Skip to main content
Plants logoLink to Plants
. 2021 Apr 28;10(5):892. doi: 10.3390/plants10050892

Mycobiota Associated with the Vascular Wilt of Poplar

Hanna Kwaśna 1,*, Wojciech Szewczyk 1, Marlena Baranowska 2, Ewa Gallas 1, Milena Wiśniewska 1, Jolanta Behnke-Borowczyk 1
Editor: Walter Chitarra
PMCID: PMC8146881  PMID: 33925219

Abstract

In 2017, a 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. The leaves appeared smaller, yellow-brown, and were shed prematurely. Twigs and smaller branches died without distinct cankers. Trunks decayed from the base. The phloem and xylem showed brown necrosis. Ten percent of the trees died 1–2 months after the first appearance of the symptoms. None of these symptoms were typical for known poplar diseases. The trees’ mycobiota were analysed using Illumina sequencing. A total of 69 467 and 70 218 operational taxonomic units (OTUs) were obtained from the soil and wood. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies (0.005% and 0.008%). Two taxa of Glomeromycota, with frequencies of 0.001%, occurred in the wood. In the soil and wood, the frequencies of Zygomycota were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. At least 400 taxa of fungi were present. The identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in soil and 73 occurred only in wood. The root pathogens included species of Oomycota. The vascular and parenchymal pathogens included species of Ascomycota and of Basidiomycota. The initial endophytic character of the fungi is emphasized. Soil, and possibly planting material, may be the sources of the pathogen inoculum, and climate warming is likely to be a predisposing factor. A water deficit may increase the trees’ susceptibility. The epidemiology of poplar vascular wilt reminds grapevine trunk diseases (GTD), including esca, black foot disease and Petri disease.

Keywords: fungi, pathogens, plantation, poplar hybrids, vascular wilt

1. Introduction

Populus is a genus of deciduous trees in the family Salicaceae, native to most of the Northern Hemisphere. They are among the fastest-growing trees, and the most efficient in terms of sustainability. Poplar is significant because of: (i) its rapid production of wood (in Europe, 1 m3 of lumber can be produced on average in 15 years, six times faster than with oak); (ii) its very versatile wood, with an excellent ratio between specific weight and mechanical features, making it suitable for furniture, plywood and the paper industry; (iii) its excellent capacity for purifying the air by capturing CO2 and storing it in the biomass (1 ha can capture 11 t CO2/year); (iv) its capacity for purifying water while acting as a green filter, absorbing nitrates and sediments; (v) its potential for biofuel production using the coppicing method; (vi) the possibility for its cultivation on abandoned and degraded land, thus optimizing land use.

Poplar is an important source of wood for pulp and paper products, but mostly paper, for which worldwide production reaches 420 Mt, including 5 Mt in Poland [1]. Its wood is also suitable for use as a renewable energy source. The development of renewable sources for energy purposes has been substantially supported and promoted by a European Union Directive. Poland is obliged to obtain at least 30% of its energy from renewable sources by 2030 (Directive (EU) 2018/2001). Wood that is suitable for renewable energy includes that derived from trees grown in short- and medium-rotation plantations, often on agricultural land or non-forested areas. Plantations based on varieties of Acacia and Eucalyptus have been particularly effective in tropical countries with favourable climate and soil conditions for faster growth; Eucalyptus has produced 25 m3 of wood per ha annually, compared with 7–8 m3 in the temperate climate zone (1). Plantations of fast-growing trees are now also being established in the temperate zone. The most promising genus in Poland is poplar (Populus spp.), with plantations usually in short- (up to 10 years) or medium-rotation (up to 15–25 years) coppice systems [2,3,4].

Hybrid poplar trees are often the progeny of crosses between cottonwood (Populus deltoides W. Bartram ex Marshall) and black poplar (Populus nigra L. ‘Italica’). They have the advantages of: (i) rapid growth (1.5–2.5 m per year), (ii) a large range of hardiness zones (3–9), (iii) high productivity resulting from a prolonged vegetation period, and (iv) better resistance to pests and diseases [5].

Poplars are frequently attacked by microorganisms that cause discolorations, necrosis, depressions, deformations (thickening of the trunk and branches, the abnormal proliferation of the underlying phloem, the formation of the corky ridges or woody galls). Stresses predispose trees to infection by phytopathogens. Attacks on the trunk and branches of younger trees often kill the main shoot.

The bark necrosis of poplars can be caused by Discosporium populeum (Sacc.) B. Sutton (=Chondroplea populea (Sacc.) Kleb. = Dothichiza populea Sacc. Sacc. & Briard, anamorph of Cryptodiaporthe populea (Sacc.) Butin). Necrosis and cankers are often caused by Cytospora spp. (C. populina (Pers.) Rabenh. = C. ambiens Sacc., teleomorph Valsa ambiens (Pers.) Fr., and C. nivea Fuckel, teleomorph V. nivea (Hoffm.) Fr.). Cankers can be caused by Entoleuca mammata (Wahlenb.) Rogers and Ju (=Hypoxylon mammatum (Wahl.: Fr.) Karst.). Sooty-bark canker is caused by Sclerencoelia pruinosa (Ellis and Everh.) Pärtel and Baral (=Encoelia pruinosa (Ell. and Ev.) Torkelsen and Eckblad). Black or target canker can be caused by Ceratocystis fimbriata Ellis and Halst. Other agents of necrosis and cankers or wood rots and bark alterations, of which the incidence is more local and/or secondary, include Boeremia populi (Gruyter and Scheer) Jayawardena, Jayasiri and Hyde (=Phoma exigua var. populi Gruyter and Scheer), Botryodiplodia populea Zhong, Diplodia tumefaciens (Shear) Zalasky (the anamorph of Keissleriella emergens (Karst.) Bose), Fusarium spp., Neofusicoccum ribis (Slippers, Crous and M.J. Wingf.) Crous, Slippers and Phillips (=Dothiorella gregaria Sacc., the anamorph of Botryosphaeria dothidea (Moug.) Ces. and De Not), Neonectria ditissima (Tul. and C. Tul.) Samuels and Rossman (with anamorph Cylindrocarpon mali (Allesch.) Wollenw.), Phomopsis spp., Rhytidiella moriformis Zalasky, Rhytidiella baranyayi Funk and Zalasky, and basidiomycetous Erythricium salmonicolor (Berk. and Broome) Burds. (=Corticium salmonicolor Berk. and Broome). Damage to heartwood can be caused by bacteria (Erwinia nimipressuralis). Disease of the leaves are usually caused by Melampsora medusae Thüm. (rust), Venturia tremulae Aderh. (scab, shoot blight), Sphaerulina musiva (Peck) Quaedvl., Verkley and Crous (=Septoria musiva Peck), and Marssonina spp. Most infections of woody tissues are initiated by wind-borne ascospores, which are forcibly ejected from perithecia during periods of damp weather. Fungi infect trees through wounds and invade the inner bark and cambium.

In 2017, a 560 ha plantation of hybrid poplar (P. deltoides × P. nigra) in northern Poland showed symptoms of tree decline. The leaves of the diseased trees appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died without definite cankers. The bark of the entire trunk was sunken and discolored, often loosened and split. It often fell off, exposing wet wood. The trunks decayed from the base. The phloem showed brown necrosis. Ten percent of the trees died in 1–2 months (in June) after the first appearance of the symptoms. None of the observed symptoms were typical for known poplar diseases.

The objectives of the study on the structure of the fungal communities present in the rotten wood of poplar trunks and in the soil were to: (i) determine the abundance and diversity of pathogens and other fungi; (ii) identify interactions among fungi that may contribute to the disease progress; (iii) assess associations between the disease and global warming, with consequences for host and pathogen physiology, reproduction, survival, spatial and temporal distribution, resource availability and competition.

2. Materials and Metods

2.1. Site and Sampling

The study was carried out in the Łoża, Czarne District, Człuchów County, Pomeranian Voivodeship, northern Poland (53°41′29″ N 17°04′19″ E), in a 560 ha plantation of 5–6-year-old hybrid poplar (P. deltoides × P. nigra, cultivar AF2, from Italy) showing symptoms of crown decline, trunk-base decay (520 ha) and tree death (40 ha) (Figure 1 and Figure 2). The plantation was so intensively affected that the inclusion of a control (healthy plantation) from the same area with the same conditions of climate and soil was impossible.

Figure 1.

Figure 1

Poplar plantation with diseased trees.

Figure 2.

Figure 2

Necrosis and decay at the base of the trunk of a diseased poplar.

The trees were grown at a density of 425 trees/ha (4 m × 4m spacing), and had a mean diameter of 9–10 cm at breast height. The post-agricultural soil was sandy loam, consisting of sand (60%), silt (20%) and clay (20%), with a low humus level. The former crop was rye (Secale cereale L.). The average temperature is 7.9 °C and the rainfall is 680 mm.

The understorey vegetation included Achillea millefolium L., Agrostis stolonifera L., Artemisia absinthium L., Artemisia vulgaris L., Cichorium intybus L., Elymus repens (L.) Gould, Lamium purpureum L., Lolium perenne L., Papaver rhoeas L., Poa annua L., Poa pratensis L., Poa trivialis L., Polygonum aviculare L., Polypodium vulgare L., Polytrichum commune Hedw., Stellaria media Hist. Pl. Dauphiné, Taraxacum officinale F.H. Wigg., and Trifolium arvense L.

Five wood cores; 10 cm long and 3 cm in diam., each including bark, phloem and xylem, were sampled from the bases of the necrotic trunks of five symptomatic trees, 0 cm and 50 cm above the ground, with a Pressler borer. The core samples were surface-sterilized and ground to sawdust with a cordless SPARKY BUR2 15E drill. Additionally, five subsamples of soil were taken as cylindrical cores, 10 cm long and 5 cm in diam., from the surroundings of roots of five symptomatic trees. They were placed in sterile glass containers and refrigerated for 48 h.

2.2. DNA Extraction, Amplification and Illumina Sequencing

Five samples of sawdust were prepared from five wood cores in the SPEXTM SamplePrepTM Freezer/MillTM cryogenic mill. The wood’s genomic DNA was extracted from each of five 30 mg heavy sawdust samples using a Plant Genomic DNA Purification Kit (Thermo Scientific, Carlsbad, California, USA). The soil’s genomic DNA was extracted from each 300 mg soil subsample using a Power SoilM DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA).

The rDNA was amplified with fungi specific primers ITS1 FI2 (5′-GAACCWGCGGARGGATCA-3′) [6] and 5.8 S (5′-CGCTGCGTT CTTCATCG-3′) [7].

The PCR reaction mixture consisted of 12.5 μL of 2 × Mix PCR (A & A Biotechnology, Gdańsk, Poland), 0.2 μM of each primer, 1.5 μL purified and diluted DNA, and 10.6 μL water. The DNA amplification was performed under the following conditions: denaturation at 94 °C for 5 min followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 56 °C for 30 s, elongation at 72 °C for 30 s, and a final elongation at 72 °C for 7 min. The visualization of 5-μL amplicons was performed in 1.0% agarose gel dyed with Midori Green Advance DNA (Genetics). The pooled PCR products were purified using a MinElute PCR Purification Kit (Qiagen, Hilden, Germany). The concentration of PCR products was quantified using a Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), and an equimolar mix of PCR products from each sample was prepared. The amplicons were sequenced using the Illumina system in the Genomic Laboratory, DNA Research Center, Rubież 46, Poznań, Poland.

2.3. Bioinformatics Analysis

A table of Operational Taxonomic Units (OTUs) was prepared by PIPITS, version 1.2.0 [8]. The read-pairs were joined with PEAR, version 0.9.6 [9], filtered with a quality threshold of q = 30 by FASTX-toolkit, version 0.0.13 (http:hannonlab.cshl.edu/fastx_toolkit/index.html, accessed on 26 April 2012) converted to the Fasta format, and merged into a single file. The prepared sequences were de-replicated, and subregions of ITS were selected with the use of ITSx, version 1.0.11 [10]. Unique sequences and those shorter than 100 bp were removed. The remaining sequences were clustered with 97% sequence identity. The resulting representative sequences for each cluster were subjected to chimera detection and removal using the UNITE UCHIME reference dataset, version 6.0 (https://unite.ut.ee/index.php (accessed on 26 April 2012)). The input sequences were then mapped onto the representative sequences, and taxonomy was assigned using RDP Classifier, version 2.10.2 [11] against the UNITE fungal ITS reference database, version 11.2 [12]. This process resulted in the creation of a table of OTUs. The sequences were identified by comparison with reference sequences from the National Center for Biotechnology Information (NCBI) database.

The abundance of fungi was defined as the average number of OTUs from five subsamples. The frequency of an individual taxon was defined as the percentage (%) of OTUs in the total number of OTUs. The similarity and relationships between the fungal communities from the soil and wood is shown by a heat map.

2.4. Statistical Analyses

The differences in the abundance of microfungi in the soil and wood were analysed with chi-squared tests (χ2). The diversity between the communities of microfungi was compared with Margalef’s diversity index (DMg), Shannon’s diversity index (H), Simpson’s diversity index (D), Shannon’s evenness index (E) and Berger–Parker’s index (d) [13].

3. Results

Totals of 69 467 and 70 218 OTUs were obtained, respectively, from the soil and wood of the Populus hybrid using the Illumina sequencing technique (Table 1, Figure 3). Of these, 44 506 (64%) and 53 592 (76%) were of fungi known from culture, and 24 961 (36%) and 16,628 (24%) were unidentified fungi and other organisms. Fungi from Blastocladiomycota, Chytridiomycota, Glomeromycota, Zygomycota, Ascomycota and Basidiomycota were detected. Blastocladiomycota and Chytridiomycota occurred only in the soil, with very low frequencies of 0.005% and 0.008%. Two taxa of Glomeromycota with a frequency of 0.001% occurred in the wood. The frequencies of Zygomycota in the soil and wood were 3.631% and 0.006%, the frequencies of Ascomycota were 45.299% and 68.697%, and the frequencies of Basidiomycota were 4.119% and 2.076%. The samples were colonized by at least 400 taxa of fungi. Identifiable Zygomycota, Ascomycota, and Basidiomycota were represented by at least 18, 263 and 81 taxa, respectively. Many fungi were common to the soil and wood, but 160 taxa occurred only in the soil, and 73 occurred only in the wood.

Table 1.

Microbiota present in the soil and wood of the diseased poplar.

No. Taxon Order Soil Wood Trophic Group
Chromista
Oomycota
1. Aphanomyces spp. Saprolegniales 0.042 Pathogens
2. Elongisporangium anandrum (Drechsler) Uzuhasi, Tojo & Kakish Peronosporales 0.004 Pathogen
3. Globisporangium apiculatum (B. Paul) Uzuhashi, Tojo & Kakish. + G. heterothallicum W.A. Campb. & F.F. Hendrix + G. intermedium (de Bary) Uzuhashi, Tojo & Kakish. + G. macrosporum (Vaartaja & Plaäts-Nit.) Uzuhashi, Tojo & Kakish. + G. mamillatum (Meurs) Uzuhashi, Tojo & Kakish. + G. pleroticum (Takesi Itô) Uzuhashi, Tojo & Kakish. + G. sylvaticum (W.A. Campb. & F.F. Hendrix) Uzuhashi, Tojo & Kakish. + G. ultimum (Trow) Uzuhashi, Tojo & Kakish Peronosporales 1.010 0.001 Pathogens
4. Hyaloperonospora cochleariae (Gäum.) Göker, Riethm., Voglmayr, Weiss & Oberw Peronosporales 0.017 Pathogen
5. Isoachlya intermedia (Coker & J.V. Harv.) Coker Saprolegniales 0.007 Saprotroph
6. Myzocytiopsis sp. Peronosporales 0.005 Nematopathogenic
7. Phytophthora brassicae De Cock & Man in ‘t Veld + P. citricola Sawada + P. clandestina P.A. Taylor, Pascoe & F.C. Greenh Peronosporales 0.040 Pathogens
8. Pythium conidiophorum Jokl. + P. oligandrum Drechsler + P. pachycaule Ali-Shtayeh + P. selbyi M.L. Ellis, Broders & Dorrance + P. vanterpoolii V. Kouyeas & H. Kouyeas + P. volutum Vanterp. & Truscott + Pythium spp. Peronosporales 0.053 0.001 Pathogens
9. Thraustotheca clavata (de Bary) Humphrey Saprolegniales 0.021 Saprotroph
Frequency Oomycota 1.199 0.002
Number of taxa Oomycota 26 2
Fungi
Blastocladiomycota
Frequency Blastocladiomycota 0.005
Number of taxa Blastocladiomycota 1
Chytridiomycota
1. Chytridiomycota 0.004
2. Rhizophydium sp. Rhizophydiales 0.004 Pathogen
Frequency Chytridiomycota 0.008
Number of taxa Chytridiomycota 2
Glomeromycota
1. Entrophospora sp. Diversisporales 0.001
Frequency Glomeromycota 0.001 Mycorrhizal
Number of taxa Glomeromycota 2
Zygomycota
1. Mortierella alpina Peyronel + M. amoeboidea W. Gams + M. antarctica Linnem. + M. elongata Linnem. + M. epicladia W. Gams & Emden + M. exigua Linnem. + M. fatshederae Linnem. + M. gamsii Milko + M. horticola Linnem. + M. humilis Linnem. + M. hyalina (Harz) W. Gams + Mortierella spp. Mortierellales 3.483 0.006 Saprotrophs
2. Mortierellales Mortierellales 0.006
3. Mucor racemosus Bull. Mucorales 0.012 Saprotrophs
4. Ramicandelaber sp. Kickxellales 0.004
5. Rhizopus arrhizus A. Fisch. + R. oryzae Went & Prins. Geerl. Mucorales 0.019
6. Syncephalis sp. Zoopagales 0.107 Mycoparasite
Frequency Zygomycota 3.631 0.006
Number of taxa Zygomycota 18 3
Ascomycota
1. Acaulium retardatum (Udagawa & T. Muroi) Lei Su Microascales 0.004 Saprotroph
2. Acericola italica Wanas., Camporesi, E.B.G. Jones & K.D. Hyde Pleosporales 0.001
3. Acremonium persicinum (Nicot) W. Gams + A. rutilum W. Gams Hypocreales 0.001 0.002 Saprotrophs
4. Acrodontium crateriforme (J.F.H. Beyma) de Hoog Incertae sedis 0.013
5. Alatospora acuminata Ingold + Alatospora sp. Helotiales 0.113 0.026
6. Alternaria alternata (Fr.) Keissl. + A. botrytis (Preuss) Woudenb. & Crous + A. infectoria E.G. Simmons + A. tenuissima (Kunze) Wiltshire + Alternaria sp. Pleosporales 0.065 0.039 Pathogens
7. Amesia nigricolor (L.M. Ames) X. Wei Wang & Samson Sordariales 0.001 Saprotroph
8. Angustimassarina acerina Jayasiri, Thambug., R.K. Schumach. & K.D. Hyde + A. populi Thambug. & K.D. Hyde Pleosporales 0.354 Mycoparasite
9. Arthoniomycetes 0.001 0.001
10. Ascobolus sp. Pezizales 0.005 Saprotroph, coprophilous
11. Ascochyta skagwayensis (R. Sprague) Punith. Pleosporales 0.001 Saprotroph, pathogen
12. Ascomycete 0.027
13. Ascomycota 1.123 0.215
14. Aspergillus conicus Blochwitz + A. niger Tiegh. + A. penicillioides Speg. + A. versicolor (Vuill.) Tirab. Eurotiales 0.008 0.003 Saprotrophs
15. Atrocalyx lignicola (Ying Zhang, J. Fourn. & K.D. Hyde) A. Hashim. & Kaz. Tanaka Pleosporales 0.009 Saprotroph
16. Aureobasidium melanogenum (Herm.-Nijh.) Zalar, Gostinčar & Gunde-Cim. + A. pullulans (de Bary & Löwenthal) G. Arnaud + Aureobasidium sp. Dothideales 0.003 0.013 Saprotrophs, often aquatic
17. Bacidina sp. Lecanorales 0.018 Lichenicolous
18. Beauveria bassiana (Bals.-Criv.) Vuill. + Beauveria sp. Hypocreales 0.049 0.002 Entomopathogenic
19. Blastobotrys malaysiensis Kurtzman + Blastobotrys sp. Saccharomycetales 0.009 0.013 Saprotrophs
20. Boeremia exigua (Desm.) Aveskamp, Gruyter & Verkley + B. noackiana (Allesch.) Gruyter & Verkley Pleosporales 0.006 0.017 Pathogens
21. Cadophora luteo-olivacea (J.F.H. Beyma) T.C. Harr. & McNew + C. spadicis Travadon, D.P. Lawr., Roon.-Lath., Gubler, W.F. Wilcox, Rolsh. & K. Baumgartner + Cadophora sp. Helotiales 0.114 1.435 Pathogens
22. Candida sake (Saito & M. Ota) Uden & H.R. Buckley ex S.A. Mey. & Ahearn + C. subhashii M. Groenew., Sigler & S.E. Richardson + C. vartiovaarae (Capr.) Uden & H.R. Buckley + Candida sp. Saccharomycetales 0.093 0.012 Saprotrophs
23. Capnobotryella renispora Sugiy Capnodiales 0.005 Saprotroph
24. Capnodiales Capnodiales 0.017
25. Cenococcum geophilum Fr. Mytilinidiales 0.039 Ectomycorrhizal
26. Cephalothecaceae Sordariales 0.003 Saprotrophs, mycoparasites
27. Ceratostomataceae Melanosporales 0.004 Saprotrophs, mycoparasite
28. Cercophora sp. Sordariales 0.014 Coprophilous
29. Cercosporabeticola Sacc. Capnodiales 0.012 Pathogen
30. Chaetomiaceae Sordariales 0.085 Saprotrophs
31. Chaetomium globosum Kunze + Ch. piluliferum J. Daniels + Chaetomium sp. Sordariales 0.062 0.002 Saprotrophs, endophytes
32. Chaetosphaeria vermicularioides (Sacc. & Roum.) W. Gams & Hol.-Jech. Chaetosphaeriales 0.005 Saprotroph
33. Chaetothyriales Chaetothyriales 0.104 Parasites of humans and cold-blooded animals
34. Chalara microspora (Corda) S. Hughes + Chalara sp. Helotiales 0.007 0.001 Saprotroph
35. Chloridium paucisporum C.J.K. Wang & H.E. Wilcox Helotiales 0.001 Ectendomycorrhizal
36. Chrysosporium pseudomerdarium Oorschot Onygenales 0.004 Endophyte
37. Cistella albidolutea (Feltgen) Baral Helotiales 0.003 Saprotroph
38. Cladophialophora minutissima M.L. Davey & Currah + Cladophialophora sp. Chaetothyriales 0.002 Saprotrophs, human pathogens
39. Cladorrhinum flexuosum Madrid, Cano, Gené & Guarro Sordariales 0.008 Saprotroph
40. Cladosporium allicinum  (Fr.) Bensch, U. Braun & Crous + C. cladosporioides (Fresen.) G.A. de Vries + C. colocasiae Sawada Capnodiales 0.096 0.015 Saprotrophs, facultative plant pathogens, mycoparasites
41. Clonostachys divergens Schroers + C. parva (Schroers) Rossman, L. Lombard & Crous + C. rosea (Link) Schroers, Samuels + Clonostachys sp. Hypocreales 0.187 0.033 Endophytes, mycoparasites
42. Coleophoma cylindrospora (Desm.) Höhn Helotiales 0.010 Saprotroph
43. Collophorina sp. Leotiales 0.001 Saprotroph
44. Coniochaeta sp. Coniochaetales 0.015 0.002 Pathogens, saprotrophs, endophytes, coprophilous, mycoparasite, human pathogens
45. Cordyceps bassiana Z.Z. Li, C.R. Li, B. Huang & M.Z. Fan + C. brongniartii Shimazu Hypocreales 0.047 Enthomopathogenic, mycoparasite
46. Cosmospora berkeleyana  (P. Karst.) Gräfenhan, Seifert & Schroers Hypocreales 0.027 Saprotroph, pathogen, mycoparasite
47. Crocicreas sp. Helotiales 0.005 Saprotrophs
48. Cucurbitariaceae Pleosporales 0.076 Saprotrophs, pathogens
49. Cudoniella indica J. Webster, Eicker & Spooner Helotiales 0.002 Saprotroph
50. Cyathicula cyathoidea (Bull.) Thüm Helotiales 0.006 Saprotrophs
51. Cyphellophora sessilis (de Hoog) Réblová & Unter Chaetothyriales 0.001 Pathogen
52. Cytospora davidiana Y.L. Wang & X.Y. Zhang + C. leucostoma (Pers.) Sacc. + C. paratranslucens Norphanph., Bulgakov, T.C. Wen & K.D. Hyde + Cytospora sp. Diaporthales 0.012 13.720 Pathogens
53. Dactylaria dimorphospora Veenb.-Rijks Helotiales 0.016 Saprotroph
54. Dactylonectria torresensis  (A. Cabral, Rego & Crous) L. Lombard & Crous Hypocreales 0.008 Pathogen
55. Debaryomyces hansenii  (Zopf) Lodder & Kreger-van Rij Saccharomycetales 0.023 Pathogen
56. Dendryphion europaeum Crous & R.K. Schumach. + D. nanum (Nees) S. Hughes Pleosporales 0.268 0.006 Saprotroph
57. Dermateaceae Helotiales 0.002
58. Desmazierella acicola Lib. Pezizales 0.001 Saprotroph
59. Diaporthe cynaroidis  Marinc., M.J. Wingf.  & Crous + D. foeniculina (Sacc.) Udayanga & Castl. + D. helicis Niessl + D. novem J.M. Santos, Vrandečić & A.J.L. Phillips + D. rudis (Fr.) Nitschke + Diaporthe sp. Diaporthales 0.017 3.327 Pathogens, endophytes
60. Didymella macrostoma  (Mont.) Qian Chen & L. C + D. pedeiae (Aveskamp, Gruyter & Verkley) Qian Chen & L. Cai + D. pinodes (Berk. & A. Bloxam) Petr. + D. pomorum (Thüm.) Qian Chen & L. Cai Pleosporales 0.039 0.036 Pathogens
61. Didymosphaeria futilis (Berk. & Broome) Rehm Pleosporales 0.005 Saprotroph
62. Dissoconium eucalypti  Crous & Carnegie Capnodiales 0.001 Commensalist, mycoparasite
63. Dothideomycetes 0.018 0.014
64. Emericellopsis glabra (J.F.H. Beyma) Backus & Orpurt + E. minima Stolk Hypocreales 0.179 Endophytes
65. Endophoma elongata Tsuneda & M.L. Dave Incertae sedis 0.005
66. Epicoccum nigrum  Link Pleosporales 0.002 0.001 Endophyte, saprotroph, pathogen
67. Eurotiales Eurotiales 0.001
68. Eurotiomycetes 0.002 0.020
69. Exophiala capensis Crous + E. equina (Pollacci) de Hoog, V.A. Vicente, Najafz., Harrak, Badali & Seyedm. + E. opportunistica de Hoog, V.A. Vicente, Najafz., Harrak, Badali & Seyedm. + Exophiala sp. Chaetothyriales 0.129 0.031 Saprotrophs, human pathogens
70. Fusarium avenaceum  (Fr.) Sacc. + F. equiseti (Corda) Sacc. + F. fujikuroi Nirenberg + F. oxysporum Schltdl. + F. petersiae L. Lombard + F. redolens Wollenw. + F. solani (Mart.) Sacc. + F. torulosum (Berk. & M.A. Curtis) Gruyter & J.H.M. Schneid. + Fusarium sp.  + Neocosmospora solani (Mart.) L. Lombard & Crous Hypocreales 0.890 0.104 Pathogens
71. Fusicolla aquaeductuum  (Radlk. & Rabenh.) Gräfenhan, Seifert & Schroers +  F. merismoides (Corda) Gräfenhan, Seifert & Schroers Hypocreales 0.096 Pathogens
72. Gibellulopsis nigrescens (Pethybr.) Zare, W. Gams & Summerb Glomerellales 0.009 Saprotroph
73. Gliomastix murorum var. felina (Marchal) S. Hughes Hypocreales 0.023 Saprotroph
74. Graphium basitruncatum  (Matsush.) Seifert & G.Okada + G. penicillioides Corda Microascales 0.007 2.451 Saprotrophs, plant and human pathogens
75. Gaphostroma platystomum (Schwein.) Piroz. Xylariales 0.004 Saprotroph
76. Halenospora varia (Anastasiou) E.B.G. Jones + Halenospora sp. Helotiales 0.443 Saprotrophs, aquatic
77. Halokirschsteiniothelia maritima (Linder) Boonmee & K.D. Hyde Mytilinidiales 0.023 Saprotroph
78. Halosphaeria quadri-remis (Höhnk) Kohlm Microascales 0.007 Saprotroph
79. Halosphaeriaceae Microascales 0.008
80. Harzia acremonioides (Harz) Costantin + H. sphaerospora (Matsush.) D.W. Li & N.P. Schultes Melanosporales 0.028 Saprotrophs
81. Helicodendron luteoalbum Glen Bott + H. westerdijkiae Beverw Helotiales 0.009 Saprotrophs
82. Helicosporium sp. Tubeufiales 0.006 Saprotrophs
83. Helotiaceae Helotiales 0.005
84. Helotiales Helotiales 3.087 4.565
85. Hemibeltrania  sp. Amphisphaeriales 0.007 Pathogen
86. Herpotrichia pinetorum  (Fuckel) G. Winter + Herpotrichia sp. Pleosporales 0.183 0.002 Pathogens
87. Herpotrichiellaceae Chaetothyriales 0.004
88. Hyalodendriella betulae  Crous Helotiales 0.012 0.001 Saprotroph, pathogen
89. Hyalopeziza sp. Helotiales 0.014 Saprotroph
90. Hyaloscypha bicolor (Hambl. & Sigler) Vohník, Fehrer & Réblová Helotiales 0.012 Endophyte, saprotroph
91. Hyaloscyphaceae Helotiales 0.003 0.040
92. Hymenoscyphus caudatus  (P. Karst.) Dennis + H. imberbis (Bull.) Dennis Helotiales 0.007 0.017 Pathogens, saprotrophs
93. Hypocreales Hypocreales 2.979
94. Hypoxylon fragiforme (Pers.) J. Kickx f. Xylariales 0.469 0.002 Saprotroph, pathogen
95. Ilyonectria crassa  (Wollenw.) A. Cabral & Crous + I. cyclaminicola A. Cabral & Crous + I. destructans (Zinssm.) Rossman, L. Lombard & Crous + I. europaea A. Cabral, Rego & Crous + I. mors-panacis (A.A. Hildebr.) A. Cabral & Crous + I. robusta (A.A. Hildebr.) A. Cabral & Crous + Ilyonectria sp. + Cylindrocarpon sp. Hypocreales 2.031 6.710 Saprotrophs, pathogens
96. Infundichalara microchona (W. Gams) Réblová & W. Gams + I. minuta Koukol Helotiales 0.014 0.001 Saprotrophs, patogens, mycoparasitic
97. Jattaea taediosa (Sacc.) Réblová & Jaklitsch Calosphaeriales 0.005 Endophyte
98. Juxtiphoma eupyrena  Sacc. Pleosporales 0.001 Pathogen
99. Knufia cryptophialidica L.J. Hutchison & Unter. + K. peltigerae (Fuckel) Réblová & Unter Incertae sedis 0.006 0.015 Pathogens, lichenicolous
100. Lambertella tubulosa Abdullah & J. Webster Helotiales 1.445 Saprotroph
101. Lasiosphaeriaceae Sordariales 0.095 0.005
102. Lecania cyrtella (Ach.) Th. Fr. + L. naegelii (Hepp) Diederich & van den Boom Lecanorales 0.001 0.034 Lichenicolous
103. Lecanorales Lecanorales 0.001
104. Lemonniera terrestris Tubaki Helotiales 0.014 Saprotroph, aquatic
105. Leohumicola minima (de Hoog & Grinb.) Seifert & Hambl Helotiales 0.002 Saprotroph
106. Leotiomycetes 0.003 0.876
107. Lepraria caesiella R.C. Harris Lecanorales 0.002 Lichenicolous
108. Leptodontidium sp. Helotiales 0.011 0.254 Endophyte, mycorrhizal
109. Leptosphaeria sp. Pleosporales 0.023 Endophytes, saprotrophs, pathogens
110. Leptosphaerulina australis McAlpine Pleosporales 0.014 Endophyte
111. Lophiostoma corticola  (Fuckel) E.C.Y. Liew, Aptroot & K.D. Hyde + Lophiostoma sp. Pleosporales 0.788 Pathogens
112. Lophodermium pinastri  (Schrad.) Chevall. + L. seditiosum Minter, Staley & Millar + Lophodermium sp. Rhytismatales 0.107 0.003 Pathogens
113. Lophotrichus sp. Microascales 0.017 Patogen, coprophilus, human pathogen
114. Macroconia sphaeriae (Fuckel) Gräfenhan & Schroers Hypocreales 0.013 Saprotroph, mycoparasitic
115. Magnohelicospora fuscospora (Linder) R.F. Castañeda, Hern.-Restr. & Gené Incertae sedis 0.269 Saprotroph
116. Massarina sp. Pleosporales 0.002 Saprotroph
117. Megacapitula villosa J.L. Chen & Tzean Incertae sedis 0.001 Saprotroph
118. Melanospora kurssanoviana (Beliakova) Czerepan Melanosporales 0.009 Saprotroph, mycoparasitic
119. Metarhizium marquandii (Massee) Kepler, S.A. Rehner & Humber Hypocreales 0.495 Endophyte
120. Meyerozyma guilliermondii (Wick.) Kurtzman & M. Suzuki Saccharomycetales 0.003 0.022 Coprophilous, human pathogen
121. Micarea adnata Coppins Lecanorales 0.006 Lichenicolous
122. Microascaceae Microascales 0.002
123. Microdochium sp. Amphisphaeriales 0.063 0.001 Pathogen
124. Microthecium fimicola (E.C. Hansen) Y. Marín, Stchigel, Guarro & Cano + M. quadrangulare (Dania García, Stchigel & Guarro) Y. Marín, Stchigel, Guarro & Cano Melanosporales 0.012 0.002 Saprotrophs
125. Minutisphaera parafimbriatispora Raja, Oberlies, Shearer & A.N. Mill Minutisphaerales 0.017 Saprotroph, aquatic
126. Mollisia sp. Helotiales 0.021 Saprotroph
127. Monographella nivalis  (Schaffnit) E. Müll Amphisphaeriales 0.004 Pathogen
128. Montagnulaceae Pleosporales 0.005 Saprotrophs, endophytes, pathogens
129. Mycofalcella calcarata Marvanová, Om-Kalth. & J. Webster Helotiales 0.002 Saprotroph, aquatic
130. Myco sphaerella tassiana  (De Not.) Johanson Capnodiales 0.008 Pathogen, saprotroph
131. Myrmecridium schulzeri (Sacc.) Arzanlou, W. Gams & Crous Myrmecridiales 0.010 Saprotroph
132. Naevala perexigua (Roberge ex Desm.) K. Holm & L. Holm Helotiales 0.001 Saprotroph
133. Nakazawaea anatomiae (Zwillenb.) Kurtzman & Robnett + N. populi (Hagler, Mend.-Hagler & Phaff) Kurtzman & Robnett Saccharomycetales 0.016 12.941 Saprotrophs
134. Nectria sp. Hypocreales 0.032 Pathogens, saprotrophs
135. Nectriaceae Hypocreales 0.432
136. Neoascochytaexitialis  (Morini) Qian Chen & L. Cai Pleosporales 0.012 Pathogen
137. Neobulgaria premnophila Roll-Hansen & H. Roll-Hansen + N. pura (Pers.) Petr. + Neobulgaria sp. Helotiales 0.684 Saprotrophs
138. Neocatenulostroma germanicum (Crous & U. Braun) Quaedvl. & Crous Capnodiales 0.001 Pathogen
139. Neocucurbitaria cava (Schulzer) Gruyter, Aveskamp & Verkley Pleosporales 0.002 Saprotroph
140. Neofabraea perennans Kienholz Helotiales 0.009 Pathogen
141. Neolepto sphaeria rubefaciens (Togliani) Gruyter, Aveskamp & Verkley Pleosporales 0.003 Pathogen
142. Neonectria candida (Ehrenb.) Rossman, L. Lombard & Crous + Neonectria sp. Hypocreales 0.560 0.763 Pathogen
143. Neopyrenochaeta acicola ((Moug. & Lév.) Valenz.-Lopez, Crous, Stchigel, Guarro & Cano  + N. inflorescentiae (Crous, Marinc. & M.J. Wingf.) Valenz.-Lopez, Crous, Stchigel, Guarro & Cano Pleosporales 0.014 0.058 Pathogens, saprotrophs
144. Neosetophoma clematidis Wijayaw., Camporesi & K.D. Hyde Pleosporales 0.046 Saprotroph
145. Neurospora terricola Goch. & Backus Sordariales 0.004 Saprotroph
146. Niesslia mucida (W. Gams) W. Gams & Stielow Hypocreales 0.004 Saprotroph
147. Nigrograna mycophila Jaklitsch, Friebes & Voglmayr Pleosporales 0.007 Saprotroph, mycoparasitic
148. Nigro spora oryzae (Berk. & Broome) Petch Incertae sedis 0.535 Saprotroph, pathogen
149. Ochrocladosporium elatum (Harz) Crous & U. Braun Pleosporales 0.022 0.084 Endophyte
150. Oedocephalum nayoroense Ts. Watan Pezizales 0.049 Saprotroph
151. Onygenales Onygenales 0.005
152. Ophiostomataceae Ophiostomatales 0.790 Pathogens
153. Orbilia auricolor (A. Bloxam) Sacc. Orbiliales 0.026 Saprotroph
154. Orbiliaceae Orbiliales 0.006
155. Pachyramichloridium pini (de Hoog & Rahman) C. Nakash., Videira & Crous Capnodiales 0.017 Pathogen
156. Papulaspora pisicola J.F.H. Beyma Incertae sedis 0.019 Saprotroph
157. Paraphoma chrysanthemicola (Hollós) Gruyter, Aveskamp & Verkley + P. radicina (McAlpine) Morgan-Jones & J.F. White + Paraphoma sp. Pleosporales 4.852 Saprotrophs, pathogens
158. Penicillium citreonigrum Dierckx + P. citreosulfuratum Biourge + P. georgiense S.W. Peterson & B.W. Horn + P. glandicola (Oudem.) Seifert & Samson + P. halotolerans Frisvad, Houbraken & Samson + P. lapidosum Raper & Fennell + P. nothofagi Houbraken, Frisvad & Samson + P. raphiae Houbraken, Frisvad & Samson + P. roseomaculatum Biourge + P. sacculum E. Dale + P. unicum Tzean, J.L. Chen & Shiu + P. virgatum Nirenberg & Kwaśna + Penicillium sp. + Talaromyces luteus C.R. Benj. Eurotiales 0.295 0.001 Saprotrophs
159. Periconia sp. Pleosporales 0.012 Endophyte
160. Petriella sordida (Zukal) G.L. Barron & J.C. Gilman Microascales 0.001 Coprophilous
161. Phacidium lacerum Fr. + Phacidium sp. Phacidiales 0.027 Saprotroph
162. Phaeoacremonium cinereum Gramaje, Mohammadi, Banihash., Armengol & L. Mostert + P. hungaricum Essakhi, Mugnai, Surico & Crous Togniniales 0.044 Pathogens
163. Phaeoisaria loranthacearum Crous & R.K. Schumach. + P. sparsa B. Sutton Xylariales 0.347 Saprotrophs, coprophilous
164. Phaeomoniella sp. Phaeomoniellales 0.001
165. Phaeosphaeria sp. Pleosporales 0.007 Pathogens
166. Phaeosphaeriaceae Pleosporales 0.013
167. Phaeosphaeriopsis sp. Pleosporales 0.032 Pathogens, saprotrophs
168. Phialocephala sp. Helotiales 0.004 Saprotrophs
169. Phialophora sp. Chaetothyriales 10.291 Saprotrophs, pathogens
170. Phoma boeremae Gruyter + Phoma sp. Pleosporales 0.010 0.007 Saprotrophs, pathogens
171. Phomopsis phaseoli (Desm.) Sacc. + P. velata (Sacc.) Traverso + Phomopsis sp. Diaporthales 1.186 Pathogens, saprothrophs endophytes
172. Physcia tenella (Scop.) DC. Caliciales 0.001 Lichenicolous
173. Pilophorus strumaticus Nyl. ex Cromb Lecanorales 0.001 Lichenicolous
174. Plagiostoma jonesii Senan. & K.D. Hyde Diaporthales 0.031 Saprotroph, endophyte
175. Plectosphaerella cucumerina (Lindf.) W. Gams + P. niemeijerarum L. Lombard Glomerellales 0.140 0.014 Pathogens
176. Pleosporaceae Pleosporales 0.003
177. Pleosporales Pleosporales 0.161 0.504
178. Pleotrichocladium opacum (Corda) Hern.-Restr., R.F. Castañeda & Gené Pleosporales 0.307 0.013 Saprotroph, aquatic
179. Pleurophoma ossicola Crous, Krawczynski & H.-G. Wagner + Pleurophoma sp. Xylariales 0.016 0.005 Saprotroph
180. Podospora appendiculata (Auersw. ex Niessl) Niessl + P. bulbillosa (W. Gams & Mouch.) X. Wei Wang & Houbraken. + P. leporina (Cain) Cain + Podospora sp. Sordariales 0.074 Saprotroph, coprophilous
181. Preussia flanaganii Boylan + P. typharum (Sacc.) Cain Pleosporales 0.058 Saprotrophs, endophytes, coprophilous
182. Pseudeurotium hygrophilum (Sogonov, W. Gams, Summerb. & Schroers) Minnis & D.L. Lindner + P. ovale Stolk + P. zonatum J.F.H. Beyma Thelebolales 0.804 Saprotrophs, human pathogens
183. Pseudocercospora angolensis (T. Carvalho & O. Mendes) Crous & U. Braun Mycosphaerellales 0.004 Pathogen
184. Pseudogymnoascus pannorum (Link) Minnis & D.L. Lindner + P. roseus Raillo Thelebolales 0.068 Saprotrophs
185. Pyrenochaeta sp. Incertae sedis 0.105 0.005 Pathogen, saprotroph
186. Pyrenochaetopsis leptospora (Sacc. & Briard) Gruyter, Aveskamp & Verkley + P. microspora (Gruyter & Boerema) Gruyter, Aveskamp & Verkley Pleosporales 0.007 0.001 Pathogens, saprotrophs, endophytes
187. Pyronemataceae Pezizales 0.081
188. Saccharomyces cerevisiae (Desm.) Meyen Saccharomycetales 0.001 Saprotroph
189. Schizothecium glutinans (Cain) N. Lundq Sordariales 0.015 Saprotroph, coprophilous
190. Scolecobasidium constrictum E.V. Abbott + S. umbrinum (Ach.) Arnold Incertae sedis 0.016 0.002 Saprotrophs, endophytes
191. Scutellinia scutellata (L.) Lambotte Pezizales 0.005 Saprotroph
192. Scytalidium lignicola Pesante + S. multiseptatum Hol.-Jech Helotiales 0.055 0.001 Pathogens, saprotrophs, mycoparasitic
193. Sordariales 0.008
194. Sordariomycetes 0.211 0.003
195. Sphaeropsis sapinea (Fr.) Dyko & B. Sutton Botryosphaeriales 0.003 Pathogen
196. Sporormiaceae Pleosporales 0.003
197. Sporothrix dentifunda Aghayeva & M.J. Wingf. + S. stenoceras (Robak) Z.W. de Beer, T.A. Duong & M.J. Wingf. + S. narcissi (Limber) Z.W. de Beer, T.A. Duong & M.J. Wingf Ophiostomatales 0.161 0.001 Pathogens, saprotrophs
198. Stemphylium herbarum E.G. Simmons + S. majusculum E.G. Simmons + S. vesicarium (Wallr.) E.G. Simmons Pleosporales 0.027 Pathogens
199. Subramaniula flavipila X. Wei Wang & Samson Sordariales 0.014 Saprotroph
200. Sydowia polyspora (Bref. & Tavel) E. Müll Dothideales 0.004 1.028 Pathogen, endophyte, saprotroph
201. Tetracladium furcatum Descals + T. setigerum (Grove) Ingold + Tetracladium sp. Helotiales 1.171 0.862 Saprotrophs
202. Thelonectria blackeriella + T. olida (Wollenw.) Wollenw. + T. nodosa Salgado & P. Chaverri Hypocreales 0.012 0.006 Pathogens
203. Tricharina sp. Pezizales 1.55 Saprotrophs
204. Trichocladium asperum Harz + T. griseum (Traaen) X. Wei Wang & Houbraken Sordariales 0.593 Saprotrophs
205. Trichoderma aerugineum Jaklitsch + T. hamatum (Bonord.) Bainier + T. koningiopsis Samuels, Carm. Suárez & H.C. Evans + T. martiale Samuels + T. neokoningii Samuels & Soberanis + T. piluliferum J. Webster & Rifai + T. Polysporum (Link) Rifai + T. pubescens Bissett + T. stilbohypoxyli Samuels & Schroers + T. viride Pers. + Trichoderma sp. Hypocreales 19.464 0.001 Saprotrophs
206. Tricladium splendens Ingold Helotiales 0.040 0.057 Saprotroph, acquatic
207. Truncatella an gustata (Pers.) S. Hughes + T. restionacearum S.J. Lee & Crous Amphisphaeriales 0.003 0.001 Pathogens
208. Valsa malicola Z. Urb. + V. sordida Sacc. + V. leucostoma (Pers.) Fr. Diaporthales 0.012 0.214 Pathogens
209. Valsaceae Diaporthales 0.003
210. Venturia hystrioides (Dugan, R.G. Roberts & Hanlin) Crous & U. Braun Venturiales 0.018 Pathogen
211. Venturiaceae sp. Venturiales 0.001
212. Verticillium dahliae Kleb. + V. longisporum (C. Stark) Karapapa, Bainbr. & Heale Glomerellales 0.029 Pathogens, saprotrophs
213. Volutella ciliata (Alb. & Schwein.) Fr. + Volutella sp. Hypocreales 0.009 0.009 Saprotrophs, pathogen
214. Xanthoparmelia subchalybaeizans (Hale) G. Amo, A. Crespo, Elix & Lumbsch Lecanorales 0.005 Lichenicolous
215. Xenochalara sp. Helotiales 0.033 Saprotroph
216. Xenopolyscytalum pinea Crous + Xenopolyscytalum sp. Helotiales 0.001 0.001 Saprotrophs
217. Xenoramularia arxii Videira, Crous & U. Braun Capnodiales 0.001 Pathogen
218. Xylariales Xylariales 0.061
219. Yamadazyma mexicana (M. Miranda, Holzschu, Phaff & Starmer) Billon-Grand Saccharomycetales 0.039 Saprotroph
220. Yarrowia lipolytica (Wick., Kurtzman & Herman) Van der Walt & Arx Saccharomycetales 0.001 Saprotroph
221. Zalerion sp. Lulworthiales 0.001 Saprotroph, aquatic
222. Zopfiella marina Furuya & Udagawa + Z. pilifera Udagawa & Furuya Sordariales 0.027 Saprotrophs, aquatic
Frequency of Ascomycota 45.299 68.697
Number of taxa Ascomycota 263 178
Basidiomycota
1. Aecidium sp. Pucciniales 0.034 Pathogen
2. Agaricales 0.054
3. Agaricomycetes 0.008 0.074
4. Agaricostilbomycetes 0.001
5. Apiotrichum dulcitum (Berkhout) Yurkov & Boekhout + A. gracile (Weigmann & A. Wolff) Yurkov & Boekhout Trichosporonales 0.047 Saprotrophs
6. Armillaria mellea (Vahl) P. Kumm Agaricales 0.025 Pathogen
7. Athelia acrospora Jülich Atheliales 0.001 Saprotroph
8. Atheliaceae Atheliales 0.023
9. Aurantiporus fissilis (Berk. & M.A. Curtis) H. Jahn ex Ryvarden Polyporales 0.002 Saprotroph, pathogen
10. Auriculariales 0.004
11. Basidiomycota 0.031 0.038
12. Bensingtonia sp. Agaricostilbales 0.001 Saprotroph
13. Bjerkandera adusta (Willd.) P. Karst Polyporales 0.002 Saprotroph, pathogen
14. Buckleyzyma aurantiaca (Saito) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout Buckleyzymales 0.048 0.007 Saprotroph
15. Bullera crocea Buhagiar Tremellales 0.008 0.001 Saprotroph
16. Bulleromyces albus Boekhout & Á. Fonseca Tremellales 0.001 0.001 Saprotroph
17. Burgoa anomala (Hotson) Goid Cantharellales 0.009 Saprotroph
18. Camarophyllus sp. Agaricales 0.001 Mycorrhizal
19. Cantharellales 0.002
20. Chondrostereum purpureum (Pers.) Pouzar Agaricales 0.018 Pathogen, saprotroph
21. Coprinellus disseminatus (Pers.) J.E. Lange Agaricales 0.230 Saprotroph
22. Cryptococcus tephrensis Vishniac + Cryptococcus sp. Tremellales 0.220 0.406 Saprotrophs, endophytes
23. Curvibasidium pallidicorallinum Golubev, Fell & N.W. Golubev Incertae sedis 0.001 Mycocinogenic
24. Cystobasidiomycetes 0.003
25. Cystobasidium pinicola (F.Y. Bai, L.D. Guo & J.H. Zhao) Yurkov, Kachalkin, H.M. Daniel, M. Groenew., Libkind, V. de Garcia, Zalar, Gouliam., Boekhout & Begerow + C. psychroaquaticum A.M. Yurkov, Kachalkin, H.M. Daniel, M. Groenew., Libkind, V. de Garcia, Zalar, Gouliamova, Boekhout & Begerow Cystobasidiales 0.002 0.016 Saprotrophs, mycoparasitic
26. Cystofilobasidiales Cystofilobasidiales 0.004 0.001
27. Cystofilobasidium infirmominiatum (Fell, I.L. Hunter & Tallman) Hamam., Sugiy. & Komag. + C. macerans J.P. Samp. Cystofilobasidiales 0.012 0.001 Saprotrophs, acquatic
28. Daedaleopsis confragosa (Bolton) J. Schröt Polyporales 0.001 Saprotroph
29. Efibulobasidium sp. Sebacinales 0.020 Mycorrhizal
30. Entyloma gaillardianum Vánky + E. polysporum (Peck) Farl. Entylomatales 0.044 Pathogens
31. Erythrobasidiales Erythrobasidiales 0.001 0.001
32. Erythrobasidium hasegawae (Y. Yamada & Komag.) Hamam., Sugiy. & Komag Erythrobasidiales 0.008 Saprotroph
33. Exidiopsis sp. Auriculariales 0.001 Saprotroph
34. Exobasidium arescens Nannf. + Exobasidium sp. Exobasidiales 0.001 0.001 Pathogen
35. Fellomyces sp. Tremellales 0.001 Saprotroph
36. Fellozyma inositophila (Nakase & M. Suzuki) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout Incertae sedis 0.007 Saprotroph
37. Fibulobasidium inconspicuum Bandoni Tremellales 0.004 0.379 Saprotroph
38. Filobasidium wieringae (Á. Fonseca, Scorzetti & Fell) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout Filobasidiales 0.008 Saprotroph
39. Fomitopsis pinicola (Sw.) P. Karst Polyporales 0.005 Pathogen, saprotroph
40. Geotrichopsis mycoparasitica Tzean & Estey Incertae sedis 0.033 Mycoparasitic
41. Gymnopus androsaceus (L.) Della Magg. & Trassin Agaricales 0.001 Saprotroph, mycoparasitic
42. Hannaella zeae (O. Molnár & Prillinger) F.Y. Bai & Q.M. Wang Tremellales 0.047 Saprotroph, endophyte
43. Hebeloma mesophaeum (Pers.) Quél Agaricales 0.007 Mycorrhizal
44. Hydnaceae Cantharellales 0.004
45. Hygrophoraceae Agaricales 0.008
46. Hymenogaster arenarius Tul. & C. Tul. Agaricales 0.005 Ectomycorrhizal
47. Hyphodontia pallidula (Bres.) J. Erikss Hymenochaetales 0.003 Saprotroph
48. Hypochnicium lundellii (Bourdot) J. Erikss Polyporales 0.012 Saprotroph
49. Inocybe curvipes P. Karst Agaricales 0.043 Ectomycorrhizal
50. Itersonilia perplexans  Derx Cystofilobasidiales 0.001 Pathogen
51. Kockovaella machilophila Cañ.-Gib., M. Takash., Sugita &  Nakase Tremellales 0.001
52. Kondoa yuccicola (Nakase & M. Suzuki) Q.M. Wang, M. Groenew., F.Y. Bai & Boekhout Agaricostilbales 0.012 Saprotroph
53. Kwoniella newhampshirensis K. Sylvester, Q.M. Wang & Hittinger + K. pini (Golubev & I. Pfeiff.) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout Tremellales 0.016 0.003 Entomopathogenic
54. Laccaria sp. Agaricales 0.001 Ectomycorrhizal
55. Lachnella alboviolascens (Alb. & Schwein.) Fr. Agaricales 0.007 Saprotroph
56. Leptosporomyces galzinii (Bourdot) Jülich Atheliales 0.054 Saprotroph
57. Leucosporidiales Leucosporidiales 0.007
58. Malassezia globosa Midgley, E. Guého & J. Guillot + M. restricta E. Guého, J. Guillot & Midgley + Malasseziales 0.016 0.001 Human pathogens
59. Marasmius cohaerens (Pers.) Cooke & Quél Agaricales 0.008 Saprotroph
60. Microbotryomycetes 0.042
61. Minimedusa polyspora (Hotson) Weresub & P.M. LeClair Cantharellales 0.069 Saprotroph, mycoparasitic
62. Mrakia frigida (Fell, Statzell, I.L. Hunter & Phaff) Y. Yamada & Komag. + Mrakia sp. Cystofilobasidiales 0.012 0.001 Saprotroph
63. Mycena aurantiomarginata (Fr.) Quél. + M. galericulata (Scop.) Gray Agaricales 0.003 0.001 Saprotroph
64. Naganishia cerealis (Passoth, A.-C. Andersson, Olstorpe, Theelen, Boekhout & Schnürer) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout + N. diffluens (Zach) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout Tremellales 0.021 0.001 Saprotroph
65. Oberwinklerozyma silvestris Golubev & Scorzetti ex Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout Incertae sedis 0.012
66. Oliveonia sp. Auriculariales 0.008 Saprotroph
67. Peniophora sp. Russulales 0.593 Pathogen, saprotroph
68. Phaeotremella frondosa (Fr.) Spirin & V. Malysheva + P. roseotincta (Lloyd) V. Malysheva Tremellales 0.001 0.123 Saprotrophs, mycoparasites
69. Phloeomana speirea (Fr.) Redhead Agaricales 0.024 Saprotroph, aquatic
70. Piskurozyma sp. Filobasidiales 0.024 Saprotroph
71. Psathyrella squamosa (P. Karst.) A.H. Sm. Agaricales 0.004 Saprotroph
72. Rhodotorula glutinis (Fresen.) F.C. Harrison + Rhodotorula sp. Sporidiobolales 0.003 0.001 Saprotrophs
73. Saitozyma podzolica (Babeva & Reshetova) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout Tremellales 0.001 Saprotroph
74. Sakaguchia lamellibrachiae (Nagah., Hamam., Nakase & Horikoshi) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout Sakaguchiales 0.027 Saprotroph
75. Sebacinales Sebacinales 0.392 0.001
76. Serendipita vermifera Oberw Sebacinales 0.017 Endophyte, mycorrhizal
77. Serpula himantioides (Fr.) P. Karst Boletales 0.001 Saprotroph, pathogen
78. Sirotrema translucens (H.D. Gordon) Bandoni Tremellales 0.001 Saprotroph
79. Sistotremastrum sp. Trechisporales 0.001 Saprotroph
80. Slooffia pilatii (F.H. Jacob, Faure-Reayn. & Berton) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout Incertae sedis 0.001 Saprotroph
81. Solicoccozyma fuscescens (Golubev) Yurkov + S. phenolica (Á. Fonseca, Scorzetti & Fell) A.M. Yurkov + S. terrea (Di Menna) A.M. Yurkov + S. terricola (T.A. Pedersen) Yurkov Filobasidiales 2.451 0.004 Saprotrophs
82. Sporobolomyces roseus Kluyver & C.B. Niel + Sporobolomyces sp. 0.008 0.001
83. Stilbum sp. Agaricostilbales 0.018 Saprotroph
84. Symmetrospora coprosmae (Hamam. & Nakase) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout + S. gracilis (Derx) Q.M. Wang, F.Y. Bai, M. Groenew. & Boekhout Incertae sedis 0.005 0.001 Saprotrophs
85. Tausonia pullulans (Lindner) Xin Zhan Liu, F.Y. Bai, J.Z. Groenew. & Boekhout Cystofilobasidiales 0.094 0.012 Saprotrophs
86. Thelephoraceae Thelephorales 0.058 Pathogens
87. Tomentella sp. Thelephorales 0.001 Ectomycorrhizal
88. Tremella encephala Pers. Tremellales 0.003 Saprotroph
89. Tremellales 0.014 0.001 Saprotrophs
90. Tremellomycetes 0.003
91. Tricholomataceae Agaricales 0.004
92. Trichosporon otae Sugita, Takshima & Kikuchi Trichosporonales 0.003 Human pathogen
93. Tulasnellaceae Cantharellales 0.005
94. Typhula incarnata Lasch Agaricales 0.004 Pathogen
95. Pappia fissilis (Berk. & M.A. Curtis) Zmitr Polyporales 0.004 Saprotroph
96. Vishniacozyma carnescens (Verona & Luchetti) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout + V. globispora (B.N. Johri & Bandoni) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout + V. victoriae (M.J. Montes, Belloch, Galiana, M.D. García, C. Andrés, S. Ferrer, Torr.-Rodr. & J. Guinea) Xin Zhan Liu, F.Y. Bai, M. Groenew. & Boekhout Tremellales 0.007 0.005 Pathogens, saprotrophs
Frequency Basidiomycota 4.119 2.076
Number of Basidiomycota taxa 81 59
Frequency
Oomycota 1.199 0.002
Culturable fungi 53.062 70.780
Non-culturable fungi 25.645 17.435
Other Kingdoms 15.822 11.728
No sequence in NCBI database 4.272 0.055
Number
Total OTUs 69,467 a 70,218 a
Culturable fungal OTUs 44,506 a 53,592 a
Taxa 474 a 309 a
Fungal taxa 364 a 242 a
Margalef’s diversity index–DMg 65.54 21.72
Shannon’s diveristy index–H 2.55 0.77
Simpson’s diversity index–D 0.21 0.74
Shannon’s evenness index–E 0.39 0.17
Berger-Parker’s dominance index–d 0.20 0.46
graphic file with name plants-10-00892-i001.jpg

Percentage of variation. Pathogens are in bold. a Indicates a statistically significant difference according to a χ2-test, p < 0.001.

Figure 3.

Figure 3

Frequency of the fungi in taxonomic orders.

Saprotrophs were the most abundant (Figure 4). In the soil, their frequency exceeded 80%. In the soil, the most common (with frequency > 0.1%) were species of Mortierella (Zygomycota), Alatospora, Clonostachys, Dendryphion, Emericellopsis, Exophiala, Halenospora, Lambertella, Leptodontidium, Magnohelicospora, Metarhizium, Neobulgaria, Nigrospora, Penicillium, Petriella, Pleotrichocladium, Pseudeurotium, Tetracladium, Tricharina and Trichoderma (Ascomycota), Coprinellus, Cryptococcus, Fibulobasidium, Phaeotremella and Solicoccozyma (Basidiomycota).

Figure 4.

Figure 4

Frequency of the fungi in specific trophic groups.

Individual taxa of obligate or facultative phytopathogens were more or less frequent.

The root pathogens included species of Aphanomyces, Globisporangium, Phytophthora and Pythium (Oomycota: 1.17%), and Truncatella (Ascomycota: 0.003% in the soil, 0. 001% in the wood).

Vascular pathogens included species of Cadophora, Dactylonectria, Debaryomyces, Fusarium, Fusicolla, Graphium, Hymenoscyphus, Ilyonectria, Microdochium, Neonectria, Ophiostomataceae, Phaeoacremonium, Phaeomoniella, Phialophora, Sporothrix, Thelonectria and Verticillium (Ascomycota: 4.783% in soil, 21.831% in the wood).

The parenchymal pathogens included species of Alternaria, Boeremia, Cladosporium, Coniochaeta, Cosmospora, Cytospora, Diaporthe, Didymella, Epicoccum, Herpotrichia, Hypoxylon, Lophiostoma, Mycosphaerella, Neoascochyta, Neocatenulostroma, Neofabraea, Neoleptosphaeria, Neopyrenochaeta, Paraphoma, Phaeoisaria, Phaeosphaeria, Phaeosphaeriopsis, Phoma, Phomopsis, Plectosphaerella, Pseudocercospora, Pyrenochaeta, Pyrenochaetopsis, Scytalidium, Sphaeropsis, Stemphylium, Sydowia, Valsa, Volutella and Xenoramularia (Ascomcota: 1.647% in the soil, 11.645% in the wood), and Armillaria, Aurantiporus, Chondrostereum, Fomitopsis, Peniophora and Serpula (Basidiomycota: 0.026% in the soil, 0.618% in the wood).

The soft-rot fungi included species of Alatospora, Alternaria, Cadophora, Chaetomium, Cladosporium, Clonostachys, Exophiala, Halenospora, Leptodontidium, Neosetophoma, Orbilia, Phialophora, Plagiostoma, Sydowia and Tricladium (Ascomycota: 0.821% in the soil, 13.757% in the wood).

The wood-decay Basidiomycota included the white rot fungi Armillaria mellea, Aurantiporus fissilis, Bjerkandera adusta, Chondrostereum purpureum, Hyphodontia pallidula and Peniophora, and the brown rot fungus Fomitopsis piniola. They occurred with frequencies of 0.028% in the soil and 0.62% in the wood.

The mycorrhiza-forming fungi present in the soil and wood included 12 taxa: arbuscular Entrophospora (Glomeromycota: 0.001% in the wood); ectomycorrhizal Cenococcum geophilum (Ascomycota; 0.039% in the soil), Hymenogaster arenarius, Inocybe curvipes, Laccaria sp., Serendipita vermifera and Tomentella (Basidiomycota: 0.048% in the soil, 0.019% in the wood); ectendomycorrhizal Chloridium paucisporum and Leptodontidium sp. (Ascomycota), and Camarophyllus sp., Efibulobasidium sp. and Hebeloma mesophaeum (Basidiomycota: 0.039% in the soil, 0.254% in the wood).

The yeasts and yeast-like fungi present in the soil and wood included 52 taxa: Aureobasidium melanogenum, Blastobotrys spp., Candida spp., Capnobotryella renispora, Cladophialophora spp., Cyphellophora sessilis, Debaryomyces hansenii, Exophiala spp., Meyerozyma guilliermondii, Micarea agnata, Nakazawaea spp., Saccharomyces cerevisiae, Yamadazyma mexicana, Yarrowia lipolytica and Xanthoparmelia subchalybaeizans (Ascomycota: 0.296% in the soil, 13.072% in the wood); Apiotrichum dulcitum, Bensingtonia spp., Buckleyzyma aurantiaca, Bullera croce, Bulleromyces albus, Cryptococcus spp., Curvibasidium pallidicorallinum, Cystobasidium spp., Cystofilobasidium spp., Erythrobasidium hasegawianum, Fellomyces spp., Fellozyma inositophila, Fibulobasidium inconspicuum, Filobasidium wieringae, Hannaella zeae, Itersonilia perplexans, Kockovaella machilophila, Kondoa yuccicola, Kwoniella newhampshirensis, Malassezia spp., Mrakia frigida, Naganishia cerealis, Phaeotremella spp., Piskurozyma sp., Rhodotorula spp., Saitozyma podzolica, Sakaguchia lamellibrachiae, Sirotrema translucens, Slooffia pilatii, Solicoccozyma spp., Sporobolomyces spp., Symmetrospora coprosmae, Tausonia pullulans, Tremella encephala, Trichosporon otae and Vishniacozyma carnescens (Basidiomycota: 3.061% in the soil, 1.017% in the wood).

The lichenicolous fungi present in the soil and wood included eight taxa: Bacidina sp., Knufia peltigerae, Lecania cyrtella, Lepraria caesiella, Micarea agnata, Physcia tenella, Pilophorus strumaticusa and Xanthoparmelia subchalybaeizans (Ascomycota: 0.02% in the soil, 0.068% in the wood).

The coprophilous fungi present in the soil and wood included 10 taxa: Ascobolus sp., Cercophora sp. Coniochaeta sp., Lophotrichus sp., Meyerozyma guilliermondii, Petriella sordida, Phaeoisaria, Podospora appendiculata (forest specific), Preussia spp. and Schizothecium glutinans (Ascomycota: 0.548% in the soil, 0.002% in the wood). The entomopathogenic fungi present in the soil and wood included three taxa: Beauveria bassiana and Cordyceps spp. (Ascomycota: 0.096% in the soil, 0.023% in the wood), and Kwoniella spp. (Basidiomycota: 0.016% in the soil, 0.003% in the wood).

The nematopathogenic fungi included one species, Myzocytiopsis sp. (Oomycota: 0.005% in the soil).

The mycoparasitic fungi present in the soil and wood included 18 taxa: Syncephalis sp. (Zygomycota: 0.107% in the soil), Angustimassarina spp., Cladosporium spp., Clonostachys spp., Coniochaeta sp., Cordyceps spp., Cosmospora sp., Dissoconium eucalypti, Infundichalara microchona, Macroconia sphaeriae, Melanospora kurssanoviana, Nigrograna mycophila and Scytalidium lignicola (Ascomycota: 1.063% in the soil, 0.056% in the wood), Cystobasidium spp., Geotrichopsis mycoparasitica, Gymnopus androsaceus, Minimedusa polyspora and Phaeotremella frondosa (Basidiomycota: 0.16% in the soil, 0.139% in the wood).

The animal and human pathogens included Coniochaeta, Exophiala, Graphium spp., Lophotrichus sp., Meyerozyma guilliermondii and Pseudeurotium ovale (Ascomycota: 0.975% in the soil, 2.504% in the wood), and Malassezia spp. (Basidiomycota: 0.16% in the soil, 0.001% in the wood).

The aquatic fungi present in the soil and wood included 11 taxa: Aureobasidium melanogenum, Halenospora spp., Lemonniera terrestris, Minutisphaera parafimbriatispora, Mycofalcella calcarata, Pleotrichocladium opacum, Tricladium splendens, Zalerion sp. and Zopfiella spp. (Ascomycota: 0.041% in the soil, 0.527% in the wood), Cystofilobasidium spp. and Phloeomana speirea (Basidiomycota: 0.012% in the soil, 0.025% in the wood).

The rock-inhabiting fungi included one taxon, Capnobotryella renispora (Ascomycota: 0.005% in the soil).

The individual fungi often belonged to more than one trophic group.

Margalef’s index (DMg), Shannon’s diversity index (H) and Simpson’s diversity index (D) indicated greater diversity in the soil than in the wood. Shannon’s evenness index (E) showed more evenness in the soil and, conversely, Berger-Parker’s dominance index (d) showed more dominance of individual taxa in the wood.

4. Discussion

4.1. Disease Characteristics

The vascular wilt of hybrid poplar appeared locally in Poland in 2017. The symptoms appeared suddenly in 5–6-year-old trees, and the disease developed very quickly, in less than 2 months. The activity of the pathogens, either already known or previously unrecognized, apparently circumvented any resistance in the host and led to the failure of the plantations. The disease was asymptomatic in its initial stage. Diagnosis at the final stage was not possible because of either: (i) the immaturity of the pathogen, or (ii) the absence of the distinctive morphological elements essential for the identification of causal fungi. Poplar diseases have a serious economic impact on wood production worldwide, and so the development of effective management strategies depends on the clear identification of the pathogens involved. The affected tissues were therefore analyzed by DNA sequencing.

The symptomatology of poplar wilt can be compared with that of some grapevine diseases, notably grapevine trunk diseases (GTD), including the esca and black foot diseases, and Petri disease [14,15]. Grapevine trunk disease symptoms include the sectorial and/or central necrosis of the trunk wood, brown streaking of the wood, cankers, and the discoloration and wilting of the foliage, which can occur suddenly [15,16]. Petri disease is a vascular disease associated with the decline and dieback of young grapevines. Typical black foot disease symptoms include stunted growth, reduced vigour, retarded or absent sprouting, sparse and chlorotic foliage with necrotic margins, wilting, dieback and death. Characteristic sunken necrotic root lesions with a reduction in root biomass and root hairs may also occur.

Grapevine trunk disease is caused by fungi in the Botryosphaeriaceae [17,18], Phomopsis viticola [17,19], Eutypa lata [20] and Truncatella [21]. Petri disease and esca are caused by six species of Cadophora, including C. luteo-olivacea, 29 species of Phaeoacremonium (particularly P. cinereum), Phaeomoniella chlamydospora (Gams, Crous, Wingf. and Mugnai) Crous and Gams, Pleurostoma richardsiae (Nannf.) Réblová and Jaklitsch (=Phialophora richardsiae (Nannf.) Conant), and basidiomycetous Fomitiporia mediterranea (Fisch.) and Stereum hirsutum (Willd.) Pers. [15,22,23,24,25]. Black foot disease is caused by species of Campylocarpon, Cylindrocladiella, Dactylonectria, Ilyonectria, Neonectria and Thelonectria [26]. The fungal species associated with grapevine diseases, mentioned above, have also been reported from a broad range of woody and herbaceous host plants [23,27,28,29,30]. In Italy, Cadophora, Coniochaeta (in its Lecythophora anamorphic stage) and Phaeoacremonium have been isolated from the wood of kiwifruit plants suffering from elephantiasis, which had trunk necrosis, hypertrophy and longitudinal bark cracks [31].

4.2. Pathogens in Diseased Poplar Trunk

According to EN 350:2016, poplar wood is non-durable, and some studies have shown that it is highly susceptible to wood-rotting fungi [32,33].

The dominant taxonomic group of poplar-associated fungi was Ascomycota. Those fungi are often cosmopolitan species known from the above- and below-ground parts of Populus species. Many species found in the wood of diseased trees are, however, known from diseased grapevine: Botryosphaeriaceae, C. luteo-olivacea, Dactylonectria spp., Ilyonectria spp., Neonectria spp., P. cinereum, Phaeomoniella spp., Phialophora spp., Phomopsis spp., Thelonectria spp. and Truncatella spp. Other vascular and parenchymal fungi, frequently necrotrophic species, were also found: Angustimassarina, Aureobasidium, Boeremia, Chaetomium, Chaetosphaeria, Cyathicula, Cudoniella, Dendryphion, Didymella, Fusarium, Graphium, Helicodendron, Helicosporium, Hymenoscyphus, Hypoxylon, Knufia, Leptodontidium, Leptosphaeria, Lophiostoma, Massarina, Megacapitula, Mollisia, Neocatenulostroma, Neoleptosphaeria, Neosetophoma, Niesslia, Ophiostomatacea (with its anamorphs), Phoma, Plagiostoma, Pleurophoma, Podospora, Pyrenochaeta, Scutellinia, Scytalidium, Sporothrix, Tricharina, Xenopolyscytalum, Verticillium, and basidiomycetous Burgoa. These fungi were also often in the surrounding soil. Some of them seem likely to have contributed to the disease-causing species complex. The fungi associated with the diseased poplars, and which had been found previously in the wood of poplar or other deciduous trees, included: Angustimassarina on the wood of grapevine and poplar [34], Chaetosphaeria on the necrotic wood of Prunus [35], Graphium penicillioides in a wood core of Populus nigra in the Czech Republic 200 years ago [36], Graphostroma platystomum on the bark of oak [37], Helicodendron luteoalbum on poplar roots [38], Helicosporium on a wilted chestnut tree [39], and Hymenoscyphus caudatus on the rotten leaves of Populus nigra [40]. The last species is related to Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz and Hosoya, which causes a very destructive wilt disease of ash, ash dieback—with similar trunk symptoms to those observed in the hybrid poplar [41,42]. Infundichalara microchona occurred in conifers [43,44]; Knufia in black galls on the stems and branches of Populus tremuloides Michx. in Canada [45]; Leptodontidium on the roots of healthy Populus deltoides [46]; Lophiostoma corticola on the above-ground organs of dying oaks in Poland [47]; Megacapitula on fallen, decaying petioles of broad-leaves trees [48]. Mollisia occurred on decaying plant tissues throughout the Northern Hemisphere; Neocatenulostroma germanicum in oak-wood debris [49]; Neoleptosphaeria rubefaciens occurred on the wood, bark and fruits of herbaceous or woody plants in terrestrial habitats [50,51,52]. Neosetophoma clematidis occurred on the branches of Clematis vitalba L. [53] and Niesslia mucida on the bark of diverse plants, especially conifers [54]. Ophiostomataceae have been associated with wounds on hardwood trees in Poland [55]. Phaeoacremonium species occurred on European olive, quince and willow [27]; Phialocephala on rotten deciduous wood [56]; Phoma on the decaying wood of oak and pine [57]; Plagiostoma in the stems, twigs, and branches of woody and herbaceous plants from a wide range of plants in temperate regions of the Northern Hemisphere [58,59]. Pleurophoma ossicola occurred in Scots pine [60], and Pyrenochaeta occurred in oak [57]. Scytalidium lignicola causes diseases in Citrus and Manihot [58,61,62]. Sporothrix occurred in eucalyptus, pine and rosebush [63], and Xenopolyscytalum pinea in pine stumps [64].

Basidiomycetous Burgoa anomala was found in pine wood and litter [65].

Some of the fungi are, surprisingly, often common on wood in water, including sea water. This group includes Didymosphaeria futilis, Halenospora varia, Halosphaeria quadriemis, Paraphoma radicina, Trichocladium and basidiomycetous Cystobasidium [66,67,68,69,70,71,72]. Fusarium spp. were not abundant in the poplar wood, but occurred frequently in the soil. Various Fusarium spp. have been reported in Poland as causing swellings, necrosis, bark fray, reddish-purple discoloration, and ultimately the characteristic cankers in poplar [73]. Fusarium avenaceum is perhaps the most important species, first reported in the 1950s on Euramerican poplar clones in France. Since then it has spread in Europe, from central and eastern areas with a continental climate to sub-mediterranean areas, and recently to Portugal, with its oceanic climate. Neocosmospora solani (=Fusarium solani (Mart.) Sacc. (found mostly on Aigeiros and Tacamahaca poplars and intersectional hybrids) seemed to be confined to North America until it was reported in Poland [74]. Species with sporadic occurrence and of limited importance include F. lateritium Nees, observed in France and in the USA on Populus trichocarpa Torr. and A. Gray, and F. sporotrichioides Sherb., observed in eastern Europe and central Italy on Populus × euramericana. Fusarium spp., constituting a threat to young trees. Colonized trunks are susceptible to breakage, and to attacks by other bark parasites which are also active during a plantation’s early years. The symptoms are not immediately visible, and mostly take the form of the disorganization of the cortical tissues in part of the trunk.

Fungi which are more frequent and perhaps more significant than Fusarium spp. in diseased poplar wood include Cytospora, Diaporthe (with its Phomopsis anamorph), Graphium, Ilyonectria, Paraphoma, Phaeoisaria and Phialophora.

Cytospora species are cosmopolitan, facultative parasites, and appear in tree stands subjected to some form or stress, with poor agronomic management or infected by other pathogens. Infection occurs in late autumn or winter, when the host is dormant, usually behaving as a distinctly secondary parasite. The initial symptoms include brown-blackish discolorations, necrosis, depressions in the bark and underlying wood, callus production and withering. Older, sturdier tissues may develop resistance to further invasion. The disease then appears as small brown depressions bounded by distinct calluses. In the advanced stage, the bark tissues may peel away to reveal underlying stained wood [75]. Cytospora ambiens, C. chrysosperma and C. nivea (Hoffm.) Sacc., which are usually present on/in poplar wood worldwide, with their highest incidence in central and southern Italy, eastern Europe, the Near East, northern India, southern Africa (mainly in plantations) and the west-central USA (especially in Colorado), were not detected in the diseased hybrid poplars.

Species of Diaporthe and its Phomopsis anamorph comprise a phytopathologically important group, with diverse host associations and worldwide distribution. They cause leaf spots, blights, decay, wilt, root rots, dieback and cankers. Phomopsis pathogens are hemibiotrophs, i.e., first latent endophytes requiring living plants as a nutrient source, then sometimes becoming necrotrophic in the latent phase of colonization, or saprotrophic, their nutrients provided by tissue they have killed [76,77]. They occur in both temperate and tropical regions, and are especially common in the sapwood of angiosperms [78,79,80,81,82,83,84,85,86,87,88,89,90,91,92]. Endophytic and saprotrophic strains of Phomopsis produce similar degrading enzymes, supporting the thesis that endophytes become saprotrophs at the plant’s senescence [87,93]. Graphium basitruncatum has been reported from the gallery of the ambrosia beetle in poplar in South America [94]. Graphium penicillioides has been detected in the fully functional, wet sapwood of poplars [36] Baobab. Although the teleomorph of G. penicillioides is unknown, the genus is believed to have ophiostomatoid affinities [95,96,97].

Paraphoma is root-associated on Populus, although P. chrysanthemicola has so far been reported only from Juniperus, Malus and herbaceous plants [97,98].The fungus can infect the leaves of certain plant species and provoke disease [99]. On poplar, it caused foliar blight [100]. The fungus can also live benignly in asymptomatic plant tissues, and has been detected or isolated from the roots of healthy plants [101].

Phaeoisaria loranthacearum has so far been reported from twigs of Loranthus europaeus in Germany [102].

Phialophora species, found very abundantly, may include P. richardsiae, a serious pathogen implicated in the Petri disease of grapevine. The significance of other Phialophora spp. potentially occurring in the diseased poplar wood should also be emphasized. They are mostly saprotrophic and common in soil and wood, in which they cause soft rot. Growth at the hyphal tip and the secretion of lignolytic enzymes (pectinase, amylase, xylanase, cellulase and mannanase) causes widened cavities in sapwood and the degradation of the wood [103,104]. They can also cause cavities in the wood and plants via an erosion-type attack [105]. The degradation of Populus tremuloides wood has been known to affect sales of commercial aspen timber. The blue staining of wood by Phialophora has also been reported [106]. The fungus is psychrotolerant (able to grow at a low temperature).

Many of the taxa recorded, especially in the soil, may not be poplar-specific. They would originate from nearby vegetation, litter and decaying organic matter. Ascomycetous Boeremia spp., Desmazierella acicola, Dissoconium eucalypti, Entyloma gaillardianum, Lambertella tubulosa, Leptosphaerulina australis, Microdochium sp., Monographella nivalis, Neosetophoma clematidis, Periconia sp., Phacidium spp., Phaeosphaeria sp., Phaeosphaeriopsis sp., Phialocephala sp., Pyrenochaetopsis spp., Schizothecium glutinans, Xenochalara sp., Xenopolyscytalum spp., Xenoramularia arxii, and basidiomycetous Aecidium sp., Entyloma spp. and Itersonilia perplexans possibly spread from weeds, grass roots, leaf litter and woody debris [107,108,109,110,111,112,113,114,115,116,117,118,119,120,121]. Neocatenulostroma germanicum, recently found in Europe, seems to spread from pine needles or oak wood debris [49,122].

The cosmopolitan Cenococcum geophilum, one of the most frequently encountered ectomycorrhizal fungi in nature, is well recognized for its extremely wide host and habitat range [123].

Fungi of the genera Alternaria, Epicoccum, Fusarium, Cladosporium, Penicillium and Trichoderma are highly robust and ubiquitous, with an almost global distribution, occurring in the Americas, Asia, and Europe [103]. Their spores have been found in a variety of habitats, predominantly in soil of various types and in sand, often in extreme conditions. Epicoccum can grow on leaves submerged in water, even at 0 °C; hyphal growth can resume within an hour of exposure to water [104,124].

Some fungi were recorded for the first time on wood, or have been found rarely on wood. Ascomycetous Neocatenulostroma germanicum is known from pine needles, and is known to cause needle blight on Pinus mugo Turra, P. nigra Arn. ssp. pallasiania and P. sylvestris L. in Lithuania, Poland and Ukraine [44,122], but has also occurred in the soil in Poland [125]. Sydowia polyspora is so far known from the foliage of Abies spp., Pinus spp. and Pseudotsuga menziesii (Mirb.), and litter [126]. Research suggests that some of these hosts can be primary inoculum sources when located near poplar plantations [127].

Some more- or less-frequent colonizers are untypical and dubious. Acaulium retardatum has so far been recorded from rice-field soil [128], Acrodontium crateriforme from trap-liquid of pitcher plant Nepenthes khasiana Hook f. A.L.P.P. de Candolle, Prodr. in India [129], Alatospora has been recorded from aquatic habitats [130], Amesia nigricolor has been recorded from an indoor habitat in India [131], Cercospora beticola from sugar beet leaves, Desmazierella acicola from pine needle litter [132,133], Dissoconium eucalypti from Eucalyptus leaf [134], Halokirschsteiniothelia maritima from decaying wood in Thailand [135], Nigrospora oryzae from tropical plants [136], Pleurophoma ossicola from bone [102], Pseudocercospora angolensis from leaf spot on Citrus in Africa [137], Sakaguchia lamellibrachiae (Nagah., Hamam., Nakase and Horikoshi) Wang, Bai, Groenew. and Boekhout from a deep-sea tubeworm in Japan [138], and the basidiomycetous yeast Erythrobasidium hasegawianum has been recorded from old beer yeast culture in USA [139].

Some can occur at the extreme of their host ranges. Graphium basitruncatum has been isolated from wood and soil, even in the Solomon Islands and Japan, and from a leukemic patient [140,141]. Scytalidium lignicola and Sporothrix are recognized as saprotrophic opportunists of which the lifestyle can change from plant to human or animal pathogenicity.

Oomycota with eight species of Globisporangium, two species of Phytophthora and eight species of Pythium were mostly in the soil, and were not very common. Their contribution to the development of the disease cannot be excluded. All of them are plant pathogens, which cause root rot and damping off in a multitude of species. Phytophthora plurivora Jung and Burgess, followed by P. pini Leonian, P. polonica Belbahri, E. Moralejo, Calmin and Oszako, P. lacustris Brasier, Cacciola, Nechw., Jung and Bakonyi, P. cactorum (Lebert and Cohn) Schröt, and P. gonapodyides (Petersen) Buisman. were common in three declining and three healthy poplar plantations in Serbia [142].

4.3. Yeasts in Diseased Poplar Trunks

Yeasts are now identified and classified almost exclusively by DNA sequence analysis, which has resulted in the discovery of many new species and taxonomic revisions.

Filamentous fungi have a key role in the decomposition of plant material because of their ability to produce a wide range of extracellular enzymes that efficiently attack the recalcitrant lignocellulose matrix. However, the presence of yeasts during the different stages of wood breakdown highlights the ecological role of these microorganisms. Yeasts have been found to produce enzymes acting on cellulose, hemicelluloses and pectin [143]. They can therefore degrade plant material. They can also be transient fungi, using products released during decomposition by other organisms. Many yeast species found in live or decaying plant parts are associated with insects that also use these habitats as feeding or breeding sites.

The general opinion is that the most abundant yeast taxa associated with decayed wood are basidiomycetous (Agaricomycotina) and xylose-assimilating species. The present data do not support this thesis. Some ascomycetous yeasts were particularly abundant in the wood, where basidiomycetous yeasts were much less frequent.

Ascomycetous Aureobasidium pullulans and Candida spp., and basidiomycetous species of Apiotrichum, Cystofilobasidium, Naganishia, Saitozyma, Solicoccozyma, Tausonia, Tremella, Trichosporon and Vishniacozyma are frequently found in decaying plant material [143]. However, variations in their abundance and diversity reflect the environment, and also correlate with the natural abundance and distribution of basidiomycetous fungi in the study areas [144]; Apiotrichum, for example, was reported as being abundant in wood decayed by Armillaria. The abundance of ascomycetous yeasts in the wood resulted from the high frequency of Nakazawaea spp., especially N. populi, which was previously found in exudates of Populus species [145].

4.4. Mycorrhiza-Forming Fungi

Mycorrhiza-forming fungi were rare, especially in the soil. Basidiomycetous species occurred, surprisingly, more often in the wood, probably as: (i) facultative biotrophic encounters that either formed mycorrhizal structures or colonized the tissues as endophytes (i.e., grew within living plant tissues, without apparent infection, but not forming true mycorrhizae or causing any disease symptoms), or (ii) saprotrophs. Transition from saprotrophy to mycorrhizal status is common in fungal development [146], and other unexpected trophic conversions within the mycobiota may be possible.

4.5. The Endophytic State/Habit/Lifestyle of Fungi

As with grapevine diseases, it is assumed that the causal fungi are endophytic, living for a time asymptomatically in the plant. Then, at some point, in association with plant stress, they modify their behaviour and become pathogenic, which leads to the expression of disease symptoms [147]. As endophytes, they would often have key positive roles in plant function and fitness [148,149]. As parasites, they are cryptic, often opportunistic pathogens, which in special conditions induce disease [150]. Their virulence may be dictated by multi-partner interactions and environmental conditions. The most favoured conditions include: (i) the presence of very vigorous plants with succulent tissues; (ii) prolonged periods of damp and wet weather; (iii) free-standing water on the leaves; (iv) injuries such as pruning and leaf wounds; (v) the presence of senescent tissues, especially older, lower leaves; (vi) frost damage; and (vii) excessive crowding. Tissues are invaded by enzyme action, and roots and stems are gradually enveloped until the vessels are eventually reached, and wilting and desiccation occur. Different lifestyles and functions may occur depending on the situation. Phoma may at first be a plant-growth­–promoting fungus [151].The lifestyles of Phaeoisaria and Pyrenochaetopsis depend on secreted peptidases [121,152]. Plectosphaerella (mostly P. populi) damages poplar stems [102,152], but simultaneously induces the formation of antifungal phenolic metabolites that protect poplar against foliar pathogens [153]. Some, such as Pyrenochaeta, are weak pathogens [154], but their adaptability to different climates allows them to infect many hosts and to survive in a broad range of pH, temperature and aeration conditions and soil types. Fungi such as Ilyonectria may survive in the roots of apparently healthy (asymptomatic) poplars, where they may suppress other fungal root pathogens and help maintain tree health [27,30]. These examples show that caution is necessary in classifying fungi according to function. There is no indication that other species, uncommon on Populus or so far not detected, might be pathogenic.

4.6. Interactions among Fungi

Trichoderma spp. occurred at a high natural frequency in the plantation soil. They are well known for their antagonistic activity, hyperparasitism and ability to induce defensive systems in plants to other microorganisms (specifically soil microorganisms). They are used in the biological control of several pathogens. Trichoderma harzianum Rifai and T. atroviride Karst. have shown promise in controlling Botryosphaeria dieback and esca disease in vineyards and other common trunk diseases [155]. Trichoderma significantly improved grapevine root growth and decreased the incidence of fungi involved in diseases when tested in vitro or in nurseries [24,156]. Grapevine defence systems have also been induced by Oomycota. The necrosis of root systems of vine cuttings was reduced by 50% after colonization by Pythium oligandrum [157,158,159]. Other biological control agents (Aureobasidium pullulans, Cladosporium herbarum, Fusarium lateritium and Rhodotorula rubra) have been reported to be effective against grapevine trunk disease pathogens, alone or in combination with fungicides, although some were tested only in vitro or in nurseries [160]. Arbuscular mycorrhizal fungi have been shown to increase the tolerance of grapevine rootstocks to Ilyonectria spp. [161]; Glomus intraradices was the most effective [162]. Aureobasidium pullulans, P. oligandrum, Trichoderma spp. and two species of Glomeromycota, present in the poplar plantation soil, may naturally decrease the incidence of pathogens involved in disease. Mortierella elongata, also detected, has been found to manipulate poplar defenses while promoting plant growth [30].This response was particularly beneficial because it was independent of cultivars.

4.7. Soil and Planting Material as the Source of the Inoculum

The soil origin was shown to be a significant factor affecting the composition of the fungal communities and networks in Populus [149,163].

The soil was here shown to be a natural source of many vascular and parenchymal pathogens found in the affected hybrid poplars, i.e., species of ascomycetous Alternaria, Cadophora, Cladosporium, Fusarium, Ilyonectria, Nectria, Neonectria, Neopyrenochaeta Ophiostomataceae, Phoma, Pyrenochaeta, Sporothrix, Thelonectria and Verticillium, and of basidiomycetous Armillaria and Entyloma. Their presence in the soil has been associated with their occurrence on plant debris and plant roots [164]. Soil was also the main source of pathogenic Oomycota (Aphanomyces, Elongisporangium, Globisporangium, Phytophthora and Pythium), which can, generally, cause extensive and devastating root rot. The destruction of roots can lead to minor or severe wilting caused by impeded root functioning or further biotrophic infections that can become necrotrophic in response to infection pressure or environmental stress. Oomycota tend to be very generalistic and non-specific, with a wide range of susceptible host roots, including poplar [142]. The wilt results from root degradation by Oomycota and a lack of oxygen, followed by disrupted water transport. A moist habitat and low pH in forest soils favour the growth, propagation, and dispersal of Oomycota spores. At optimal temperatures (28–30 °C), some species of Globisporangium grow very fast, i.e., 2.7 cm in 24-h.

Fungi such as Collophorina, Hyalodendriella and Hyaloscypha bicolor, which occurred sporadically in the soil, whilst being biotrophic parasites, may contribute to the final wilt [165,166].

The planting material may, however, already have been infected, either systemically from infected mother poplars or by contamination during the propagation process.

4.8. Colonization

As in grapevine disease, poplar wilt may be a complex disease in which symptoms result from the concomitant action of several factors.

The initial stage of the disease seems to be accomplished by highly specialized vascular fungi in the plant’s phloem. Their presence in the soil suggests that the infection can be soil-borne. Hyphae from established mycelia, and germ tubes developing from spores, perceive signals from root exudates. The hyphae secrete cell-wall–degrading enzymes and enter roots through wounds, at branching points, or directly through root tips. The mycelium spreads between root cortex cells to reach phloem and xylem vessels, from which the fungus travels as conidia in the sap stream, mostly upwards. The phloem and xylem become obstructed by mycelium and spores, and by plant-produced gels, gums and tyloses. Water transport to the leaves fails, and the plant wilts and dies. The fungus then invades all of the plant tissues and obtains nutrition by decomposing them. The response to the degradation of hemicellulose or lignin by the pathogen is usually the accumulation of tylose, polysaccharides and phenolic compounds (gummosis), tannins and phytoalexins. It is likely that at least a part of the external and internal symptoms are caused by phytotoxic fungal metabolites produced in decayed wood, or by the oxidation of some host-response substances. Some chemicals produced in grapevine in response to fungal infection are toxic, notably α-glucans and two naphthalenone pentaketides, scytalone and isosclerone [22]. A similar situation may be expected in poplar.

The final stage of the disease is apparently accomplished by parenchymal fungi. The spores released from reproductive structures produced in dead wood in the presence of water are dispersed by wind, potentially infecting fresh new wounds. Among the parenchymal fungi, bracket fungi (Polyporales, Basidiomycota) were, surprisingly, found only sporadically; they usually dominate communities of wood-rotting organisms. In grapevine, the phytoalexin resveratrol showed a direct antifungal effect, inhibiting the in vitro growth of two bracket species, Fomitiporia mediterranea and Stereum hirsutum. It is possible that the accumulation of certain compounds produced by poplar suppresses the colonization of wood by bracket fungi.

4.9. Effects of Climate

Up to 133 fungal species of 34 genera have so far been associated with grapevine trunk diseases worldwide [127]. The incidence of particular taxa differs between regions. All known grapevine trunk pathogens have been encountered in all grape-cultivation regions, mainly between latitudes of 30° to 50°, where annual mean temperatures are generally 10–20 °C [127,167]. There are conflicting reports on the effects of temperature and water stress on the incidence of grapevine trunk disease [127]. Therefore, it is not possible to assume a straightforward relationship between poplar disease and climatic conditions, particularly concerning water stress. Water stress is likely, however, to increase susceptibility. In recent years, precipitation in central Europe has often been characterized by extreme events (fog, hailstorms, thunderhails, heat waves, heavy rains, floods, winds), followed by drought. Increased humidity favours disease development. Infection by ascospores or conidia released from perithecia or pycnidia embedded in the bark or wood will be promoted by high humidity, often associated with higher temperatures; such conditions encourage the release and spread of spores, and favour spore germination [168,169,170,171]. The inoculum potential is consequently increased.

An extremely hot and dry summer (particularly August and September) occurred across Poland in 2015. The climate projections for Poland and central Europe predict further warming and the continuation of the changes already observed, including decreased precipitation and drought, especially in summer [172]. Such conditions may be expected to affect the health of poplar and other trees.

4.10. Control and Mitigation

Fungicides such as sodium arsenite or 8-hydroxyquinoline, used against esca and with the potential to control the wilt of poplar, are banned in Europe. No other highly effective treatments are available. Other chemical products and biological stimulators used in vineyards are not curative, and so only preventive methods are available in poplar plantations. Infections in grapevine from propagating materials can increase from 40% before cuttings are taken up to 70% after nursery processing [172]. Detection prior to planting is therefore critical to assure the longevity of newly established plantations [173]. A healthy poplar at planting is fundamental to the establishment and sustainability of a plantation. Good hygiene and wound protection are of the utmost importance. The disinfection of propagating materials with fungicides or hot water treatment (50 °C for 30 min), applied correctly to avoid plant stress and death, is advisable. Where soil constitutes the main source of the inoculum, disease management practices based on soil disinfestation and amendments, plant-based resistance to infection, and prophylactic cultural practices should be applied. Infected plant parts and infected dead wood on the soil should be removed, pruning wounds should be chemically protected, and the elimination of plant-stress factors should be taken into account.

5. Conclusions

  • 1.

    Populus hybrids may be subjected to various, thus far unidentified pathogenic agents.

  • 2.

    New diseases may be asymptomatic, at least in the initial phase.

  • 3.

    The indigenous microbiota can be involved in the development of the disease, but can also have an important role in limiting or preventing the development of pathogens.

  • 4.

    The development of new diseases is related to climate change. It can lead to the near-total disappearance of some diseases, the sudden emergence of a new pathogens, or to the fungi already present becoming pathogenic.

  • 5.

    Poplar wilt symptoms may be a consequence of various factors, the most important being climate and its effects on fungal development and the host–pathogen relationship.

  • 6.

    Fungal diseases can spread from the soil or from introduced plant material, with the latter potentially introducing them into new areas.

Author Contributions

Conceptualization, W.S. and J.B.-B.; methodology, J.B.-B.; formal analysis, E.G. and M.W.; investigation, M.B.; resources, W.S.; writing H.K., writing, review and editing, H.K., visualization, J.B.-B. and H.K., supervision, J.B.-B.; project administration, W.S., funding acquisition, J.B.-B.; M.B.; W.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research did not obtain any external funding.

Institutional Review Board Statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board and Ethics Committee of Poznan University of Life Sciences.

Informed Consent Statement

Informed Consent Statement was obtained from all subjects involved in the study.

Data Availability Statement

Data supporting reported results can be found at https://figshare.com/s/2c89719675a6859ee8a6 (accessed on 11 April 2021).

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Przybysz K., Przybysz P. Poplar wood as a raw material for the paper industry in the twenty-first century. Ann. Warsaw Univ. Life Sci. 2013;84:56–59. [Google Scholar]
  • 2.Herve C., Ceulemans R. Short-rotation coppiced vs. non-coppiced poplar: A comparative study at two different field sites. Biomass Bioenergy. 1996;11:139–150. doi: 10.1016/0961-9534(96)00028-1. [DOI] [Google Scholar]
  • 3.Zajączkowski K. Hodowla Lasu: Plantacje Drzew Szybko Rosnących. Powszechne Wydawnictwo Rolnicze i Leśne; Warszawa, Poland: 2013. pp. 1–168. [Google Scholar]
  • 4.Benetka V., Novotná K., Štochlová P. Biomass production of Populus nigra L. clones grown in short rotation coppice systems in three different environments over four rotations. iFor. Biogeosci. For. 2014;7:233–239. doi: 10.3832/ifor1162-007. [DOI] [Google Scholar]
  • 5.Yu Q., Tigerstedt P., Haapanen M. Growth and phenology of hybrid aspen clones (Populus tremula L. × Populus tremuloides Michx.) Silva Fenn. 2001;35:15–25. doi: 10.14214/sf.600. [DOI] [Google Scholar]
  • 6.Schmidt P.-A., Bálint M., Greshake B., Bandow C., Römbke J., Schmitt I. Illumina metabarcoding of a soil fungal community. Soil Biol. Biochem. 2013;65:128–132. doi: 10.1016/j.soilbio.2013.05.014. [DOI] [Google Scholar]
  • 7.Vilgalys R., Gonzalez D. Organization of ribosomal DNA in the basidiomycete Thanatephorus praticola. Curr. Genet. 1990;18:277–280. doi: 10.1007/BF00318394. [DOI] [PubMed] [Google Scholar]
  • 8.Gweon H.S., Oliver A., Taylor J., Booth T., Gibbs M., Read D.S., Griffiths R.I., Schonrogge K. PIPITS: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 2015;6:973–980. doi: 10.1111/2041-210X.12399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Zhang J., Kobert K., Flouri T., Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–620. doi: 10.1093/bioinformatics/btt593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bengtsson-Palme J., Ryberg M., Hartmann M., Branco S., Wang Z., Godhe A., De Wit P.J.G.M., Sánchez-García M., Ebersberger I., De Sousa F., et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 2013;4:914–919. doi: 10.1111/2041-210X.12073. [DOI] [Google Scholar]
  • 11.Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. Naive Bayesian Classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Cole J.R., Wang Q., Fish J.A., Chai B., Mc Garrell D.M., Sun Y., Tiedje J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Magurran A.E. Ecological Diversity and Its Measurement. Springer Science and Business Media, L.L.C.; Berlin/Heidelberg, Germany: 1988. pp. 1–180. [Google Scholar]
  • 14.Mugnai L., Graniti A., Surico G. Esca (Black Measles) and Brown Wood-Streaking: Two old and elusive diseases of grapevines. Plant Dis. 1999;83:404–418. doi: 10.1094/PDIS.1999.83.5.404. [DOI] [PubMed] [Google Scholar]
  • 15.Carlucci A., Lops F., Mostert L., Halleen F., Raimondo M. Occurrence fungi causing black foot on young grapevines and nursery rootstock plants in Italy. Phytopathol. Mediterr. 2017;56:10–39. [Google Scholar]
  • 16.Larignon P., Fontaine F., Farine S., Clément C. Esca et Black Dead Arm: Deux acteurs majeurs des mala-dies du bois chez la Vigne. Comptes Rendus Biol. 2009;332:765–783. doi: 10.1016/j.crvi.2009.05.005. [DOI] [PubMed] [Google Scholar]
  • 17.Van Niekerk J.M., Groenewald J.Z., Farr D.F., Fourie P.H., Halleen F., Crous P.W. Reassessment of Phomopsis species on grapevine. Austral. Plant Pathol. 2005;34:27–39. doi: 10.1071/AP04072. [DOI] [Google Scholar]
  • 18.Úrbez-Torres J.R., Leavitt G.M., Voegel T.M., Gubler W.D. Identification and distribution of Botryosphaeria spp. associated with grapevine cankers in California. Plant Dis. 2006;90:1490–1503. doi: 10.1094/PD-90-1490. [DOI] [PubMed] [Google Scholar]
  • 19.De Guido M.A., Pollastro S., Carlucci A., De Miccolis Angelini R.M., Faretra F. Phomopsis viticola is easily transformed with Hph and Bmlr genes. J. Plant Pathol. 2013;85:43–52. [Google Scholar]
  • 20.Larignon P., Dubos B. Fungi associated with esca disease in grapevine. Eur. J. Plant Pathol. 1997;103:147–157. doi: 10.1023/A:1008638409410. [DOI] [Google Scholar]
  • 21.Arzanlou M., Narmani A., Moshari S., Khodaei S., Babai-Ahari A. Truncatella angustata associated with grapevine trunk disease in northern Iran. Arch. Phytopathol. Plant Prot. 2013;46:1168–1181. doi: 10.1080/03235408.2012.761417. [DOI] [Google Scholar]
  • 22.Bruno G., Sparapano L. Effects of three esca-associated fungi on Vitis vinifera L.: V. Changes in the chemical and biological profile of xylem sap from diseased cv. Sangiovese vines. Physiol. Mol. Plant Pathol. 2007;71:210–229. doi: 10.1016/j.pmpp.2008.02.005. [DOI] [Google Scholar]
  • 23.Gramaje D., Armengol J., Mohammadi H., Banihashemi Z., Mostert L. Novel Phaeoacremonium species associated with Petri disease and esca of grapevine in Iran and Spain. Mycologia. 2009;101:920–929. doi: 10.3852/08-222. [DOI] [PubMed] [Google Scholar]
  • 24.Agusti-Brisach C., Armengol J. Black-foot disease of grapevine: An update on taxonomy, epidemiology and management strategies. Phytopathol. Mediterr. 2013;52:245–261. [Google Scholar]
  • 25.Carlucci A., Cibelli F., Lops F., Phillips A., Ciccarone C., Raimondo M. Pleurostomophora richardsiae asso-ciated with trunk diseases of grapevines in southern Italy. Phytopathol. Mediterr. 2015;54:109–123. [Google Scholar]
  • 26.Lombard L., Van Der Merwe N.A., Groenewald J.Z., Crous P.W. Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathol. Mediterr. 2014;53:515–532. [Google Scholar]
  • 27.White N.H., Chilvers G.A., Evans G. Antifungal activity of Cylindrocarpon radicicola Wr. Nat. Cell Biol. 1962;195:406–407. doi: 10.1038/195406a0. [DOI] [Google Scholar]
  • 28.Spies C., Moyo P., Halleen F., Mostert L. Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia. 2018;40:26–62. doi: 10.3767/persoonia.2018.40.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Cabral A., Groenewald J.Z., Rego C., Oliveira H., Crous P.W. Cylindrocarpon root rot: Multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycol. Prog. 2011;11:655–688. doi: 10.1007/s11557-011-0777-7. [DOI] [Google Scholar]
  • 30.Liao H.-L., Bonito G., Rojas J.A., Hameed K., Wu S., Schadt C.W., Labbé J., Tuskan G.A., Martin F., Grigoriev I.V., et al. Fungal endophytes of Populus trichocarpa alter host phenotype, gene expression, and rhizobiome composition. Mol. Plant-Microbe Interact. 2019;32:853–864. doi: 10.1094/MPMI-05-18-0133-R. [DOI] [PubMed] [Google Scholar]
  • 31.Prodi A., Sandalo S., Tonti S., Pisi A. Phialophora-like fungi associated with kiwi fruit elephantiasis. J. Plan. Pathol. 2008;90:487–494. [Google Scholar]
  • 32.Diaz B., Murace M., Peri P., Keil G., Luna L., Otaño M.Y. Natural and preservative-treated durability of Populus nigra cv Italica timber grown in Santa Cruz Province, Argentina. Int. Biodeterior. Biodegrad. 2003;52:43–47. doi: 10.1016/S0964-8305(03)00034-9. [DOI] [Google Scholar]
  • 33.Xing J.-Q., Ikuo M., Wakako O. Natural resistance of two plantation woods Populus × canadensis cv. and Cunninghamia lanceolata to decay fungi and termites. For. Stud. China. 2005;7:36–39. doi: 10.1007/s11632-005-0055-3. [DOI] [Google Scholar]
  • 34.Del Frari G., Gobbi A., Aggerbeck M.R., Oliveira H., Hansen L.H., Ferreira R.B. Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by esca. Spatial distribution of fungal communities and their putative relation with leaf symptoms. Front. Plant Sci. 2019;10:910. doi: 10.3389/fpls.2019.00910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Réblová M., Seifert K.A. A new species of Chaetosphaeria with Menispora ciliata and phialophora-like anamorphs. Fungal Divers. 2008;29:99–105. [Google Scholar]
  • 36.Corda A.K.J. Leones fungorum hucusque cognitorum. Praha Tomus. 1837;1:1–32. [Google Scholar]
  • 37.Pirozynski K.A. Xenotypa Petrak and Graphostroma gen. nov., segregates from Diatrypaceae. Can. J. Bot. 1974;52:2129–2135. doi: 10.1139/b74-274. [DOI] [Google Scholar]
  • 38.Zhao G., Liu X., Wu W. Helicosporous hyphomycetes from China. Fungal Divers. 2007;26:313–524. [Google Scholar]
  • 39.Choi Y.W. A Novel Helicosporium isolate and its antimicrobial and cytotoxic pigment. J. Microbiol. Biotechnol. 2012;22:1214–1217. doi: 10.4014/jmb.1204.04063. [DOI] [PubMed] [Google Scholar]
  • 40.Hengstmengel J. Notes on Hymenoscyphus—II. On three non-fructicolous species of the ‘fructi-genus-group’ with croziers. Persoonia. 1996;16:191–207. [Google Scholar]
  • 41.Kowalski T. Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. For. Pathol. 2006;36:264–270. doi: 10.1111/j.1439-0329.2006.00453.x. [DOI] [Google Scholar]
  • 42.Kowalski T., Holdenrieder O. The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For. Pathol. 2009;39:304–308. doi: 10.1111/j.1439-0329.2008.00589.x. [DOI] [Google Scholar]
  • 43.Réblová M., Gams W., Štěpánek V. The new hyphomycete genera Brachyalara and Infundichalara, the similar Exochalara and species of ‘Phialophora sect. Catenulatae’ (Leotiomycetes) Fungal Divers. 2011;46:67–86. doi: 10.1007/s13225-010-0077-6. [DOI] [Google Scholar]
  • 44.Behnke-Borowczyk J., Kwaśna H., Kulawinek B. Fungi associated with Cyclaneusma needle cast in Scots pine in the west of Poland. For. Pathol. 2019;49:e12487. doi: 10.1111/efp.12487. [DOI] [Google Scholar]
  • 45.Hutchison L.J., Untereiner W.A., Hiratsuka Y. Knufia cryptophialidica gen. et sp. nov., a Dematiaceous Hyphomycete isolated from black galls of trembling aspen (Populus tremuloides) Mycologia. 1995;87:902. doi: 10.1080/00275514.1995.12026613. [DOI] [Google Scholar]
  • 46.Fernando A., Currah R. A comparative study of the effects of the root endophytes Leptodontidium orchi-dicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine. Can. J. Bot. 1996;74:1071–1078. doi: 10.1139/b96-131. [DOI] [Google Scholar]
  • 47.Wit M., Sierota Z., Osako T., Mirzwa-Mróz E., Wakuliński W. Fusarium spp. na nadziemnych organach zamierających dębów—Nowe zagrożenie? (Fusarium spp. on the above–ground organs of dying—A new threat?) Sylwan. 2015;159:403–410. [Google Scholar]
  • 48.Chen J.L., Tzean S.S. Megacapitula villosa gen. et sp. nov. from Taiwan. Mycol. Res. 1993;97:347–350. doi: 10.1016/S0953-7562(09)81134-9. [DOI] [Google Scholar]
  • 49.Behnke-Borowczyk J., Kwaśna H., Kokot K., Hałuszczak M., Łakomy P. Abundance and diversity of fungi in oak wood. Dendrobiology. 2018;80:143–160. doi: 10.12657/denbio.080.014. [DOI] [Google Scholar]
  • 50.Rooney S.N., Eskalen A., Gubler W.D. Recovery of Phaeomoniella chlamydospora and Phaeoacremonium in-flatipes from soil and grapevine tissues. Phytopathol. Mediterr. 2001;40:S351–S356. [Google Scholar]
  • 51.Ariyawansa H.A., Phukhamsakda C., Thambugala K.M., Bulgakov T.S., Wanasinghe D.N., Perera R.H., Mapook A., Camporesi E., Kang J.-C., Jones E.B.G., et al. Revision and phylogeny of Leptosphaeriaceae. Fungal Divers. 2015;74:19–51. doi: 10.1007/s13225-015-0349-2. [DOI] [Google Scholar]
  • 52.El-Demerdash A., El-Demerdash A. Chemical diversity and biological activities of Phaeosphaeria fungi genus: A systematic review. J. Fungi. 2018;4:130. doi: 10.3390/jof4040130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Liu J.K., Hyde K.D., Jones E.B.G., Ariyawansa H.A., Bhat D.J., Boonmee S., Maharachchikumbura S.S.N., McKenzie E.H.C., Phookamsak R., Phukhamsakda C., et al. Fungal diversity notes 1–110, Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015;72:1–197. doi: 10.1007/s13225-015-0324-y. [DOI] [Google Scholar]
  • 54.Gams W., Stielow B., Gräfenhan T., Schroers H.-J. The ascomycete genus Niesslia and associated Monocillium-like anamorphs. Mycol. Prog. 2019;18:5–76. doi: 10.1007/s11557-018-1459-5. [DOI] [Google Scholar]
  • 55.Jankowiak R., Bilański P., Ostafińska A., Linnakoski R. Ophiostomatales associated with wounds on hardwood trees in Poland. Plant Pathol. 2019;68:1407–1424. doi: 10.1111/ppa.13061. [DOI] [Google Scholar]
  • 56.Kendrick W.B. The Leptographium complex Verticicladiella Hughes. Can. J. Bot. 1961;39:1079–1085. doi: 10.1139/b61-094. [DOI] [Google Scholar]
  • 57.Kwaśna H., Mazur A., Łabędzki A., Kuźmiński R., Łakomy P. Zbiorowiska grzybów w rozkładającym się drewnie dębu i sosny (Communities of fungi in decomposed wood of oak and pine) For. Res. Pap. 2016;77:261–275. [Google Scholar]
  • 58.Sogonov M.V., Castlebury L.A., Rossman A.Y., Mejía L.C., White J.F., Jr. Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud. Mycol. 2008;62:1–79. doi: 10.3114/sim.2008.62.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Tanney J., Seifert K. Mollisiaceae: An overlooked lineage of diverse endophytes. Stud. Mycol. 2020;95:293–380. doi: 10.1016/j.simyco.2020.02.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Behnke-Borowczyk J., Kwaśna H., Kartawik N., Sijka B., Bełka M., Łakomy P. Effect of management on fungal communities in dead wood of Scots pine. For. Ecol. Manag. 2021;479:118528. doi: 10.1016/j.foreco.2020.118528. [DOI] [Google Scholar]
  • 61.Oren Y., Sadowsky A., Gefen D., Solel Z., Kimchy M. Scytalidium wilt of citrus. Eur. J. Plant Pathol. 2001;107:467–470. doi: 10.1023/A:1011283318617. [DOI] [Google Scholar]
  • 62.Machado A.R., Pinho D.B., De Oliveira S.A.S., Pereira O.L. New occurrences of Botryosphaeriaceae causing black root rot of cassava in Brazil. Trop. Plant Pathol. 2014;39:464–470. doi: 10.1590/S1982-56762014000600008. [DOI] [Google Scholar]
  • 63.De Meyer E.M., De Beer Z.W., Summerbell R.C., Moharram A., De Hoog G.S., Vismer H.F., Wingfield M.J. Taxonomy and phylogeny of new wood- and soil-inhabiting Sporothrix species in the Ophiostoma stenoceras-Sporothrix schenckii complex. Mycologia. 2008;100:647–661. doi: 10.3852/07-157R. [DOI] [PubMed] [Google Scholar]
  • 64.Wrzosek M., Sierota Z., Sikora K., Małecka M., Pawłowska J. Bogactwo grzybów zasiedlających drewno pniaków świerkowych po roku od sztucznego zakażenia Phlebiopsis gigantea. (The diversity of fungi present in the wood of spruce stumps one year after artificial infection by Phlebiopsis gigantea. Stud. Mater. CEPL. 2014;16:202–211. [Google Scholar]
  • 65.Koukol O., Kubátová A. New European records of basidiomycete Burgoa anomala from coniferous litter and sediment in underground tunnel. Czech Mycol. 2015;67:241–247. doi: 10.33585/cmy.67207. [DOI] [Google Scholar]
  • 66.Goh T.K., Hyde K.D. A synopsis of Trichocladium species, based on the literature. Fungal Divers. 1999;2:101–118. [Google Scholar]
  • 67.Nagahama T. Yeast biodiversity in freshwater, marine and deep-sea environments. In: Rosa C.A., Peter G., editors. Biodiversity and ecophysiology of yeasts. Springer; Berlin/Heidelberg, Germany: 2006. pp. 241–263. The Yeast Handbook. [Google Scholar]
  • 68.Alias S.A., Jones E.B.G. Marine Fungi from Mangroves of Malaysia. Institute Ocean and Earth Sciences, University of Malaya; Kuala Lumpur, Malaysia: 2009. pp. 1–108. [Google Scholar]
  • 69.Pang K.L., Jheng J.S., Jones E.B.G. Marine Mangrove Fungi of Taiwan. National Taiwan Ocean University Press; Keelung, Taiwan: 2011. pp. 1–131. [Google Scholar]
  • 70.El-Elimat T., Raja H.A., Figueroa M., Falkinham J.O., Oberlies N.H. Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by Paraphoma radicina, a fungus isolated from a freshwater habitat. Phytochemistry. 2014;104:114–120. doi: 10.1016/j.phytochem.2014.04.006. [DOI] [PubMed] [Google Scholar]
  • 71.Hafellner J. Distributional and other data for some species of Didymocyrtis (Dothideomycetes, Pleo-sporales, Phaeosphaeriaceae), including their Phoma-type anamorphs. Fritschiana. 2015;80:43–88. [Google Scholar]
  • 72.Tibell S., Tibell L., Pang K.-L., Jones E.G. A conspectus of the filamentous marine fungi of Sweden. Bot. Mar. 2019;63:141–153. doi: 10.1515/bot-2018-0114. [DOI] [Google Scholar]
  • 73.Kwaśna H. Zdrowotność topoli na plantacjach w strefach ochronnych hut miedzi Legnica i Głogów. (Health of poplars in plantations in the sanitary protection zones of Legnica and Glogów copper mills) Sylwan. 2017;161:639–647. [Google Scholar]
  • 74.Cellerino G.P. Review of Fungal Diseases in Poplar. Food and Agriculture Organization of the United Nations; Rome, Italy: 1999. [Google Scholar]
  • 75.Kepley J.B., Jacobi W.R. Pathogenicity of Cytospora fungi on six hardwood species. J. Arboric. 2000;26:326–332. [Google Scholar]
  • 76.Rosskopf E.N., Charudattan R., DeValerio J.T., Stall W.M. Field evaluation of Phomopsis amaranthicola, a biological control agent of Amaranthus spp. Plant Dis. 2000;84:1225–1230. doi: 10.1094/PDIS.2000.84.11.1225. [DOI] [PubMed] [Google Scholar]
  • 77.Van Kan J.A.L. Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 2006;11:247–253. doi: 10.1016/j.tplants.2006.03.005. [DOI] [PubMed] [Google Scholar]
  • 78.Bussaban B., Lumyong L., Lumyong P., McKenzie E.H.C., Hyde K.D. Endophytic fungi from Amomum siamense. Can. J. Microbiol. 2001;47:943–948. doi: 10.1139/w01-098. [DOI] [PubMed] [Google Scholar]
  • 79.Kumaresan V., Suryanarayanan T.S. Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: Evidence for the role of endophytes in mangrove litter degradation. Fungal Divers. 2002;9:81–91. [Google Scholar]
  • 80.Osono T., Takeda H. Comparison of litter decomposing ability among diverse fungi in cool temperate deciduous forest in Japan. Mycologia. 2002;94:421–427. doi: 10.1080/15572536.2003.11833207. [DOI] [PubMed] [Google Scholar]
  • 81.Suryanarayanan T.S., Murali T.S., Venkatesan G. Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can. J. Bot. 2002;80:818–826. doi: 10.1139/b02-069. [DOI] [Google Scholar]
  • 82.Yanna Ho W.H., Hyde K.D. Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers. 2002;10:185–211. [Google Scholar]
  • 83.Tomita F. Endophytes in Southeast Asia and Japan: Their taxonomic diversity and potential applications. Fungal Divers. 2003;14:187–204. [Google Scholar]
  • 84.Murali T.S., Suryanarayanan T.S., Geeta R. Endophytic Phomopsis species: Host range and implications for diversity estimates. Can. J. Microbiol. 2006;52:673–680. doi: 10.1139/w06-020. [DOI] [PubMed] [Google Scholar]
  • 85.Hyde K.D., Bussaban B., Paulus B., Crous P.W., Lee S., McKenzie E.H.C., Photita W., Lumyong S. Biodiversity of saprobic fungi. Biodivers. Conserv. 2007;16:17–35. [Google Scholar]
  • 86.Rossman A.Y., Farr D.F., Castlebury L.A. A review of the phylogeny and biology of the Diaporthales. Mycoscience. 2007;48:135–144. doi: 10.1007/S10267-007-0347-7. [DOI] [Google Scholar]
  • 87.Promputtha I., Hyde K.D., McKenzie E.H.C., Peberdy J.F., Lumyong S. Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers. 2010;41:89–99. doi: 10.1007/s13225-010-0024-6. [DOI] [Google Scholar]
  • 88.Promputtha I., Lumyong S., Vijaykrishna D., McKenzie E.H.C., Hyde K.D., Jeewon R. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 2007;53:579. doi: 10.1007/s00248-006-9117-x. [DOI] [PubMed] [Google Scholar]
  • 89.Kodsueb R., McKenzie E.H.C., Lumyong S., Hyde K.D. Diversity of saprobic fungi on Magnoliaceae. Fungal Divers. 2008;30:37–53. [Google Scholar]
  • 90.Kodsueb R., McKenzie E.H.C., Lumyong S., Hyde K.D. Fungal succession on woody litter of Magnolia liliiflora (Magnoliaceae) Fungal Divers. 2008;30:55–72. [Google Scholar]
  • 91.Botella L., Diez J.J. Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers. 2010;47:9–18. doi: 10.1007/s13225-010-0061-1. [DOI] [Google Scholar]
  • 92.González V., Tello M.L. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers. 2011;47:29–42. doi: 10.1007/s13225-010-0073-x. [DOI] [Google Scholar]
  • 93.Dai C.C., Chen Y., Tian L., Sh Y. Correlation between invasion by endophytic fungus Phomopsis sp. and enzyme production. Afr. J. Agric. Res. 2010;5:1324–1340. [Google Scholar]
  • 94.Ceriani-Nakamurakare E., Slodowicz M., Gonzalez-Audino P., Dolinko A., Carmarán C. Mycobiota associated with the ambrosia beetle Megaplatypus mutatus: Threat to poplar plantations. Forests. 2016;89:191–200. doi: 10.1093/forestry/cpw001. [DOI] [Google Scholar]
  • 95.Goidànich G. Schema di una classificazione delle Stilbaceaeche erano riunite fin’ora nel genere Graphium Corda. Ann. Bot. 1935;21:40–50. [Google Scholar]
  • 96.Upadhyay H.P. A monograph of Ceratocyslis and Ceratocystiopsi. University of Georgia Press; Athens, GA, USA: 1981. pp. 1–176. [Google Scholar]
  • 97.Seifert K.A., Okada G. Graphium anamorphs of Ophiostoma species and similar anamorphs of other as-comycetes. In: Wingfield M.J., Seifert K.A., Webber J.F., editors. Ceratocyslis and Ophiostoma: Taxonomy, Ecology, and Pathology. American Phytopathological Society Press; St. Paul, MN, USA: 1993. pp. 27–41. [Google Scholar]
  • 98.De Gruyter J., Woudenberg J.H., Aveskamp M.M., Verkley G.J., Groenewald J.Z., Crous P.W. Systematic reappraisal of species in Phoma section Paraphoma, Pyrenochaeta and Pleurophoma. Mycologia. 2010;102:1066–1081. doi: 10.3852/09-240. [DOI] [PubMed] [Google Scholar]
  • 99.Ge X., Zhou R., Yuan Y., Xu H., Fu J., Li H. Identification and characterization of Paraphoma chrysanthemicola causing leaf spot disease on Atractylodes japonica in China. J. Phytopathol. 2016;164:372–377. doi: 10.1111/jph.12463. [DOI] [Google Scholar]
  • 100.Dhillon G., Sandhu J.S., Singh P. Variation among poplar (Populus deltoides Bartr.) clones for growth, wood traits and tolerance to leaf spot diseases. Curr. Agric. Res. J. 2020;8:128–136. doi: 10.12944/CARJ.8.2.08. [DOI] [Google Scholar]
  • 101.Yokoya K., Postel S., Fang R., Sarasan V. Endophytic fungal diversity of Fragaria vesca, a crop wild relative of strawberry, along environmental gradients within a small geographical area. PeerJ. 2017;5:e2860. doi: 10.7717/peerj.2860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Crous P.W., Schumacher R.K., Wingfield M.J., Lombard L., Giraldo A., Christensen M., Gardiennet A., Nakashima C., Pereira O., Smith A.J., et al. Fungal systematics and evolution: FUSE 1. Sydowia. 2015;67:81–118. [Google Scholar]
  • 103.Domsch K.H., Gams W., Anderson T.-H. Compendium of Soil Fungi. TAXON. 1982;31:600. doi: 10.2307/1220704. [DOI] [Google Scholar]
  • 104.Hale M.D., Eaton R.A. Oscillatory growth of fungal hyphae in wood cell walls. Trans. Br. Mycol. Soc. 1985;84:277–288. doi: 10.1016/S0007-1536(85)80079-6. [DOI] [Google Scholar]
  • 105.Nilsson T. Microscopic studies on the degradation of cellophane and various cellulosic fibres by wood-attacking microfungi. Stud. For. Suec. 1947;117:1–27. [Google Scholar]
  • 106.Hallaksela A.M., Niemistö P. Stem discoloration of planted silver birch. Scand. J. For. Res. 2008;13:169–176. doi: 10.1080/02827589809382973. [DOI] [Google Scholar]
  • 107.Coetsee C., Wingfield M.J., Crous P.W., Wingfield B.D. Xenochalara, a new genus of dematiaceous hypho-mycetes for Chalara-like fungi with apical wall building conidial development. S. Afr. J. Bot. 2000;66:99–103. doi: 10.1016/S0254-6299(15)31069-3. [DOI] [Google Scholar]
  • 108.Fonseca A., Scorzetti G., Fell J.W. Diversity in the yeast Cryptoccocus albidus and related species as re-vealed by ribosomal DNA sequence analysis. Can. J. Microbiol. 2000;46:7–27. doi: 10.1139/cjm-46-1-7. [DOI] [PubMed] [Google Scholar]
  • 109.Cai L., Jeewon R., Hyde K., Hyde R. Phylogenetic evaluation and taxonomic revision of Schizothecium based on ribosomal DNA and protein coding genes. Fungal Divers. 2005;19:1–21. [Google Scholar]
  • 110.Arenz B.E., Held B.W., Jurgens J.A., Farrell R.L., Blanchette R.A. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol. Biochem. 2006;38:3057–3064. doi: 10.1016/j.soilbio.2006.01.016. [DOI] [Google Scholar]
  • 111.McGovern R.J., Horita H., Stiles C.M., Seijo T.E. Host range of Itersonilia perplexans and management of Itersonilia petal blight of China Aster. Plant Health Prog. 2006;7:7. doi: 10.1094/PHP-2006-1018-02-RS. [DOI] [Google Scholar]
  • 112.Aveskamp M.M., de Gruyter J., Woudenberg J.H.C., Verkley G.J.M., Crous P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol. 2010;65:1–60. doi: 10.3114/sim.2010.65.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Branda E., Turchetti B., Diolaiuti G., Pecci M., Smiraglia C., Buzzini P. Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy) FEMS Microbiol. Ecol. 2010;72:354–369. doi: 10.1111/j.1574-6941.2010.00864.x. [DOI] [PubMed] [Google Scholar]
  • 114.Crous P.W., Groenewald J.Z., Diederich P. Xenopolyscytalum pinae. Fungal Planet 55. Persoonia. 2010;5:130–131. [Google Scholar]
  • 115.Kowalski T., Kehr R.D. Two new species of Phialocephala occurring on Picea and Alnus. Can. J. Bot. 1995;73:26–32. doi: 10.1139/b95-004. [DOI] [Google Scholar]
  • 116.Markovskaja S. Aero-aquatic fungi colonizing decaying leaves in woodland swampy pools of Aukštadvaris Regional Park (Lithuania) Bot. Lithuania. 2012;18:123–132. [Google Scholar]
  • 117.Savchenko K.G., Heluta V.P. Smut fungi of Ukraine, a checklist. Sydowia. 2012;64:281–300. [Google Scholar]
  • 118.Hyde K.D., Jones E.B.G., Liu J.-K., Ariyawansa H., Boehm E.W., Boonmee S., Braun U., Chomnunti P., Crous P.W., Dai D.-Q., et al. Families of Dothideomycetes. Fungal Divers. 2013;63:1–313. doi: 10.1007/s13225-013-0263-4. [DOI] [Google Scholar]
  • 119.Quaedvlieg W., Verkley G., Shin H.-D., Barreto R., Alfenas A., Swart W., Groenewald J., Crous P. Sizing up Septoria. Stud. Mycol. 2013;75:307–390. doi: 10.3114/sim0017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Marin-Felix Y., Groenewald J., Cai L., Chen Q., Marincowitz S., Barnes I., Bensch K., Braun U., Camporesi E., Damm U., et al. Genera of phytopathogenic fungi: GOPHY 1. Stud. Mycol. 2017;86:99–216. doi: 10.1016/j.simyco.2017.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Valenzuela-Lopez N., Cano-Lira J., Guarro J., Sutton D., Wiederhold N., Crous P., Stchigel A. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud. Mycol. 2017;90:1–69. doi: 10.1016/j.simyco.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Markovskaja S., Kačergius A., Davydenko K., Fraser S. First record of Neocatenulostroma germanicum on pines in Lithuania and Ukraine and its co-occurrence with Dothistroma spp. and other pathogens. For. Pathol. 2016;46:522–533. doi: 10.1111/efp.12308. [DOI] [Google Scholar]
  • 123.LoBuglio K.F. Cenococcum. In: Cairney J.W.G., Chambers S.M., editors. Ectomycorrhizal Fungi Key Genera in Profile. Springer; Berlin/Heidelberg, Germany: 1999. [DOI] [Google Scholar]
  • 124.Cole G.T., Kendrick B., editors. Biology of Conidial Fungi. Academic Press; New York, NY, USA: 1981. pp. 1–680. [Google Scholar]
  • 125.Kwaśna H., Behnke-Borowczyk J., Gornowicz R., Łakomy P. Effects of preparation of clear-cut forest sites on the soil mycobiota with consequences for Scots pine growth and health. For. Pathol. 2019;49:e12494. doi: 10.1111/efp.12494. [DOI] [Google Scholar]
  • 126.Boberg J.B., Ihrmark K., Lindahl B.D. Decomposing capacity of fungi commonly detected in Pinus sylvestris needle litter. Fungal. Ecol. 2011;4:110–114. doi: 10.1016/j.funeco.2010.09.002. [DOI] [Google Scholar]
  • 127.Gramaje D., Úrbez-Torres J.R., Sosnowski M.R. Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Dis. 2018;102:12–39. doi: 10.1094/PDIS-04-17-0512-FE. [DOI] [PubMed] [Google Scholar]
  • 128.Su L., Zhu H., Niu Y., Guo Y., Du X., Guo J., Zhang L., Qin C. Phylogeny and taxonomic revision of Kernia and Acaulium. Sci. Rep. 2020;10:1–11. doi: 10.1038/s41598-020-67347-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Prabhugaonkar A., Jalmi P. Isolation of Acrodontium crateriforme as a pitcher trap inquiline. Curr. Res. Environ. Appl. Mycol. 2017;7:203–207. doi: 10.5943/cream/7/3/7. [DOI] [Google Scholar]
  • 130.Ingold C. Aquatic hyphomycetes of decaying alder leaves. Trans. Br. Mycol. Soc. 1942;25:339–417. doi: 10.1016/S0007-1536(42)80001-7. [DOI] [Google Scholar]
  • 131.Wang X., Houbraken J., Groenewald J., Meijer M., Andersen B., Nielsen K., Crous P., Samson R. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud. Mycol. 2016;84:145–224. doi: 10.1016/j.simyco.2016.11.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Kendrick W.B., Burges A. Biological aspects of the decay of Pinus sylvestris leaf litter. Nova Hedwigia. 1962;4:313–359. [Google Scholar]
  • 133.Martinović T., Koukol O., Hirose D. Distinct phylogeographic structure recognized within Desmazierella acicola. Mycologia. 2016;108:20–30. doi: 10.3852/14-291. [DOI] [PubMed] [Google Scholar]
  • 134.Li H., Sun G., Zhai X., Batzer J., Mayfield D., Crous P., Groenewald J., Gleason M. Dissoconiaceae associated with sooty blotch and flyspeck on fruits in China and the United States. Pers. Mol. Phylogeny Evol. Fungi. 2012;28:113–125. doi: 10.3767/003158512X651157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Boonmee S., Ko T.W.K., Chukeatirote E., Hyde K.D., Chen H., Cai L., McKenzie E.H., Jones E.B.G., Kodsueb R., Hassan B.A. Two new Kirschsteiniothelia species with Dendryphiopsis anamorphs cluster in Kirschsteiniotheliaceae fam. nov. Mycologia. 2012;104:698–714. doi: 10.3852/11-089. [DOI] [PubMed] [Google Scholar]
  • 136.Abass M., Hussein N. Morphological, molecular and pathological study on Nigrospora oryzae and Nigrospora sphaerica, the leaf spot fungi of date palm. Basra J. Date Palm Res. 2014;13:1313. [Google Scholar]
  • 137.Brentu F.C., Cornelius E.W., Lawson L.E.V., Oduro K.A., Vicent A. First Report of Pseudocercospora angolensis causing fruit and leaf spot of Citrus in Ghana. Plant Dis. 2013;97:1661. doi: 10.1094/PDIS-06-13-0615-PDN. [DOI] [PubMed] [Google Scholar]
  • 138.Nagahama T., Hamamoto M., Nakase T., Horikoshi K. Rhodotorula lamellibrachii sp. nov., a new yeast species from a tubeworm collected at the deep-sea floor in Sagami bay and its phylogenetic analysis. Antonie Leeuwenhoek. 2001;80:317–323. doi: 10.1023/A:1013043301388. [DOI] [PubMed] [Google Scholar]
  • 139.Hamamoto M. Erythrobasidium Hamamoto, Sugiyama & Komagata. In: Kurtzman C.P., Fell J.W., Boekhout T., editors. The Yeasts, a Taxonomic Study. 5th ed. Volume 3. Elsevier; London, UK: 2011. pp. 1433–1435. [Google Scholar]
  • 140.Kumar D., Sigler L., Gibas C.F.C., Mohan S., Schuh A., Medeiros B.C., Peckham K., Humar A. Graphium basitruncatum fungemia in a patient with acute leukemia. J. Clin. Microbiol. 2007;45:1644–1647. doi: 10.1128/JCM.02466-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Lackner M., de Hoog G.S. Parascedosporium and its relatives: Phylogeny and ecological trends. IMA Fungus. 2011;2:39–48. doi: 10.5598/imafungus.2011.02.01.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Milenković I., Keča N., Karadžić D., Radulović Z., Nowakowska J.A., Oszako T., Sikora K., Corcobado T., Jung T. Isolation and pathogenicity of Phytophthora species from poplar plantations in Serbia. Forests. 2018;9:330. doi: 10.3390/f9060330. [DOI] [Google Scholar]
  • 143.Cadete R.M., Lopes M.R., Rosa C.A. Yeasts associated with decomposing plant material and rotting wood. In: Buzzini P., Lachance M.-A., Yurkov A., editors. Yeasts in Natural Ecosystems: Diversity. Springer International Publishing; Cham, Switzerland: 2017. pp. 265–292. [DOI] [Google Scholar]
  • 144.González A., Martínez A.T., Almendros G., Grinbergs J. A study of yeasts during the delignification and fungal transformation of wood into cattle feed in Chilean rain forest. Antonie Leeuwenhoek. 1989;55:221–236. doi: 10.1007/BF00393851. [DOI] [PubMed] [Google Scholar]
  • 145.Hagler A.N., Mendonca-Hagler L.C., Phaff H.J. Candida populi, a new species of yeast occurring in exudates of Populus and Betula species. Int. J. Syst. Bacteriol. 1989;39:97–99. doi: 10.1099/00207713-39-2-97. [DOI] [Google Scholar]
  • 146.Selosse M.A., Martos F., Perry B., Maj P., Roy M., Pailler T. Saprotrophic fungal symbionts in tropical achlorophyllous orchids. Plant Signal. Behav. 2010;5:349–353. doi: 10.4161/psb.5.4.10791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147.Hofstetter V., Buyck B., Croll D., Viret O., Couloux A., Gindro K. What if esca disease of grapevine were not a fungal disease? Fungal Divers. 2012;54:51–67. doi: 10.1007/s13225-012-0171-z. [DOI] [Google Scholar]
  • 148.Shakya M., Gottel N., Castro H., Yang Z.K., Gunter L., Labbe J., Muchero W., Bonito G., Vilgalys R., Tuskan G., et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS ONE. 2013;8:e76382. doi: 10.1371/journal.pone.0076382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Cregger M.A., Veach A.M., Yang Z.K., Crouch M.J., Vilgalys R., Tuskan G.A., Schadt C.W. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome. 2018;6:31. doi: 10.1186/s40168-018-0413-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Ridout M., Newcombe G. Sydowia polyspora is both a foliar endophyte and a pre-emergent seed pathogen in Pinus ponderosa. Plant Dis. 2018;102:640–644. doi: 10.1094/PDIS-07-17-1074-RE. [DOI] [PubMed] [Google Scholar]
  • 151.Hamayun M., Khan S.A., Khan A.L., Rehman G., Sohn E.-Y., Shah A.A., Kim S.-K., Joo G.-J., Lee I.-J. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol. 2009;19:1244–1249. [PubMed] [Google Scholar]
  • 152.Da Silva R.R., Da Rosa N.G., De Oliveira L.C.G., Juliano M.A., Juliano L., Rosa J.C., Cabral H. Biochemical properties and catalytic specificity of a novel neutral serine peptidase secreted by fungus Pyrenochaetopsis sp. Appl. Biochem. Biotechnol. 2018;187:1158–1172. doi: 10.1007/s12010-018-2875-3. [DOI] [PubMed] [Google Scholar]
  • 153.Ullah C., Unsicker S.B., Reichelt M., Gershenzon J., Hammerbacher A. Accumulation of catechin and proanthocyanidins in black poplar stems after infection by Plectosphaerella populi: Hormonal regulation, biosynthesis and antifungal activity. Front. Plant Sci. 2019;10:1441. doi: 10.3389/fpls.2019.01441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Schwartz H.F., Mohan S.K. Compendium of Onion and Garlic Diseases and Pests. 2nd ed. The American Phytopathological Society; St. Paul, MN, USA: 2016. pp. 8–86. [DOI] [Google Scholar]
  • 155.Larignon P. Réflexions sur l’esca: Ce que l’on sait déjà montre qu’il en reste beaucoup à apprendre: Vigne. Phytoma-La Défense des Végétaux. 2004;576:28–31. [Google Scholar]
  • 156.Fourie P.H., Halleen F., van der Vyver J., Schreuder W. Effects of Trichoderma treatments on the occurrence of decline pathogens in the roots and rootstocks of nursery grapevines. Phytopathol. Mediterr. 2001;40:473–478. [Google Scholar]
  • 157.Gerbore J. Ph.D. Thesis. Punjab Agricultural University; Punjab, India: 2013. Lutte Biologique Contre un Champignon Pathogène Impliqué dans L’esca de la Vigne, par Utilisation de L’oomycète Pythium oligandrum; pp. 1–270. [Google Scholar]
  • 158.Yacoub A., Gerbore J., Magnin N., Chambon P., Dufour M.C., Corio-Costet M.F., Guyoneaud R., Rey P. Ability of Pythium oligandrum strains to protect Vitis vinifera against Phaeomoniella chlamydsopora, a pathogen involved in Esca, by inducing plant resistance. Biol. Control. 2016;92:7–16. [Google Scholar]
  • 159.Yacoub A., Gerbore J., Magnin N., Vallance J., Grizard D., Guyoneaud R., Rey P. Induction of grapevine defence systems using the oomycete Pythium oligandrum against a pathogenic fungus involved in Esca. Phytopathol. Mediterr. 2014;53:574–575. [Google Scholar]
  • 160.Bertsch C., Ramírez-Suero M., Magninrobert M., Larignon P., Chong J., Aboumansour E., Spagnolo A., Clément C., Fontaine F. Grapevine trunk diseases: Complex and still poorly understood. Plant Pathol. 2012;62:243–265. doi: 10.1111/j.1365-3059.2012.02674.x. [DOI] [Google Scholar]
  • 161.Jones E.E., Hammond S., Blond C., Brown D.S., Ridgway H.J. Interaction between arbuscular mycorrhizal fungi and rootstock cultivar on the susceptibility to infection by Ilyonectria species. Phytopathol. Mediterr. 2014;53:582–583. [Google Scholar]
  • 162.Petit E., Gubler W.D. Influence of Glomus intraradices on black foot disease caused by Cylindrocarpon macrodidymum on Vitis rupestris under controlled conditions. Plant Dis. 2006;90:1481–1484. doi: 10.1094/PD-90-1481. [DOI] [PubMed] [Google Scholar]
  • 163.Bonito G., Reynolds H., Robeson M.S., Nelson J., Hodkinson B.P., Tuskan G., Schadt C.W., Vilgalys R. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 2014;23:3356–3370. doi: 10.1111/mec.12821. [DOI] [PubMed] [Google Scholar]
  • 164.Zhu Y.J., Yu X.Y., Wang B.T., Jin L., Jin F.J. Description of Fusarium solani isolated from the soil of a poplar plantation in China. Int. J. Agric. Biol. 2020;24:663–670. [Google Scholar]
  • 165.Crous P., Braun U., Schubert K., Groenewald J. Delimiting Cladosporium from morphologically similar genera. Stud. Mycol. 2007;58:33–56. doi: 10.3114/sim.2007.58.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Baral H.-O., De Sloover J.R., Huhtinen S., Laukka T., Stenroos S. An emendation of the genus Hyaloscypha to include Fuscoscypha (Hyaloscyphaceae, Helotiales, Ascomycotina) Karstenia. 2009;49:1–17. doi: 10.29203/ka.2009.430. [DOI] [Google Scholar]
  • 167.Van Niekerk J.M., Bester W., Halleen F., Crous P.W., Fourie P.H. The distribution and symptomatology of grapevine trunk disease pathogens are influenced by climate. Phytopathol. Mediterr. 2011;50:98–111. [Google Scholar]
  • 168.Úrbez-Torres J.R., Battany M., Bettiga L.J., Gispert C., McGourty G., Roncoroni J., Smith R.J., Verdegaal P., Gubler W.D. Botryosphaeriaceae species spore-trapping studies in California vineyards. Plant Dis. 2010;94:717–724. doi: 10.1094/PDIS-94-6-0717. [DOI] [PubMed] [Google Scholar]
  • 169.Úrbez-Torres J., Bruez E., Hurtado J., Gubler W.D. Effect of temperature on conidial germination of Botryosphaeriaceae species infecting grapevines. Plant Dis. 2010;94:1476–1484. doi: 10.1094/PDIS-06-10-0423. [DOI] [PubMed] [Google Scholar]
  • 170.Van Niekerk J.M., Calitz F.J., Halleen F., Fourie P.H. Temporal spore dispersal patterns of grapevine trunk pathogens in South Africa. Eur. J. Plant Pathol. 2010;127:375–390. doi: 10.1007/s10658-010-9604-2. [DOI] [Google Scholar]
  • 171.Szwed M. Variability of precipitation in Poland under climate change. Theor. Appl. Clim. 2018;135:1003–1015. doi: 10.1007/s00704-018-2408-6. [DOI] [Google Scholar]
  • 172.Gramaje D., Armengol J. Fungal trunk pathogens in the grapevine propagation process: Potential inoculum sources, detection, identification, and management strategies. Plant Dis. 2011;95:1040–1055. doi: 10.1094/PDIS-01-11-0025. [DOI] [PubMed] [Google Scholar]
  • 173.Úrbez-Torres J.R., Haag P., Bowen P., Lowery T., O’Gorman D. Development of a DNA macroarray for the detection and identification of fungal pathogens causing decline of young grapevines. Phytopathology. 2015;105:1373–1388. doi: 10.1094/PHYTO-03-15-0069-R. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data supporting reported results can be found at https://figshare.com/s/2c89719675a6859ee8a6 (accessed on 11 April 2021).


Articles from Plants are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES