenin (GMG), Gymnestrogenin (GYM), Hydroxylucin (HYD), Methoxy hydroxyl chalcoli (MHC), Myricetin (MYR), Nimbine (NIM), Quercetin (QUE), Vicine (VIC) and Shagoal (SHA) are shown in Figure 9. The molecules were constructed based on the natural plant products containing these chemical constituents which play vital role in reducing type 2 diabetes mellitus. The traditional plant products are used in conjunction with allopathic drug to reduce the dose of the allopathic drugs and/or to increase the efficacy of allopathic drugs. Some common and most prominent antidiabetic plants and active principles were selected from their phytochemicals for docking studies in the present research to identify the active natural molecule to avoid the use of allopathic drugs in gestational diabetes and the blood sugar level is controlled by altering the diet. For docking experiments well-known and most commonly used two allopathic drugs such as Glyburide (GLY), Metformin (MET) in gestational diabetes are used as standard and to compare the binding interaction of natural phytoconstituents with allopathic drugs. A total of common 44 in that 42 natural active constituents, few from each of flavonoids, saponins, tannins and glycosides etc., present in plant extracts responsible for antidiabetic function and 2 allopathic drugs were chosen for docking studies on overexpressed proteins and the structures are depicted in Figure 1, respectively. The one protein from each overexpressed gene in gestational type 2 diabetes mellitus such as EGFR, HSP90AA1, PAK1 and RBX1 and their X-ray crystallographic structure and co-crystallized PDB code and their PDB codes 4UV7, 5NJX, 3Q4Z and 3FNI, respectively were constructed for docking. The docking on natural active constituents was conducted to classify the potential molecule and their binding affinity to proteins. A higher number of negative number -CDOCKER energy and binding energy indicates a stronger binding interactions with proteins, few constituents obtained with a greater -CDOCKER energy and binding energy respectively with particular proteins. Docking experiments were carried out on a total of 42 constituents from plant products, few constituents obtained excellent -CDOCKER energy and binding energy. Out of 44 molecules, few of the molecules obtained -CDOCKER interaction energy of more than 40 and majority with more than 30 and less than 40, few molecules obtained optimum -CDOCKER interaction energy of less than 30, respectively. the molecules with -CDOCKER interaction energy of 40 and above are said to have good interaction with proteins and stable. The natural constituents of the molecules GLY, GNS, GYM, MLR, PUC and ALO, GLY, MLRand ALE, ALO, BCR, CAP, CHR, ELA, LUR, GIN, GLY, GMG, GNS, GYM, LEC, LIR, MLR, MYR, NIM, OMP, PHY, PUC, PUN, QUE, SHE,VI C obtained a -CDOCKER interaction energy of more than 40 with protein of PDB codes 5NJX and 3FNI and 3Q4Z, respectively. The natural constituents obtained -CDOCKER interaction energy of less than 40 and more than 30 are ALO, ARJ, BCR, CHR, CUR, PHY, PUN and BCR, CAJ, CAP, CUR, GIN, LEC, MYR, OMP, QUE, VIC and AJA, ARA, ARG, CAJ, FRA, HYD, MHC and GNS, PHY, PUC, PUN with 5NJX and 3FNI and 3Q4Z and 4UV7. The constituents obtained less than 30 and more than 20 are AJA, ALE, ARG, CAJ, CAP, GIN, GMG, GYM, HYD, LEC, MHC, MLR, MYR, NIM, OMP, QUE, VIC and AJA, ALE, ALL, ARG, AJA,CHR, CIN, EUG, FRA, GMG, GNS, GYM, LIR, MHC, NIM, PUC and ALL, CIN, EUG, MET, TER and ALA, ALE, ALO, ARJ, BCR, CAJ, CHR, ELA, FRA, GIN, GMG, LEC, MLR, MYR, OMP, QUE, SHA with 5NJX and 3FNI and 3Q4Z and 4UV7. Following the molecules obtained less than 20 -CDOCKER interaction energy are ALL, ARA, CAR, CHR, CIN, EUG, FRA, LIR, MET, PHE, TER, TPN and ARJ, ARA, CAR, HYD, MET, PHE, TPN and CAR, PHE, TPN and AJA, ALL, ARG, CAR, CIN, EUG, GYM, HYD, LIR, MET, MHC, NIM, PHE, TER, TPN, VIC with protein 5NJX and 3FNI and 3Q4Z and 4UV7, respectively, the binding energy, -CDOCKER energy and -CDOCKER interaction energy are depicted in Table 7. The two molecules such as ALO and MAL (Figures 10 and 11), their interaction with amino acids of proteins with 3D structures for 3FN1 (Figure 12) and 3Q4Z (Figure 13), while 2D structures for 3FN1 (Figure 14) and 3Q4Z (Figure 15).

Figure 9. Chemical structures of phytoconstituents.

Figure 9

Table 7. Docking results of designed molecules on overexpressed proteins.

Sl. No/Code EGFR HSP90AA1 PAK1 RBX1
PDB: 4UV7 PDB:5NJX PDB: 3Q4Z PDB: 3FN1
Binding Energy −Cdocker Energy − Cdocker Interaction Energy Binding Energy −Cdocker Energy − Cdocker Interaction Energy Binding Energy −Cdocker Energy − Cdocker Interaction Energy Binding Energy −Cdocker Energy − Cdocker Interaction Energy
AJA −56.02 −10.57 18.17 −77.05 −6.93 21.66 −196.65 13.03 43.86 −113.94 5.61 37.90
ALE −22.04 −17.45 10.55 −16.93 −16.44 12.00 −58.34 −2.81 24.49 −24.28 −9.71 18.84
ALO −6.22 −25.19 8.57 −2.69 −24.11 9.65 −4.41 −19.09 14.60 −11.36 −18.02 15.96
ARA −50.94 −28.62 19.50 −57.53 −18.31 26.43 −159.25 8.76 57.02 −83.85 −16.52 33.54
ARJ −43.98 17.23 28.38 −39.56 18.14 25.73 −119.99 33.00 43.82 −39.87 26.58 31.46
ARG −49.90 20.57 23.74 −61.58 22.29 25.37 −151.03 40.87 47.08 −7.21 −116.32 22.65
ANA −65.59 −68.87 32.04 −89.71 −66.11 51.76 −245.05 −79.05 83.86 −61.60 21.05 41.01
ALL −118.34 −47.02 34.21 −168.97 −50.42 39.91 −139.90 −23.49 62.54 −18.62 −15.64 14.90
CAR −86.83 19.53 35.26 −45.09 19.64 36.45 −131.24 37.17 58.34 −48.59 −55.20 21.22
CAJ −6.67 −21.05 9.42 −6.26 −20.34 10.30 −9.30 −16.06 13.09 −47.54 28.64 30.02
CAP −35.79 −58.29 19.06 −42.81 −50.54 28.01 −172.32 −28.95 57.88 −6.63 −25.87 30.85
CAV −65.69 22.19 25.24 −53.63 25.00 27.33 −136.49 43.84 47.47 −46.65 19.83 28.55
CHA −4.05 −30.55 21.32 −35.08 −30.24 21.35 −107.73 −7.42 44.11 −27.07 13.28 14.79
CHL −14.17 8.84 17.63 −49.92 15.28 24.60 −81.41 27.24 34.82 −80.66 −26.20 43.47
CIN −50.02 12.60 14.67 −27.06 11.55 13.70 −92.97 18.99 21.39 −29.49 −17.74 24.17
CUR −61.32 −38.90 27.73 −64.69 −22.71 40.68 −276.18 16.00 87.65 −61.40 18.48 32.45
ELL −40.77 −22.62 18.69 −34.20 −24.49 16.72 −137.67 1.59 41.48 −73.55 20.96 35.11
EUG −71.25 14.65 28.33 −71.08 13.46 27.19 −149.04 30.21 46.83 −40.14 −27.96 25.52
FER −84.22 11.92 24.50 −38.93 14.41 25.46 −157.42 32.92 48.59 −74.77 −97.25 24.35
GIN −26.63 −36.38 14.98 −51.74 −30.08 21.65 −135.45 −15.24 39.95 −47.21 14.33 17.68
GNS −36.67 10.71 17.53 −41.60 12.11 20.48 −132.64 26.84 30.74 −84.78 −82.04 29.12
GYM −41.53 −84.64 23.43 −52.36 −79.44 27.80 −110.88 −55.77 55.03 −78.34 −164.85 26.81
GYA −75.68 −162.34 32.37 −86.27 −145.33 40.68 −160.78 −122.08 67.89 −75.89 20.89 41.44
GMT −4.26 −99.21 17.86 −72.64 −91.68 25.64 −109.57 −79.81 40.10 −47.57 30.04 32.56
HYD −68.08 19.53 34.12 −125.59 23.82 41.37 −158.25 41.54 59.92 −20.94 20.67 23.23
INO −50.91 24.87 26.12 −43.89 24.42 27.14 −87.39 39.52 44.59 −28.20 15.41 23.15
LEU −38.73 18.54 21.60 −26.25 15.39 18.10 −122.22 27.38 32.75 −48.37 26.66 39.62
LEP −16.17 7.13 15.51 −21.35 8.09 16.21 −62.06 19.28 25.76 −31.27 18.48 20.64
LIR −53.70 9.95 22.56 −84.07 18.36 27.30 −142.76 31.85 41.89 −29.11 −73.02 27.80
MAL −58.66 21.70 30.45 −34.92 23.71 32.09 −138.59 36.48 50.57 −24.50 −15.13 18.76
MHC −28.62 13.37 15.74 −32.04 13.89 16.17 −33.87 21.61 22.73 −40.19 −77.90 31.36
MYR −22.60 −74.73 29.54 −51.69 −68.66 31.40 −94.78 −45.63 63.61 −48.31 20.69 36.63
NIM −17.29 −20.00 11.23 −22.94 −18.68 12.75 −39.38 −11.59 19.23 −73.77 21.14 30.96
MPO −26.31 −85.18 28.60 −27.95 −81.28 30.13 −62.20 −67.23 48.83 −49.69 −107.43 17.79
PHE −52.17 12.68 21.80 −59.98 17.35 28.95 −140.57 34.70 49.40 −51.52 −95.45 20.50
PUN −23.27 −121.88 26.67 −62.56 19.02 28.47 −100.15 27.33 36.00 −6.35 3.83 17.39
PUC −22.94 −98.54 23.93 −110.98 −114.66 31.90 −147.91 −67.17 73.20 −25.35 −112.29 24.27
QUE −25.04 −95.41 19.39 −29.38 −88.29 31.16 −182.08 −73.82 62.28 −119.62 14.22 41.65
SHA −62.78 4.01 17.60 −97.71 −87.07 28.88 −133.51 −71.22 39.42 −38.98 22.34 28.18
SYR −42.02 −112.72 18.53 −57.33 0.94 14.08 −111.64 16.61 30.08 −28.67 15.86 22.42
TER −48.17 3.01 26.96 −45.14 −109.25 24.75 −88.49 −99.19 31.30 −55.95 20.86 33.04
TPN −48.96 17.76 22.80 −58.53 5.58 30.24 −151.71 24.04 55.75 −38.43 15.22 28.09
VIC −49.26 11.32 17.70 −60.62 17.96 23.33 −150.32 32.32 43.25 −15.63 21.72 55.13
GLY −49.25 15.93 28.98 −46.36 9.39 14.16 −83.17 23.57 29.57 −25.71 18.79 28.22
MET −35.21 18.35 32.89 −25.62 34.77 17.74 −196.65 13.03 43.86 −61.04 27.56 32.39

Figure 10. Structure of ALO.

Figure 10

Figure 11. Structure of MAL.

Figure 11

Figure 12. 3D binding of ALO with 3FN1.

Figure 12

Figure 13. 3D binding of MAL with 3Q4Z.

Figure 13

Figure 14. 2D binding of ALO with 3FN1.

Figure 14

Figure 15. 2D binding of MAL with 3Q4Z.

Figure 15

Discussion

GDM is a metabolic disorder that can be caused by various factors, including genetics and the endocrine system. It is essential to understand the molecular mechanisms underlying GDM in order to find and advance more valid diagnostic and therapeutic strategies. Gene chip technology is generally used to reveal the expression levels of numerous genes within the human genome and might help in the recognition of target genes of interest for diagnosing or treating GDM.

In our study, a total of 869 DEGs were screened, including 439 up-regulated genes and 430 down-regulated genes. The CGB5 was associated with pregnancy success and might be a possible genetic marker for pregnancy success [30]. Studies have reported that corticotropin releasing hormone (CRH) [31], PSG1 [32] and CYP19A1 [33] are directly related to the development preeclampsia. CD248 has become an attractive target for hypertension [34], but this gene might be novel target for GDM. A previous study showed that COL1A1 [35] was expressed in type 2 diabetes mellitus, but this gene might be novel target for GDM. In a recent study, ABI3BP could facilitate the progression of cardiovascular diseases [36], but this gene might be novel target for GDM. In previous studies, there was a large amount of evidence that MFAP4 [37] directly or indirectly affects the occurrence and development of type 1 diabetes mellitus, but this gene might be novel target for GDM.

Potential pathways were obtained after GO and pathway enrichment analysis. Evidence suggests that CEBPB (CCAAT enhancer binding protein β) [38], ACSL4 [39], MBD2 [40], ULK1 [41], NUCB2 [42], TWIST1 [43], HOOK2 [44], CLDN7 [45], TBK1 [46], YIPF6 [47], TFRC (transferrin receptor) [48], ENPP2 [49], SLIT2 [50], MFGE8 [51], FAT1 [52], GPC4 [53], COL6A3 [54], EGFL6 [55], AOC3 [56], CCN2 [57], LYVE1 [58], RARA (retinoic acid receptor α) [59], COL18A1 [60], THY1 [61], CD36 [62], PEMT (phosphatidylethanolamine N-methyltransferase) [63], AIF1L [64], OXTR (oxytocin receptor) [65], LMNA (lamin A/C) [66], CXCL14 [67], DKK3 [68], ANGPTL2 [69] and CMTM7 [70] might be regarded as genetic factors in humans due to their involvement in obesity, but these genes might be novel target for GDM. Expression sites of AHR (aryl hydrocarbon receptor) [71], STS (steroid sulfatase) [72], PLAC1 [73], CYP11A1 [74], PSG11 [75], STAT5B [76], TLR3 [77], FOLR1 [78], HSPB1 [79], HSP90AA1 [80], ANXA4 [81], ATF3 [82], DAPK1 [83], ENTPD1 [84], ABL1 [85], VSIG4 [86], CD99 [87], VWF (von Willebrand factor) [88], PODXL (podocalyxin like) [89], PDPN (podoplanin) [90], RND3 [91], VCAN (versican) [92], AXL (AXL receptor tyrosine kinase) [93], PIEZO1 [94], GAS6 [93], LAMA4 [95], CAV1 [96], DLL1 [97], CD44 [98], CD81 [99], SMAD3 [100], NES (nestin) [101], DCN (decorin) [102], AGTR1 [103], SLIT3 [104], B2M [105], STAT3 [106], STC1 [107], ADAMTS1 [108], HSD11B2 [109] and HSD3B1 [110] in preeclampsia were specific, but these genes might be novel target for GDM. Increasing evidence indicates that the development of type 2 diabetes mellitus, due to the dysregulation of genes, such as CSNK2A2 [111], NFE2 [112], CAMK2G [113], RASGRP1 [114], S100P [115], SRR (serine racemase) [116], DHPS (deoxyhypusine synthase) [117], DYRK1A [118], JAG1 [119], COL3A1 [120], VTN (vitronectin) [121], WNT3A [122], ACTA2 [123], SEMA3A [124], RARRES2 [125], CAV2 [126] and SPRED1 [127], but these genes might be novel target for GDM. In a previous report, Santiago et al. [128], Auburger et al. [129], Qu et al. [130], Śnit et al. [131] and Hjortebjerg et al. [132] reported that SLC22A5, SH2B3, ITPR3, CALD1 and IGFBP4 served important roles in type 1 diabetes mellitus, but these genes might be novel target for GDM. Krishnan et al. [133], Hu et al. [134], Martins et al. [135], Prieto-Sánchez et al. [136], Sugulle et al. [137], Zhao et al. [138], Siddiqui et al. [139], Han et al. [140], Lappas et al. [141], Wang et al. [142], Artunc-Ulkumen et al. [143], Blois et al. [144], Vacínová et al. [145] and Vilmi-Kerälä et al. [146] demonstrated that the expression of CREBRF (CREB3 regulatory factor), STRA6, EGFR, MFSD2A, GDF15, PAK1, VCAM1, IGFBP2, IGFBP7, PRKCA (protein kinase C α), ADAMTS9, LGALS1, BIN1 are susceptibility for GDM, but further analysis of the function remains to be seen. Aquila et al. [147], Chen et al. [148], Xie et al. [149], Zhang et al. [150], Aspit et al. [151], Akadam-Teker et al. [152], Jiang et al. [153], Cetinkaya et al. [154], Grond-Ginsbach et al. [155], Dong et al. [156], Chardon et al. [157], Chen et al. [158], Yamada et al. [159], Hu et al. [160], Bobik and Kalinina [161], Schwanekamp et al. [162], Liu et al. [163], Schroer et al. [164], Raza et al. [165], Yang et al. [166], Azuaje et al. [167], Durbin et al. [168], Chowdhury et al. [169], Wang et al. [170], Li et al. [171], Lv et al. [172], Bertoli-Avella et al. [173], Grossman et al. [174], Andenæs et al. [175] and Chen et al. [176] demonstrated that expression of HES1, SPIN1, TBX3, EVA1A, CAP2, BMP1, HSPB8, RDX (radixin), COL5A1, LIMS2, PARVA (parvin α), EGFLAM (EGF like, fibronectin type III and laminin G domains), NEXN (nexilin F-actin binding protein), TNFRSF14, TGFBI (transforming growth factor β induced), HAVCR2, CDH11, COL4A1, COL4A2, COL5A2, SHROOM3, HYAL2, PDLIM3, ETS2, PLSCR4, TGFB3, COL6A2 and LTBP2 have previously been detected in cardiovascular diseases as well, but these genes might be novel target for GDM. Flamant et al. [177], Wan et al. [178], Zhang et al. [179], Vallvé et al. [180], Heximer and Husain [181], Selvarajah et al. [182], Jain et al. [183], Sun et al. [184], Satomi-Kobayashi et al. [185], Jiang et al. [186], Waghulde et al. [187] and Dahal et al. [188] reported that DDR1, CAST (calpastatin), KYNU (kynureninase), FBLN2, SPON1, VEGFC (vascular endothelial growth factor C), FLNA (filamin A), SNAI2, MYADM (myeloid associated differentiation marker), NECTIN2 and SMTN (smoothelin), GPER1, PDGFRB (platelet-derived growth factor receptor β) are important genetic factors related to hypertension, but these genes might be novel target for GDM. This investigation demonstrated that the pathogenesis of GDM has genetic heterogeneity. These candidate genes might play a pathogenic role through different signaling pathways, and different gene alteration might lead to different system damage in GDM. The genetic pathogenesis of GDM will become a more research hotspot again.

From the PPI network and modules diagram, it can be observed that hub genes were the key nodes of the PPI network and modules, with the highest node degree, betweenness, stress and closeness value. RPS13, RBX1, FYN, UBE2A, TUBB2A and TBCB were the novel biomarkers for the progression of GDM.

From the miRNA–hub gene network construction and TF–hub gene network diagram, it can be observed that hub genes, miRNAs and TFs are the key nodes with the highest degree value. CCND1 has been shown to be involved in the pathogenesis of obesity [189], but this gene might be novel target for GDM. Other studies which shown that FOXO1 [190], hsa-mir-1207-5p [191], hsa-mir-4651 [191], hsa-mir-222-3p [192] and E2F1 [193] are involved in GDM evolution. Hsa-let-7d-5p [194], hsa-mir-29c-3p [195] and SRY (sex-determining region Y) [196] have been reported to be associated with type 2 diabetes mellitus, but these genes might be novel target for GDM. Expression of hsa-mir-663a [197] and TBX3 [198] were consistent in cardiovascular diseases, but these genes might be novel target for GDM. Several reports have demonstrated that RUNX1 [199] and YAP1 [200] have active roles in preeclampsia, but these genes might be novel target for GDM. UBE2D3, PAK2, DDB1, DVL3, PSMC4, hsa-mir-6127, hsa-mir-8063, hsa-mir-329-3p, hsa-mir-410-5p, HCFC1, ZFX (zinc finger protein, X-linked), SPI1, MYBL2 and SUZ12 were the novel biomarkers for the progression of GDM.

The molecule GLY, MLR obtained a good -CDOCKER interaction energy with 5NJX, 3FNI and 3Q4Z the -CDOCKER interaction energy of GLY is 41.37, 59.92, 41.44 and for MLR is 40.68, 87.65, 43.47 with 5NJX, 3FNI and 3Q4Z, respectively. The two molecules such as ALO and MAL its interaction with amino acids are 2′ hydroxyl group formed hydrogen bond interaction with ASP-89 and 3′, 4′ hydroxyl groups formed hydrogen bond interaction with GLU-86. Following 6′ hydroxyl group formed hydrogen bond interaction with LYS-61. The C-13 hydroxyl formed hydrogen bond interaction with ASP-389 and ring C electrons formed π–π t-shaped interactions with HIS-63 and π–alkyl interaction with LYS-388. Ring A electrons formed π–carbon interaction with LYS-388 and LYS61, respectively. The ring C electrons and 4′ hydroxyl group of molecule MLR formed sulphur oxygen interaction with MET-344 and ring C electrons formed π–alkyl interaction with LEU-396. The ring A 5 and 6 hydroxyl group formed hydrogen bond interaction with ASP-354 and LYS-538. Ring D 3″ and 6″ hydroxyl group formed hydrogen bond interaction with ASP-393 and GLY-277, 3″ hydroxyl group formed pi-alkyl interaction with Mg ion. Ring D 5″ hydroxyl group formed hydrogen bond interaction with ARG-299. Ring E 6′″ alkyl hydroxyl formed Carbon hydrogen interaction with LYS-391 and ring E oxygen, 3′″ hydroxyl group and 6′″ alkyl hydroxyl formed π–alkyl interaction with Mg ions, respectively.

We conducted a comprehensive bioinformatics analysis on transcription profiling of GDM. Hub genes and pathways were identified to provide more detailed molecular mechanisms for the process of GDM and shed light on potential therapeutic targets. Nevertheless, further experiments are needed to further validate the identified hub genes and pathways.

Acknowledgements

We thank Marian C. Aldhous, Tommy’s Centre for Fetal and Maternal Health, Medical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K., very much, the author who deposited their profiling by high-throughput sequencing dataset E-MTAB-6418, into the public ArrayExpress database.

Abbreviations

adj. P. val

adjusted P value

AUC

area under the curve

BP

biological process

CC

cellular component

CEBPB

CCAAT enhancer binding protein beta

CRH

corticotropin releasing hormone

DEG

differentially expressed gene

EGFR

epidermal growth factor receptor

GDM

gestational diabetes mellitus

GEO

Gene Expression Omnibus

GO

Gene Ontology

HSP90AA1

heat shock protein 90 alpha family Class A member 1

MF

molecular function

PAK1

p21 (RAC1) activated kinase 1

Data Availability

The datasets supporting the conclusions of this article are available in the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/) repository [(E-MTAB-6418) https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6418/?array=A-MEXP-2072].

Competing Interests

The authors declare that there are no competing interests associated with the manuscript.

Funding

The authors declare that there are no sources of funding to be acknowledged.

Author Contribution

V.A.: Methodology and validation. V.R.: Formal analysis and validation. B.V.: Writing original draft, and review and editing. A.T.: Formal analysis and validation. C.V.: Software and investigation. S.K.: Supervision and resources.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  • 1.Alfadhli E.M. (2015) Gestational diabetes mellitus. Saudi Med. J. 36, 399–406 10.15537/smj.2015.4.10307 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lambrinoudaki I., Vlachou S.A. and Creatsas G. (2010) Genetics in gestational diabetes mellitus: association with incidence, severity, pregnancy outcome and response to treatment. Curr. Diabetes Rev. 6, 393–399 10.2174/157339910793499155 [DOI] [PubMed] [Google Scholar]
  • 3.Chen P., Wang S., Ji J., Ge A., Chen C., Zhu Y.et al. (2015) Risk factors and management of gestational diabetes. Cell Biochem. Biophys. 71, 689–694 10.1007/s12013-014-0248-2 [DOI] [PubMed] [Google Scholar]
  • 4.Tieu J., McPhee A.J., Crowther C.A., Middleton P. and Shepherd E. (2017) Screening for gestational diabetes mellitus based on different risk profiles and settings for improving maternal and infant health. Cochrane Database Syst. Rev. 8, CD007222 10.1002/14651858.CD007222.pub4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Farrar D., Simmonds M., Bryant M., Sheldon T.A., Tuffnell D., Golder S.et al. (2016) Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ 354, i4694 10.1136/bmj.i4694 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zhu N., Hou J., Wu Y., Li G., Liu J., Ma G.et al. (2018) Identification of key genes in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Medicine (Baltimore) 97, e10997 10.1097/MD.0000000000010997 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Liu Y., Wang Y., Wang Y., Lv Y., Zhang Y. and Wang H. (2020) Gene expression changes in arterial and venous endothelial cells exposed to gestational diabetes mellitus. Gynecol. Endocrinol. 36, 791–795 10.1080/09513590.2020.1712696 [DOI] [PubMed] [Google Scholar]
  • 8.Zhang Q., He M., Wang J., Liu S., Cheng H. and Cheng Y. (2015) Predicting of disease genes for gestational diabetes mellitus based on network and functional consistency. Eur. J. Obstet. Gynecol. Reprod. Biol. 186, 91–96 10.1016/j.ejogrb.2014.12.016 [DOI] [PubMed] [Google Scholar]
  • 9.Chiswick C.A., Reynolds R.M., Denison F.C., Drake A.J., Forbes S., Newby D.E.et al. (2016) Does Metformin Reduce hhjExcess Birthweight in Offspring of Obese Pregnant Women? A Randomised Controlled Trial of Efficacy, Exploration of Mechanisms and Evaluation of Other Pregnancy Complications, NIHR Journals Library, Southampton (U.K.) [PubMed] [Google Scholar]
  • 10.Kolesnikov N., Hastings E., Keays M., Melnichuk O., Tang Y.A., Williams E.et al. (2015) ArrayExpress update–simplifying data submissions. Nucleic Acids Res. 43, D1113–D1116 10.1093/nar/gku1057 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W.et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 10.1093/nar/gkv007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Thomas P.D. (2017) The gene ontology and the meaning of biological function. Methods Mol. Biol. 1446, 15–24 10.1007/978-1-4939-3743-1_2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Fabregat A., Jupe S., Matthews L., Sidiropoulos K., Gillespie M., Garapati P.et al. (2018) The Reactome Pathway Knowledgebase. Nucleic Acids Res. 46, D649–D655 10.1093/nar/gkx1132 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chen J., Bardes E.E., Aronow B.J. and Jegga A.G. (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 37, W305–W311 10.1093/nar/gkp427 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Szklarczyk D., Morris J.H., Cook H., Kuhn M., Wyder S., Simonovic M.et al. (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 10.1093/nar/gkw937 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D.et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 10.1101/gr.1239303 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Przulj N., Wigle D.A. and Jurisica I. (2004) Functional topology in a network of protein interactions. Bioinformatics 20, 340–348 10.1093/bioinformatics/btg415 [DOI] [PubMed] [Google Scholar]
  • 18.Nguyen T.P., Liu W.C. and Jordán F. (2011) Inferring pleiotropy by network analysis: linked diseases in the human PPI network. BMC Syst. Biol. 5, 179 10.1186/1752-0509-5-179 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Shi Z. and Zhang B. (2011) Fast network centrality analysis using GPUs. BMC Bioinformatics 12, 149 10.1186/1471-2105-12-149 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Fadhal E., Gamieldien J. and Mwambene E.C. (2014) Protein interaction networks as metric spaces: a novel perspective on distribution of hubs. BMC Syst. Biol. 8, 6 10.1186/1752-0509-8-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zaki N., Efimov D. and Berengueres J. (2013) Protein complex detection using interaction reliability assessment and weighted clustering coefficient. BMC Bioinformatics 14, 163 10.1186/1471-2105-14-163 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Fan Y. and Xia J. (2018) miRNet-functional analysis and visual exploration of miRNA-target interactions in a network context. Methods Mol. Biol. 1819, 215–233 10.1007/978-1-4939-8618-7_10 [DOI] [PubMed] [Google Scholar]
  • 23.Zhou G., Soufan O., Ewald J., Hancock R.E.W., Basu N. and Xia J. (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 47, W234–W241 10.1093/nar/gkz240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Robin X., Turck N., Hainard A., Tiberti N., Lisacek F., Sanchez J.C.et al. (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12, 77 10.1186/1471-2105-12-77 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Livak K.J. and Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 10.1006/meth.2001.1262 [DOI] [PubMed] [Google Scholar]
  • 26.Wierzchowski M., Dutkiewicz Z., Gielara-Korzańska A., Korzański A., Teubert A., Teżyk A.et al. (2017) Synthesis, biological evaluation and docking studies of trans-stilbene methylthio derivatives as cytochromes P450 family 1 inhibitors. Chem. Biol. Drug Des. 90, 1226–1236 10.1111/cbdd.13042 [DOI] [PubMed] [Google Scholar]
  • 27.O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T. and Hutchison G.R. (2011) Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 10.1186/1758-2946-3-33 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Petchi R.R., Vijaya C. and Parasuraman S. (2014) Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J. Trad. Complement. Med. 4, 108–117 10.4103/2225-4110.126174 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Gupta R.C., Chang D., Nammi S., Bensoussan A., Bilinski K. and Roufogalis B.D. (2017) Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol. Metab. Syndr. 9, 59 10.1186/s13098-017-0254-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Uusküla L., Rull K., Nagirnaja L. and Laan M. (2011) Methylation allelic polymorphism (MAP) in chorionic gonadotropin beta5 (CGB5) and its association with pregnancy success. J. Clin. Endocrinol. Metab. 96, E199–E207 10.1210/jc.2010-1647 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Purwosunu Y., Sekizawa A., Farina A., Wibowo N., Okazaki S., Nakamura M.et al. (2007) Cell-free mRNA concentrations of CRH, PLAC1, and selectin-P are increased in the plasma of pregnant women with preeclampsia. Prenat. Diagn. 27, 772–777 10.1002/pd.1780 [DOI] [PubMed] [Google Scholar]
  • 32.Temur M., Serpim G., Tuzluoğlu S., Taşgöz F.N., Şahin E. and Üstünyurt E. (2020) Comparison of serum human pregnancy-specific beta-1-glycoprotein 1 levels in pregnant women with or without preeclampsia. J. Obstet. Gynaecol. 40, 1074–1078 10.1080/01443615.2019.1679734 [DOI] [PubMed] [Google Scholar]
  • 33.Shimodaira M., Nakayama T., Sato I., Sato N., Izawa N., Mizutani Y.et al. (2012) Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. Endocrine 42, 700–707 10.1007/s12020-012-9699-7 [DOI] [PubMed] [Google Scholar]
  • 34.Xu T., Shao L., Wang A., Liang R., Lin Y., Wang G.et al. (2020) CD248 as a novel therapeutic target in pulmonary arterial hypertension. Clin. Transl. Med. 10, e175 10.1002/ctm2.175 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 35.Lin G., Wan X., Liu D., Wen Y., Yang C. and Zhao C. (2021) COL1A1 as a potential new biomarker and therapeutic target for type 2 diabetes. Pharmacol. Res. 165, 105436 10.1016/j.phrs.2021.105436 [DOI] [PubMed] [Google Scholar]
  • 36.Delfín D.A., DeAguero J.L. and McKown E.N. (2019) The extracellular matrix protein ABI3BP in cardiovascular health and disease. Front. Cardiovasc. Med. 6, 23 10.3389/fcvm.2019.00023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Blindbæk S.L., Schlosser A., Green A., Holmskov U., Sorensen G.L. and Grauslund J. (2017) Association between microfibrillar-associated protein 4 (MFAP4) and micro- and macrovascular complications in long-term type 1 diabetes mellitus. Acta Diabetol. 54, 367–372 10.1007/s00592-016-0953-y [DOI] [PubMed] [Google Scholar]
  • 38.Bennett C.E., Nsengimana J., Bostock J.A., Cymbalista C., Futers T.S., Knight B.L.et al. (2010) CCAAT/enhancer binding protein alpha, beta and delta gene variants: associations with obesity related phenotypes in the Leeds Family Study. Diabetes Vasc. Dis. Res. 7, 195–203 10.1177/1479164110366274 [DOI] [PubMed] [Google Scholar]
  • 39.Killion E.A., Reeves A.R., El Azzouny M.A., Yan Q.W., Surujon D., Griffin J.D.et al. (2018) A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction. Mol. Metab. 9, 43–56 10.1016/j.molmet.2018.01.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Cheng J., Song J., He X., Zhang M., Hu S., Zhang S.et al. (2016) Loss of Mbd2 protects mice against high-fat diet-induced obesity and insulin resistance by regulating the homeostasis of energy storage and expenditure. Diabetes 65, 3384–3395 10.2337/db16-0151 [DOI] [PubMed] [Google Scholar]
  • 41.An M., Ryu D.R., Won Park J., Ha Choi J., Park E.M., Eun Lee K.et al. (2017) U.K. prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism. Cardiovasc. Res. 113, 1137–1147 10.1093/cvr/cvx064 [DOI] [PubMed] [Google Scholar]
  • 42.Hofmann T., Weibert E., Ahnis A., Obbarius A., Elbelt U., Rose M.et al. (2017) Alterations of circulating NUCB2/nesfatin-1 during short term therapeutic improvement of anxiety in obese inpatients. Psychoneuroendocrinology 79, 107–115 10.1016/j.psyneuen.2017.02.021 [DOI] [PubMed] [Google Scholar]
  • 43.Ma W., Lu S., Sun T., Wang X., Ma Y., Zhang X.et al. (2014) Twist 1 regulates the expression of PPARγ during hormone-induced 3T3-L1 preadipocyte differentiation: a possible role in obesity and associated diseases. Lipids Health Dis. 13, 132 10.1186/1476-511X-13-132 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Rodríguez-Rodero S., Menéndez-Torre E., Fernández-Bayón G., Morales-Sánchez P., Sanz L., Turienzo E.et al. (2017) Altered intragenic DNA methylation of HOOK2 gene in adipose tissue from individuals with obesity and type 2 diabetes. PLoS ONE 12, e0189153 10.1371/journal.pone.0189153 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Belalcazar L.M., Papandonatos G.D., McCaffery J.M., Peter I., Pajewski N.M., Erar B.et al. (2015) A common variant in the CLDN7/ELP5 locus predicts adiponectin change with lifestyle intervention and improved fitness in obese individuals with diabetes. Physiol. Genomics 47, 215–224 10.1152/physiolgenomics.00109.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Reilly S.M., Chiang S.H., Decker S.J., Chang L., Uhm M., Larsen M.J.et al. (2013) An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat. Med. 19, 313–321 10.1038/nm.3082 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Wang L., Mazagova M., Pan C., Yang S., Brandl K., Liu J.et al. (2019) YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proc. Natl. Acad. Sci. U.S.A. 116, 15184–15193 10.1073/pnas.1904360116 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Garcia-Valdes L., Campoy C., Hayes H., Florido J., Rusanova I., Miranda M.T.et al. (2015) The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int. J. Obes. (Lond.) 39, 571–578 10.1038/ijo.2015.3 [DOI] [PubMed] [Google Scholar]
  • 49.Reeves V.L., Trybula J.S., Wills R.C., Goodpaster B.H., Dubé J.J., Kienesberger P.C.et al. (2015) Serum Autotaxin/ENPP2 correlates with insulin resistance in older humans with obesity. Obesity (Silver Spring) 23, 2371–2376 10.1002/oby.21232 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Lim R. and Lappas M. (2015) Slit2 exerts anti-inflammatory actions in human placenta and is decreased with maternal obesity. Am. J. Reprod. Immunol. 73, 66–78 10.1111/aji.12334 [DOI] [PubMed] [Google Scholar]
  • 51.Khalifeh-Soltani A., McKleroy W., Sakuma S., Cheung Y.Y., Tharp K., Qiu Y.et al. (2014) Mfge8 promotes obesity by mediating the uptake of dietary fats and serum fatty acids. Nat. Med. 20, 175–183 10.1038/nm.3450 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Bidu C., Escoula Q., Bellenger S., Spor A., Galan M., Geissler A.et al. (2018) The transplantation of ω3 PUFA-altered gut microbiota of fat-1 mice to wild-type littermates prevents obesity and associated metabolic disorders. Diabetes 67, 1512–1523 10.2337/db17-1488 [DOI] [PubMed] [Google Scholar]
  • 53.Leelalertlauw C., Korwutthikulrangsri M., Mahachoklertwattana P., Chanprasertyothin S., Khlairit P., Pongratanakul S.et al. (2017) Serum glypican 4 level in obese children and its relation to degree of obesity. Clin. Endocrinol. 87, 689–695 10.1111/cen.13435 [DOI] [PubMed] [Google Scholar]
  • 54.McCulloch L.J., Rawling T.J., Sjöholm K., Franck N., Dankel S.N., Price E.J.et al. (2015) COL6A3 is regulated by leptin in human adipose tissue and reduced in obesity. Endocrinology 156, 134–146 10.1210/en.2014-1042 [DOI] [PubMed] [Google Scholar]
  • 55.Oberauer R., Rist W., Lenter M.C., Hamilton B.S. and Neubauer H. (2010) EGFL6 is increasingly expressed in human obesity and promotes proliferation of adipose tissue-derived stromal vascular cells. Mol. Cell. Biochem. 343, 257–269 10.1007/s11010-010-0521-7 [DOI] [PubMed] [Google Scholar]
  • 56.Jargaud V., Bour S., Tercé F., Collet X., Valet P., Bouloumié A.et al. (2021) Obesity of mice lacking VAP-1/SSAO by Aoc3 gene deletion is reproduced in mice expressing a mutated vascular adhesion protein-1 (VAP-1) devoid of amine oxidase activity. J. Physiol. Biochem. 77, 141–154 10.1007/s13105-020-00756-y [DOI] [PubMed] [Google Scholar]
  • 57.Tan J.T., McLennan S.V., Williams P.F., Rezaeizadeh A., Lo L.W., Bonner J.G.et al. (2013) Connective tissue growth factor/CCN-2 is upregulated in epididymal and subcutaneous fat depots in a dietary-induced obesity model. Am. J. Physiol. Endocrinol. Metab. 304, E1291–E1302 10.1152/ajpendo.00654.2012 [DOI] [PubMed] [Google Scholar]
  • 58.Michurina S.V., Ishchenko I.Y., Arkhipov S.A., Klimontov V.V., Rachkovskaya L.N., Konenkov V.I.et al. (2016) Effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 in the liver of mice with obesity and type 2 diabetes mellitus. Bull. Exp. Biol. Med. 162, 269–272 10.1007/s10517-016-3592-y [DOI] [PubMed] [Google Scholar]
  • 59.Redonnet A., Bonilla S., Noël-Suberville C., Pallet V., Dabadie H., Gin H.et al. (2002) Relationship between peroxisome proliferator-activated receptor gamma and retinoic acid receptor alpha gene expression in obese human adipose tissue. Int. J. Obes. Relat. Metab. Disord. 26, 920–927 10.1038/sj.ijo.0802025 [DOI] [PubMed] [Google Scholar]
  • 60.Errera F.I., Canani L.H., Yeh E., Kague E., Armelin-Corrêa L.M., Suzuki O.T.et al. (2008) COL18A1 is highly expressed during human adipocyte differentiation and the SNP c.1136C > T in its “frizzled” motif is associated with obesity in diabetes type 2 patients. An. Acad. Bras. Cienc. 80, 167–177 10.1590/S0001-37652008000100012 [DOI] [PubMed] [Google Scholar]
  • 61.Paine A., Woeller C.F., Zhang H., de la Luz Garcia-Hernandez M., Huertas N., Xing L.et al. (2018) Thy1 is a positive regulator of osteoblast differentiation and modulates bone homeostasis in obese mice. FASEB J. 32, 3174–3183 10.1096/fj.201701379R [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Wu R.X., Dong Y.Y., Yang P.W., Wang L., Deng Y.H., Zhang H.W.et al. (2019) CD36- and obesity-associated granulosa cells dysfunction. Reprod. Fertil. Dev. 31, 993–1001 10.1071/RD18292 [DOI] [PubMed] [Google Scholar]
  • 63.Gao X., van der Veen J.N., Zhu L., Chaba T., Ordoñez M., Lingrell S.et al. (2015) Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice. J. Hepatol. 62, 913–920 10.1016/j.jhep.2014.11.026 [DOI] [PubMed] [Google Scholar]
  • 64.Parikh D., Riascos-Bernal D.F., Egaña-Gorroño L., Jayakumar S., Almonte V., Chinnasamy P.et al. (2020) Allograft inflammatory factor-1-like is not essential for age dependent weight gain or HFD-induced obesity and glucose insensitivity. Sci. Rep. 10, 3594 10.1038/s41598-020-60433-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Bush N.R., Allison A.L., Miller A.L., Deardorff J., Adler N.E. and Boyce W.T. (2017) Socioeconomic disparities in childhood obesity risk: association with an oxytocin receptor polymorphism. JAMA Pediatr. 171, 61–67 10.1001/jamapediatrics.2016.2332 [DOI] [PubMed] [Google Scholar]
  • 66.Kim Y., Bayona P.W., Kim M., Chang J., Hong S., Park Y.et al. (2018) Macrophage lamin A/C regulates inflammation and the development of obesity-induced insulin resistance. Front. Immunol. 9, 696 10.3389/fimmu.2018.00696 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Cereijo R., Quesada-López T., Gavaldà-Navarro A., Tarascó J., Pellitero S., Reyes M.et al. (2021) The chemokine CXCL14 is negatively associated with obesity and concomitant type-2 diabetes in humans. Int. J. Obes. (Lond.) 10.1038/s41366-020-00732-y [DOI] [PubMed] [Google Scholar]
  • 68.Xie L., Wang P.X., Zhang P., Zhang X.J., Zhao G.N., Wang A.et al. (2016) DKK3 expression in hepatocytes defines susceptibility to liver steatosis and obesity. J. Hepatol. 65, 113–124 10.1016/j.jhep.2016.03.008 [DOI] [PubMed] [Google Scholar]
  • 69.Tabata M., Kadomatsu T., Fukuhara S., Miyata K., Ito Y., Endo M.et al. (2009) Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 10, 178–188 10.1016/j.cmet.2009.08.003 [DOI] [PubMed] [Google Scholar]
  • 70.Zhu Q., Xue K., Guo H.W., Deng F.F. and Yang Y.H. (2020) Interaction of the CMTM7 rs347134 polymorphism with dietary patterns and the risk of obesity in Han Chinese male children. Int. J. Environ. Res. Public Health 17, 1515 10.3390/ijerph17051515 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Wang K., Zhou Q., He Q., Tong G., Zhao Z. and Duan T. (2011) The possible role of AhR in the protective effects of cigarette smoke on preeclampsia. Med. Hypotheses 77, 872–874 10.1016/j.mehy.2011.07.061 [DOI] [PubMed] [Google Scholar]
  • 72.Gratton A.M., Ye L., Brownfoot F.C., Hannan N.J., Whitehead C., Cannon P.et al. (2016) Steroid sulfatase is increased in the placentas and whole blood of women with early-onset preeclampsia. Placenta 48, 72–79 10.1016/j.placenta.2016.10.008 [DOI] [PubMed] [Google Scholar]
  • 73.Wan L., Sun D., Xie J., Du M., Wang P., Wang M.et al. (2019) Declined placental PLAC1 expression is involved in preeclampsia. Medicine (Baltimore) 98, e17676 10.1097/MD.0000000000017676 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Pan T., He G., Chen M., Bao C., Chen Y., Liu G.et al. (2017) Abnormal CYP11A1 gene expression induces excessive autophagy, contributing to the pathogenesis of preeclampsia. Oncotarget 8, 89824–89836 10.18632/oncotarget.21158 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Zhao L., Triche E.W., Walsh K.M., Bracken M.B., Saftlas A.F., Hoh J.et al. (2012) Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC Pregn. Childb. 12, 61 10.1186/1471-2393-12-61 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Li W., Geng L., Liu X., Gui W. and Qi H. (2019) Recombinant adiponectin alleviates abortion in mice by regulating Th17/Treg imbalance via p38MAPK-STAT5 pathway. Biol. Reprod. 100, 1008–1017 10.1093/biolre/ioy251 [DOI] [PubMed] [Google Scholar]
  • 77.Gierman L.M., Silva G.B., Pervaiz Z., Rakner J.J., Mundal S.B., Thaning A.J.et al. (2021) TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies. J. Leukoc. Biol. 109, 173–183 [DOI] [PubMed] [Google Scholar]
  • 78.Piñuñuri R., Castaño-Moreno E., Llanos M.N. and Ronco A.M. (2020) Epigenetic regulation of folate receptor-α (FOLR1) in human placenta of preterm newborns. Placenta 94, 20–25 10.1016/j.placenta.2020.03.009 [DOI] [PubMed] [Google Scholar]
  • 79.White B.G., Williams S.J., Highmore K. and Macphee D.J. (2005) Small heat shock protein 27 (Hsp27) expression is highly induced in rat myometrium during late pregnancy and labour. Reproduction 129, 115–126 10.1530/rep.1.00426 [DOI] [PubMed] [Google Scholar]
  • 80.Torres-Salazar Q., Martínez-López Y., Reyes-Romero M., Pérez-Morales R., Sifuentes-Álvarez A. and Salvador-Moysén J. (2020) Differential methylation in promoter regions of the genes NR3C1 and HSP90AA1, involved in the regulation, and bioavailability of cortisol in leukocytes of women with preeclampsia. Front. Med. (Lausanne) 7, 206 10.3389/fmed.2020.00206 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Xu Y., Sui L., Qiu B., Yin X., Liu J. and Zhang X. (2019) ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am. J. Physiol. Cell Physiol. 316, C481–C491 10.1152/ajpcell.00404.2018 [DOI] [PubMed] [Google Scholar]
  • 82.Kaitu’u-Lino T.J., Brownfoot F.C., Hastie R., Chand A., Cannon P., Deo M.et al. (2017) Activating transcription factor 3 is reduced in preeclamptic placentas and negatively regulates sFlt-1 (soluble fms-like tyrosine kinase 1), soluble endoglin, and proinflammatory cytokines in placenta. Hypertension 70, 1014–1024 10.1161/HYPERTENSIONAHA.117.09548 [DOI] [PubMed] [Google Scholar]
  • 83.Yung C., MacDonald T.M., Walker S.P., Cannon P., Harper A., Pritchard N.et al. (2019) Death associated protein kinase 1 (DAPK-1) is increased in preeclampsia. Placenta 88, 1–7 10.1016/j.placenta.2019.09.010 [DOI] [PubMed] [Google Scholar]
  • 84.Zhu L., Lv R., Kong L. and Li X. (2018) Reduced methylation downregulates CD39/ENTPD1 and ZDHHC14 to suppress trophoblast cell proliferation and invasion: Implications in preeclampsia. Pregn. Hypertens. 14, 59–67 10.1016/j.preghy.2018.03.012 [DOI] [PubMed] [Google Scholar]
  • 85.Griesshammer M., Sadjadian P. and Wille K. (2018) Contemporary management of patients with BCR-ABL1-negative myeloproliferative neoplasms during pregnancy. Expert Rev. Hematol. 11, 697–706 10.1080/17474086.2018.1506325 [DOI] [PubMed] [Google Scholar]
  • 86.Textoris J., Ivorra D., Ben Amara A., Sabatier F., Ménard J.P., Heckenroth H.et al. (2013) Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker. PLoS ONE 8, e82638 10.1371/journal.pone.0082638 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Kelemu T., Erlandsson L., Seifu D., Abebe M., Teklu S., Storry J.R.et al. (2020) Association of maternal regulatory single nucleotide polymorphic CD99 genotype with preeclampsia in pregnancies carrying male fetuses in Ethiopian women. Int. J. Mol. Sci. 21, 5837 10.3390/ijms21165837 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Aref S. and Goda H. (2013) Increased VWF antigen levels and decreased ADAMTS13 activity in preeclampsia. Hematology 18, 237–241 10.1179/1607845412Y.0000000070 [DOI] [PubMed] [Google Scholar]
  • 89.Martineau T., Boutin M., Côté A.M., Maranda B., Bichet D.G. and Auray-Blais C. (2019) Tandem mass spectrometry analysis of urinary podocalyxin and podocin in the investigation of podocyturia in women with preeclampsia and Fabry disease patients. Clin. Chim. Acta 495, 67–75 10.1016/j.cca.2019.03.1615 [DOI] [PubMed] [Google Scholar]
  • 90.Onyangunga O., Moodley J., Odun-Ayo F. and Naicker T. (2018) Immunohistochemical localization of podoplanin in the placentas of HIV-positive preeclamptic women. Turk. J. Med. Sci. 48, 916–924 10.3906/sag-1706-88 [DOI] [PubMed] [Google Scholar]
  • 91.Li L., Zhang X., Hong S.L., Chen Y. and Ren G.H. (2018) Long non-coding HOTTIP regulates preeclampsia by inhibiting RND3. Eur. Rev. Med. Pharmacol. Sci. 22, 3277–3285 [DOI] [PubMed] [Google Scholar]
  • 92.Gogiel T., Galewska Z., Romanowicz L., Jaworski S. and Bańkowski E. (2007) Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur. J. Obstet. Gynecol. Reprod. Biol. 134, 51–56 10.1016/j.ejogrb.2006.10.003 [DOI] [PubMed] [Google Scholar]
  • 93.Hirschi K.M., Tsai K.Y.F., Davis T., Clark J.C., Knowlton M.N., Bikman B.T.et al. (2020) Growth arrest-specific protein-6/AXL signaling induces preeclampsia in rats†. Biol. Reprod. 102, 199–210 [DOI] [PubMed] [Google Scholar]
  • 94.Arishe O.O., Ebeigbe A.B. and Webb R.C. (2020) Mechanotransduction and uterine blood flow in preeclampsia: the role of mechanosensing Piezo 1 ion channels. Am. J. Hypertens. 33, 1–9 10.1093/ajh/hpz158 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Ji Y., Zhou L., Wang G., Qiao Y., Tian Y. and Feng Y. (2019) Role of LAMA4 gene in regulating extravillous trophoblasts in pathogenesis of preeclampsia. Med. Sci. Monit. 25, 9630–9636 10.12659/MSM.917402 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Du F., Zhang Y., Xu Q., Teng Y., Tao M., Chen A.F.et al. (2020) Preeclampsia serum increases CAV1 expression and cell permeability of human renal glomerular endothelial cells via down-regulating miR-199a-5p, miR-199b-5p, miR-204. Placenta 99, 141–151 10.1016/j.placenta.2020.07.011 [DOI] [PubMed] [Google Scholar]
  • 97.Shimanuki Y., Mitomi H., Fukumura Y., Makino S., Itakura A., Yao T.et al. (2015) Alteration of Delta-like ligand 1 and Notch 1 receptor in various placental disorders with special reference to early onset preeclampsia. Hum. Pathol. 46, 1129–1137 10.1016/j.humpath.2015.03.013 [DOI] [PubMed] [Google Scholar]
  • 98.Todd N., McNally R., Alqudah A., Jerotic D., Suvakov S., Obradovic D.et al. (2021) Role of a novel angiogenesis FKBPL-CD44 pathway in preeclampsia risk stratification and mesenchymal stem cell treatment. J. Clin. Endocrinol. Metab. 106, 26–41 10.1210/clinem/dgaa403 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Ding H., Dai Y., Lei Y., Wang Z., Liu D., Li R.et al. (2019) Upregulation of CD81 in trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in preeclampsia. Cell Mol. Immunol. 16, 302–312 10.1038/s41423-018-0186-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Brkić J., Dunk C., Shan Y., O'Brien J.A., Lye P., Qayyum S.et al. (2020) Differential role of Smad2 and Smad3 in the acquisition of an endovascular trophoblast-like phenotype and preeclampsia. Front. Endocrinol. (Lausanne) 11, 436 10.3389/fendo.2020.00436 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Yang X., Ding Y., Yang M., Yu L., Hu Y. and Deng Y. (2018) Nestin improves preeclampsia-like symptoms by inhibiting activity of cyclin-dependent kinase 5. Kidney Blood Press. Res. 43, 616–627 10.1159/000489146 [DOI] [PubMed] [Google Scholar]
  • 102.Lala P.K. and Nandi P. (2016) Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adh. Migr. 10, 111–125 10.1080/19336918.2015.1106669 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Zhao L., Dewan A.T. and Bracken M.B. (2012) Association of maternal AGTR1 polymorphisms and preeclampsia: a systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 25, 2676–2680 10.3109/14767058.2012.708370 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Lim R., Barker G. and Lappas M. (2014) SLIT3 is increased in supracervical human foetal membranes and in labouring myometrium and regulates pro-inflammatory mediators. Am. J. Reprod. Immunol. 71, 297–311 10.1111/aji.12181 [DOI] [PubMed] [Google Scholar]
  • 105.Kristensen K., Wide-Swensson D., Schmidt C., Blirup-Jensen S., Lindström V., Strevens H.et al. (2007) Cystatin C, beta-2-microglobulin and beta-trace protein in pre-eclampsia. Acta Obstet. Gynecol. Scand. 86, 921–926 10.1080/00016340701318133 [DOI] [PubMed] [Google Scholar]
  • 106.Tang J., Wang D., Lu J. and Zhou X. (2021) MiR-125b participates in the occurrence of preeclampsia by regulating the migration and invasion of extravillous trophoblastic cells through STAT3 signaling pathway. J. Recept. Signal Transduct. Res. 41, 202–208 [DOI] [PubMed] [Google Scholar]
  • 107.Abid N., Embola J., Tryfonos Z., Bercher J., Ashton S.V., Khalil A.et al. (2020) Regulation of stanniocalcin-1 secretion by BeWo cells and first trimester human placental tissue from normal pregnancies and those at increased risk of developing preeclampsia. FASEB J. 34, 6086–6098 10.1096/fj.201902426R [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Namlı Kalem M., Kalem Z., Yüce T. and Soylemez F. (2018) ADAMTS 1, 4, 12, and 13 levels in maternal blood, cord blood, and placenta in preeclampsia. Hypertens. Pregn. 37, 9–17 10.1080/10641955.2017.1397690 [DOI] [PubMed] [Google Scholar]
  • 109.Majchrzak-Celińska A., Kosicka K., Paczkowska J., Główka F.K., Bręborowicz G.H., Krzyścin M.et al. (2017) HSD11B2, RUNX3, and LINE-1 methylation in placental DNA of hypertensive disorders of pregnancy patients. Reprod. Sci. 24, 1520–1531 10.1177/1933719117692043 [DOI] [PubMed] [Google Scholar]
  • 110.Shimodaira M., Nakayama T., Sato I., Sato N., Izawa N., Mizutani Y.et al. (2012) Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. Endocrine 42, 700–707 10.1007/s12020-012-9699-7 [DOI] [PubMed] [Google Scholar]
  • 111.Saxena R., Bjonnes A., Prescott J., Dib P., Natt P., Lane J.et al. (2014) Genome-wide association study identifies variants in casein kinase II (CSNK2A2) to be associated with leukocyte telomere length in a Punjabi Sikh diabetic cohort. Circ. Cardiovasc. Genet. 7, 287–295 10.1161/CIRCGENETICS.113.000412 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Yang W., Wang J., Chen Z., Chen J., Meng Y., Chen L.et al. (2017) NFE2 induces miR-423-5p to promote gluconeogenesis and hyperglycemia by repressing the hepatic FAM3A-ATP-Akt pathway. Diabetes 66, 1819–1832 10.2337/db16-1172 [DOI] [PubMed] [Google Scholar]
  • 113.Gloyn A.L., Desai M., Clark A., Levy J.C., Holman R.R., Frayling T.M.et al. (2002) Human calcium/calmodulin-dependent protein kinase II gamma gene (CAMK2G): cloning, genomic structure and detection of variants in subjects with type II diabetes. Diabetologia 45, 580–583 10.1007/s00125-002-0779-8 [DOI] [PubMed] [Google Scholar]
  • 114.Li J.Y., Tao F., Wu X.X., Tan Y.Z., He L. and Lu H. (2015) Common RASGRP1 gene variants that confer risk of type 2 diabetes. Genet. Test Mol. Biomarkers 19, 439–443 10.1089/gtmb.2015.0005 [DOI] [PubMed] [Google Scholar]
  • 115.Afarideh M., Zaker Esteghamati V., Ganji M., Heidari B., Esteghamati S., Lavasani S.et al. (2019) Associations of serum S100B and S100P with the presence and classification of diabetic peripheral neuropathy in adults with type 2 diabetes: a case-cohort study. Can. J. Diabetes 43, 336.e2–344.e2 10.1016/j.jcjd.2019.01.003 [DOI] [PubMed] [Google Scholar]
  • 116.Zhang S., Xiao J., Ren Q., Han X., Tang Y., Yang W.et al. (2014) Association of serine racemase gene variants with type 2 diabetes in the Chinese Han population. J. Diabetes Investig. 5, 286–289 10.1111/jdi.12145 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Robbins R.D., Tersey S.A., Ogihara T., Gupta D., Farb T.B., Ficorilli J.et al. (2010) Inhibition of deoxyhypusine synthase enhances islet {beta} cell function and survival in the setting of endoplasmic reticulum stress and type 2 diabetes. J. Biol. Chem. 285, 39943–39952 10.1074/jbc.M110.170142 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Belgardt B.F. and Lammert E. (2016) DYRK1A: a promising drug target for islet transplant-based diabetes therapies. Diabetes 65, 1496–1498 10.2337/dbi16-0013 [DOI] [PubMed] [Google Scholar]
  • 119.Yoon C.H., Choi Y.E., Cha Y.R., Koh S.J., Choi J.I., Kim T.W.et al. (2016) Diabetes-induced jagged1 overexpression in endothelial cells causes retinal capillary regression in a murine model of diabetes mellitus: insights into diabetic retinopathy. Circulation 134, 233–247 10.1161/CIRCULATIONAHA.116.014411 [DOI] [PubMed] [Google Scholar]
  • 120.Gaikwad A.B., Gupta J. and Tikoo K. (2010) Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions. Biochem. J. 432, 333–341 10.1042/BJ20100414 [DOI] [PubMed] [Google Scholar]
  • 121.Alessi M.C., Nicaud V., Scroyen I., Lange C., Saut N., Fumeron F.et al. (2011) Association of vitronectin and plasminogen activator inhibitor-1 levels with the risk of metabolic syndrome and type 2 diabetes mellitus. Results from the D.E.S.I.R. prospective cohort. Thromb. Haemost. 106, 416–422 10.1160/TH11-03-0179 [DOI] [PubMed] [Google Scholar]
  • 122.Yang Q., Wang W.W., Ma P., Ma Z.X., Hao M., Adelusi T.I.et al. (2017) Swimming training alleviated insulin resistance through Wnt3a/β-catenin signaling in type 2 diabetic rats. Iran J. Basic Med. Sci. 20, 1220–1226 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Fang H., Luo X., Wang Y., Liu N., Fu C., Wang H.et al. (2014) Correlation between single nucleotide polymorphisms of the ACTA2 gene and coronary artery stenosis in patients with type 2 diabetes mellitus. Exp. Ther. Med. 7, 970–976 10.3892/etm.2014.1510 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Xu X., Fang K., Wang L., Liu X., Zhou Y. and Song Y. (2019) Local application of semaphorin 3A combined with adipose-derived stem cell sheet and anorganic bovine bone granules enhances bone regeneration in type 2 diabetes mellitus rats. Stem Cells Int. 2019, 2506463 10.1155/2019/2506463 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Zhao K., Ding W., Zhang Y., Ma K., Wang D., Hu C.et al. (2020) Variants in the RARRES2 gene are associated with serum chemerin and increase the risk of diabetic kidney disease in type 2 diabetes. Int. J. Biol. Macromol. 165, 1574–1580 10.1016/j.ijbiomac.2020.10.030 [DOI] [PubMed] [Google Scholar]
  • 126.Fisher E., Schreiber S., Joost H.G., Boeing H. and Döring F. (2011) A two-step association study identifies CAV2 rs2270188 single nucleotide polymorphism interaction with fat intake in type 2 diabetes risk. J. Nutr. 141, 177–181 10.3945/jn.110.124206 [DOI] [PubMed] [Google Scholar]
  • 127.Meng S., Cao J.T., Zhang B., Zhou Q., Shen C.X. and Wang C.Q. (2012) Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J. Mol. Cell Cardiol. 53, 64–72 10.1016/j.yjmcc.2012.04.003 [DOI] [PubMed] [Google Scholar]
  • 128.Santiago J.L., Martínez A., de la Calle H., Fernández-Arquero M., Figueredo M.A., de la Concha E.G.et al. (2006) Evidence for the association of the SLC22A4 and SLC22A5 genes with type 1 diabetes: a case control study. BMC Med. Genet. 7, 54 10.1186/1471-2350-7-54 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Auburger G., Gispert S., Lahut S., Omür O., Damrath E., Heck M.et al. (2014) 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2? World J. Diabetes 5, 316–327 10.4239/wjd.v5.i3.316 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Qu H.Q., Marchand L., Szymborski A., Grabs R. and Polychronakos C. (2008) The association between type 1 diabetes and the ITPR3 gene polymorphism due to linkage disequilibrium with HLA class II. Genes Immun. 9, 264–266 10.1038/gene.2008.12 [DOI] [PubMed] [Google Scholar]
  • 131.Śnit M., Nabrdalik K., Długaszek M., Gumprecht J., Trautsolt W., Górczyńska-Kosiorz S.et al. (2017) Association of rs 3807337 polymorphism of CALD1 gene with diabetic nephropathy occurrence in type 1 diabetes - preliminary results of a family-based study. Endokrynol. Pol. 68, 13–17 10.5603/EP.2017.0003 [DOI] [PubMed] [Google Scholar]
  • 132.Hjortebjerg R., Tarnow L., Jorsal A., Parving H.H., Rossing P., Bjerre M.et al. (2015) IGFBP-4 fragments as markers of cardiovascular mortality in type 1 diabetes patients with and without nephropathy. J. Clin. Endocrinol. Metab. 100, 3032–3040 10.1210/jc.2015-2196 [DOI] [PubMed] [Google Scholar]
  • 133.Krishnan M., Murphy R., Okesene-Gafa K.A.M., Ji M., Thompson J.M.D., Taylor R.S.et al. (2020) The Pacific-specific CREBRF rs373863828 allele protects against gestational diabetes mellitus in Māori and Pacific women with obesity. Diabetologia 63, 2169–2176 10.1007/s00125-020-05202-8 [DOI] [PubMed] [Google Scholar]
  • 134.Hu S., Yan J., You Y., Yang G., Zhou H., Li X.et al. (2019) Association of polymorphisms in STRA6 gene with gestational diabetes mellitus in a Chinese Han population. Medicine (Baltimore) 98, e14885 10.1097/MD.0000000000014885 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Martins R.S., Ahmed T., Farhat S., Shahid S. and Fatima S.S. (2019) Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: a pilot study. World J. Diabetes 10, 396–402 10.4239/wjd.v10.i7.396 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Prieto-Sánchez M.T., Ruiz-Palacios M., Blanco-Carnero J.E., Pagan A., Hellmuth C., Uhl O.et al. (2017) Placental MFSD2a transporter is related to decreased DHA in cord blood of women with treated gestational diabetes. Clin. Nutr. 36, 513–521 10.1016/j.clnu.2016.01.014 [DOI] [PubMed] [Google Scholar]
  • 137.Sugulle M., Dechend R., Herse F., Weedon-Fekjaer M.S., Johnsen G.M., Brosnihan K.B.et al. (2009) Circulating and placental growth-differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes mellitus. Hypertension 54, 106–112 10.1161/HYPERTENSIONAHA.109.130583 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Zhao H. and Tao S. (2019) MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1. Biochem. Biophys. Res. Commun. 520, 218–224 10.1016/j.bbrc.2019.09.139 [DOI] [PubMed] [Google Scholar]
  • 139.Siddiqui K., George T.P., Nawaz S.S. and Joy S.S. (2019) VCAM-1, ICAM-1 and selectins in gestational diabetes mellitus and the risk for vascular disorders. Future Cardiol. 15, 339–346 10.2217/fca-2018-0042 [DOI] [PubMed] [Google Scholar]
  • 140.Han N., Fang H.Y., Jiang J.X. and Xu Q. (2020) Downregulation of microRNA-873 attenuates insulin resistance and myocardial injury in rats with gestational diabetes mellitus by upregulating IGFBP2. Am. J. Physiol. Endocrinol. Metab. 318, E723–E735 10.1152/ajpendo.00555.2018 [DOI] [PubMed] [Google Scholar]
  • 141.Lappas M. (2015) Insulin-like growth factor-binding protein 1 and 7 concentrations are lower in obese pregnant women, women with gestational diabetes and their fetuses. J. Perinatol. 35, 32–38 10.1038/jp.2014.144 [DOI] [PubMed] [Google Scholar]
  • 142.Wang F., Xu C., Reece E.A., Li X., Wu Y., Harman C.et al. (2017) Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat. Commun. 8, 15182 10.1038/ncomms15182 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Artunc-Ulkumen B., Ulucay S., Pala H.G. and Cam S. (2017) Maternal serum ADAMTS-9 levels in gestational diabetes: a pilot study. J. Matern. Fetal Neonatal Med. 30, 1442–1445 10.1080/14767058.2016.1219717 [DOI] [PubMed] [Google Scholar]
  • 144.Blois S.M., Gueuvoghlanian-Silva B.Y., Tirado-González I., Torloni M.R., Freitag N., Mattar R.et al. (2014) Getting too sweet: galectin-1 dysregulation in gestational diabetes mellitus. Mol. Hum. Reprod. 20, 644–649 10.1093/molehr/gau021 [DOI] [PubMed] [Google Scholar]
  • 145.Vacínová G., Vejražková D., Lukášová P., Lischková O., Dvořáková K., Rusina R.et al. (2017) Associations of polymorphisms in the candidate genes for Alzheimer’s disease BIN1, CLU, CR1 and PICALM with gestational diabetes and impaired glucose tolerance. Mol. Biol. Rep. 44, 227–231 10.1007/s11033-017-4100-9 [DOI] [PubMed] [Google Scholar]
  • 146.Vilmi-Kerälä T., Lauhio A., Tervahartiala T., Palomäki O., Uotila J., Sorsa T.et al. (2017) Subclinical inflammation associated with prolonged TIMP-1 upregulation and arterial stiffness after gestational diabetes mellitus: a hospital-based cohort study. Cardiovasc. Diabetol. 16, 49 10.1186/s12933-017-0530-x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Aquila G., Vieceli Dalla Sega F., Marracino L., Pavasini R., Cardelli L.S., Piredda A.et al. (2020) Ticagrelor increases SIRT1 and HES1 mRNA levels in peripheral blood cells from patients with stable coronary artery disease and chronic obstructive pulmonary disease. Int. J. Mol. Sci. 21, 1576 10.3390/ijms21051576 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Chen Y., Wu S., Zhang X.S., Wang D.M. and Qian C.Y. (2019) MicroRNA-489 promotes cardiomyocyte apoptosis induced by myocardial ischemia-reperfusion injury through inhibiting SPIN1. Eur. Rev. Med. Pharmacol. Sci. 23, 6683–6690 [DOI] [PubMed] [Google Scholar]
  • 149.Xie H., Zhang E., Hong N., Fu Q., Li F., Chen S.et al. (2018) Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum. Genomics 12, 44 10.1186/s40246-018-0176-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Zhang S., Lin X., Li G., Shen X., Niu D., Lu G.et al. (2017) Knockout of Eva1a leads to rapid development of heart failure by impairing autophagy. Cell Death Dis. 8, e2586 10.1038/cddis.2017.17 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Aspit L., Levitas A., Etzion S., Krymko H., Slanovic L., Zarivach R.et al. (2019) CAP2 mutation leads to impaired actin dynamics and associates with supraventricular tachycardia and dilated cardiomyopathy. J. Med. Genet. 56, 228–235 10.1136/jmedgenet-2018-105498 [DOI] [PubMed] [Google Scholar]
  • 152.Akadam-Teker B., Ozkara G., Kurnaz-Gomleksiz O., Bugra Z., Teker E., Ozturk O.et al. (2018) BMP1 5′UTR + 104 T/C gene variation: can be a predictive marker for serum HDL and apoprotein A1 levels in male patients with coronary heart disease. Mol. Biol. Rep. 45, 1269–1276 10.1007/s11033-018-4283-8 [DOI] [PubMed] [Google Scholar]
  • 153.Jiang B., Liu Y., Liang P., Li Y., Liu Z., Tong Z.et al. (2017) MicroRNA-126a-5p enhances myocardial ischemia-reperfusion injury through suppressing Hspb8 expression. Oncotarget 8, 94172–94187 10.18632/oncotarget.21613 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Cetinkaya A., Berge B., Sen-Hild B., Troidl K., Gajawada P., Kubin N.et al. (2020) Radixin relocalization and nonmuscle α-Actinin expression are features of remodeling cardiomyocytes in adult patients with dilated cardiomyopathy. Dis. Markers 2020, 9356738 10.1155/2020/9356738 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Grond-Ginsbach C., Weber R., Haas J., Orberk E., Kunz S., Busse O.et al. (1999) Mutations in the COL5A1 coding sequence are not common in patients with spontaneous cervical artery dissections. Stroke 30, 1887–1890 10.1161/01.STR.30.9.1887 [DOI] [PubMed] [Google Scholar]
  • 156.Dong Y., Zhai W. and Xu Y. (2020) Bioinformatic gene analysis for potential biomarkers and therapeutic targets of diabetic nephropathy associated renal cell carcinoma. Transl. Androl. Urol. 9, 2555–2571 10.21037/tau-19-911 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Chardon J.W., Smith A.C., Woulfe J., Pena E., Rakhra K., Dennie C.et al. (2015) LIMS2 mutations are associated with a novel muscular dystrophy, severe cardiomyopathy and triangular tongues. Clin. Genet. 88, 558–564 10.1111/cge.12561 [DOI] [PubMed] [Google Scholar]
  • 158.Chen H., Huang X.N., Yan W., Chen K., Guo L., Tummalapali L.et al. (2005) Role of the integrin-linked kinase/PINCH1/alpha-parvin complex in cardiac myocyte hypertrophy. Lab. Invest. 85, 1342–1356 10.1038/labinvest.3700345 [DOI] [PubMed] [Google Scholar]
  • 159.Yamada Y., Sakuma J., Takeuchi I., Yasukochi Y., Kato K., Oguri M.et al. (2017) Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies. Int. J. Mol. Med. 39, 1091–1100 10.3892/ijmm.2017.2927 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 160.Hu Y.W., Guo F.X., Xu Y.J., Li P., Lu Z.F., McVey D.G.et al. (2019) Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J. Clin. Invest. 129, 1115–1128 10.1172/JCI98230 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Bobik A. and Kalinina N. (2001) Tumor necrosis factor receptor and ligand superfamily family members TNFRSF14 and LIGHT: new players in human atherogenesis. Arterioscler. Thromb. Vasc. Biol. 21, 1873–1875 10.1161/atvb.21.12.1873 [DOI] [PubMed] [Google Scholar]
  • 162.Schwanekamp J.A., Lorts A., Sargent M.A., York A.J., Grimes K.M., Fischesser D.M.et al. (2017) TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE 12, e0181945 10.1371/journal.pone.0181945 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Liu C., Zhang H., Chen Y., Wang S., Chen Z., Liu Z.et al. (2021) Identifying RBM47, HCK, CD53, TYROBP, and HAVCR2 as hub genes in advanced atherosclerotic plaques by network-based analysis and validation. Front. Genet. 11, 602908 10.3389/fgene.2020.602908 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Schroer A.K., Bersi M.R., Clark C.R., Zhang Q., Sanders L.H., Hatzopoulos A.K.et al. (2019) Cadherin-11 blockade reduces inflammation-driven fibrotic remodeling and improves outcomes after myocardial infarction. JCI Insight 4, e131545 10.1172/jci.insight.131545 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Raza S.T., Abbas S., Eba A., Karim F., Wani I.A., Rizvi S.et al. (2018) Association of COL4A1 (rs605143, rs565470) and CD14 (rs2569190) genes polymorphism with coronary artery disease. Mol. Cell. Biochem. 445, 117–122 10.1007/s11010-017-3257-9 [DOI] [PubMed] [Google Scholar]
  • 166.Yang W., Ng F.L., Chan K., Pu X., Poston R.N., Ren M.et al. (2016) Coronary-heart-disease-associated genetic variant at the COL4A1/COL4A2 locus affects COL4A1/COL4A2 expression, vascular cell survival, atherosclerotic plaque stability and risk of myocardial infarction. PLoS Genet. 12, e1006127 10.1371/journal.pgen.1006127 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Azuaje F., Zhang L., Jeanty C., Puhl S.L., Rodius S. and Wagner D.R. (2013) Analysis of a gene co-expression network establishes robust association between Col5a2 and ischemic heart disease. BMC Med. Genomics 6, 13 10.1186/1755-8794-6-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Durbin M.D., O'Kane J., Lorentz S., Firulli A.B. and Ware S.M. (2020) SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev. Biol. 464, 124–136 10.1016/j.ydbio.2020.05.013 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Chowdhury B., Xiang B., Liu M., Hemming R., Dolinsky V.W. and Triggs-Raine B. (2017) Hyaluronidase 2 deficiency causes increased mesenchymal cells, congenital heart defects, and heart failure. Circ. Cardiovasc. Genet. 10, e001598 10.1161/CIRCGENETICS.116.001598 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Wang D., Fang J., Lv J., Pan Z., Yin X., Cheng H.et al. (2019) Novel polymorphisms in PDLIM3 and PDLIM5 gene encoding Z-line proteins increase risk of idiopathic dilated cardiomyopathy. J. Cell. Mol. Med. 23, 7054–7062 10.1111/jcmm.14607 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Li J., Su H., Zhu Y., Cao Y. and Ma X. (2020) ETS2 and microRNA-155 regulate the pathogenesis of heart failure through targeting and regulating GPR18 expression. Exp. Ther. Med. 19, 3469–3478 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Lv L., Li T., Li X., Xu C., Liu Q., Jiang H.et al. (2018) The lncRNA Plscr4 Controls Cardiac Hypertrophy by Regulating miR-214. Mol. Ther. Nucleic Acids 10, 387–397 10.1016/j.omtn.2017.12.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Bertoli-Avella A.M., Gillis E., Morisaki H., Verhagen J.M.A., de Graaf B.M., van de Beek G.et al. (2015) Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J. Am. Coll. Cardiol. 65, 1324–1336 10.1016/j.jacc.2015.01.040 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Grossman T.R., Gamliel A., Wessells R.J., Taghli-Lamallem O., Jepsen K., Ocorr K.et al. (2011) Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7, e1002344 10.1371/journal.pgen.1002344 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Andenæs K., Lunde I.G., Mohammadzadeh N., Dahl C.P., Aronsen J.M., Strand M.E.et al. (2018) The extracellular matrix proteoglycan fibromodulin is upregulated in clinical and experimental heart failure and affects cardiac remodeling. PLoS ONE 13, e0201422 10.1371/journal.pone.0201422 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Chen H.X., Yang Z.Y., Hou H.T., Wang J., Wang X.L., Yang Q.et al. (2020) Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly. J. Cell. Mol. Med. 24, 13751–13762 10.1111/jcmm.15950 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Flamant M., Placier S., Rodenas A., Curat C.A., Vogel W.F., Chatziantoniou C.et al. (2006) Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J. Am. Soc. Nephrol. 17, 3374–3381 10.1681/ASN.2006060677 [DOI] [PubMed] [Google Scholar]
  • 178.Wan F., Letavernier E., Abid S., Houssaini A., Czibik G., Marcos E.et al. (2016) Extracellular Calpain/Calpastatin balance is involved in the progression of pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 55, 337–351 10.1165/rcmb.2015-0257OC [DOI] [PubMed] [Google Scholar]
  • 179.Zhang Y., Shen J., He X., Zhang K., Wu S., Xiao B.et al. (2011) A rare variant at the KYNU gene is associated with kynureninase activity and essential hypertension in the Han Chinese population. Circ. Cardiovasc. Genet. 4, 687–694 10.1161/CIRCGENETICS.110.959064 [DOI] [PubMed] [Google Scholar]
  • 180.Vallvé J.C., Serra N., Zalba G., Fortuño A., Beloqui O., Ferre R.et al. (2012) Two variants in the fibulin2 gene are associated with lower systolic blood pressure and decreased risk of hypertension. PLoS ONE 7, e43051 10.1371/journal.pone.0043051 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Heximer S. and Husain M. (2007) A candidate hypertension gene: will SPON1 hold salt and water? Circ. Res. 100, 940–942 10.1161/01.RES.0000265134.57140.da [DOI] [PubMed] [Google Scholar]
  • 182.Selvarajah V., Mäki-Petäjä K.M., Pedro L., Bruggraber S.F.A., Burling K., Goodhart A.K.et al. (2017) Novel mechanism for buffering dietary salt in humans: effects of salt loading on skin sodium, vascular endothelial growth factor C, and blood pressure. Hypertension 70, 930–937 10.1161/HYPERTENSIONAHA.117.10003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Jain M., Mann T.D., Stulić M., Rao S.P., Kirsch A., Pullirsch D.et al. (2018) RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 37, e94813 10.15252/embj.201694813 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Sun L., Lin P., Chen Y., Yu H., Ren S., Wang J.et al. (2020) miR-182-3p/Myadm contribute to pulmonary artery hypertension vascular remodeling via a KLF4/p21-dependent mechanism. Theranostics 10, 5581–5599 10.7150/thno.44687 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Satomi-Kobayashi S., Ueyama T., Mueller S., Toh R., Masano T., Sakoda T.et al. (2009) Deficiency of nectin-2 leads to cardiac fibrosis and dysfunction under chronic pressure overload. Hypertension 54, 825–831 10.1161/HYPERTENSIONAHA.109.130443 [DOI] [PubMed] [Google Scholar]
  • 186.Jiang J., Nakayama T., Shimodaira M., Sato N., Aoi N., Sato M.et al. (2012) Haplotype of smoothelin gene associated with essential hypertension. Hereditas 149, 178–185 10.1111/j.1601-5223.2012.02242.x [DOI] [PubMed] [Google Scholar]
  • 187.Waghulde H., Cheng X., Galla S., Mell B., Cai J., Pruett-Miller S.M.et al. (2018) Attenuation of microbiotal dysbiosis and hypertension in a CRISPR/Cas9 gene ablation rat model of GPER1. Hypertension 72, 1125–1132 10.1161/HYPERTENSIONAHA.118.11175 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 188.Dahal B.K., Heuchel R., Pullamsetti S.S., Wilhelm J., Ghofrani H.A., Weissmann N.et al. (2011) Hypoxic pulmonary hypertension in mice with constitutively active platelet-derived growth factor receptor-β. Pulm. Circ. 1, 259–268 10.4103/2045-8932.83448 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Thun G.A., Imboden M., Berger W., Rochat T. and Probst-Hensch N.M. (2013) The association of a variant in the cell cycle control gene CCND1 and obesity on the development of asthma in the Swiss SAPALDIA study. J. Asthma 50, 147–154 10.3109/02770903.2012.757776 [DOI] [PubMed] [Google Scholar]
  • 190.Zhang T., Ji C. and Shi R. (2019) miR-142-3p promotes pancreatic β cell survival through targeting FOXO1 in gestational diabetes mellitus. Int. J. Clin. Exp. Pathol. 12, 1529–1538 [PMC free article] [PubMed] [Google Scholar]
  • 191.Wang H., She G., Zhou W., Liu K., Miao J. and Yu B. (2019) Expression profile of circular RNAs in placentas of women with gestational diabetes mellitus. Endocr. J. 66, 431–441 10.1507/endocrj.EJ18-0291 [DOI] [PubMed] [Google Scholar]
  • 192.Pheiffer C., Dias S., Rheeder P. and Adam S. (2019) MicroRNA profiling in HIV-infected South African women with gestational diabetes mellitus. Mol. Diagn. Ther. 23, 499–505 10.1007/s40291-019-00404-2 [DOI] [PubMed] [Google Scholar]
  • 193.Zhang C., Wang L., Chen J., Song F. and Guo Y. (2020) Differential expression of miR-136 in gestational diabetes mellitus mediates the high-glucose-induced trophoblast cell injury through targeting E2F1. Int. J. Genomics 2020, 3645371 10.1155/2020/3645371 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Catanzaro G., Besharat Z.M., Chiacchiarini M., Abballe L., Sabato C., Vacca A.et al. (2018) Circulating microRNAs in elderly type 2 diabetic patients. Int. J. Endocrinol. 2018, 6872635 10.1155/2018/6872635 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 195.Demirsoy İ.H., Ertural D.Y., Balci Ş., Çınkır Ü., Sezer K., Tamer L.et al. (2018) Profiles of circulating MiRNAs following metformin treatment in patients with type 2 diabetes. J. Med. Biochem. 37, 499–506 10.2478/jomb-2018-0009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Kasimiotis H., Myers M.A., Argentaro A., Mertin S., Fida S., Ferraro T.et al. (2000) Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets. Diabetes 49, 555–561 10.2337/diabetes.49.4.555 [DOI] [PubMed] [Google Scholar]
  • 197.Wang H., Shi J., Li B., Zhou Q., Kong X. and Bei Y. (2017) MicroRNA expression signature in human calcific aortic valve disease. Biomed Res. Int. 2017, 4820275 10.1155/2017/4820275 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Xie H., Zhang E., Hong N., Fu Q., Li F., Chen S.et al. (2018) Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum. Genomics 12, 44 10.1186/s40246-018-0176-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Lappas M. (2018) Runt-related transcription factor 1 (RUNX1) deficiency attenuates inflammation-induced pro-inflammatory and pro-labour mediators in myometrium. Mol. Cell. Endocrinol. 473, 61–71 10.1016/j.mce.2018.01.003 [DOI] [PubMed] [Google Scholar]
  • 200.Liu R., Wei C., Ma Q. and Wang W. (2020) Hippo-YAP1 signaling pathway and severe preeclampsia (sPE) in the Chinese population. Pregn. Hypertens. 19, 1–10 10.1016/j.preghy.2019.11.002 [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets supporting the conclusions of this article are available in the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/) repository [(E-MTAB-6418) https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6418/?array=A-MEXP-2072].


Articles from Bioscience Reports are provided here courtesy of Portland Press Ltd

RESOURCES