Abstract
Objetivo
Determinar la correlación de algunas medidas de obesidad con la resistencia a la insulina (medida por HOMA).
Diseño
Estudio transversal, descriptivo.
Emplazamiento
Centro de salud urbano con una población envejecida.
Participantes
Se seleccionó una muestra aleatoria de 70 individuos de entre una población adulta con factores de riesgo o diagnóstico de diabetes mellitus tipo 2.
Mediciones principales
Se recogieron parámetros de obesidad (peso, índice de masa corporal [IMC], perímetros corporales, índice cintura/cadera y pliegues cutáneos), clínicos (presión arterial y cálculo del riesgo cardiovascular) y analíticos (glucemia e insulinemia basales y tras 2 h de una sobrecarga oral de glucosa, HOMA, perfil lipídico y estudio de microalbuminuria). Se define como resistencia a la insulina un HOMA ≥ 3,8.
Resultados
Entre los individuos con resistencia a la insulina se objetivaron valores significativamente superiores de peso (85,5 frente a 75,5 kg), IMC (35,1 frente a 29,4 kg/m2), perímetro de cintura (108 frente a 100,3 cm) respecto a los que no la tenían. No se evidenciaron diferencias significativas en cuanto al índice cintura/cadera de ambos grupos. Se establecen los valores de IMC y/o perímetro de cintura a partir de los cuales hay mayor riesgo de presentar resistencia a la insulina. En varones son la cintura > 107 cm (sensibilidad del 43%, especificidad del 62%) y el IMC > 29 (sensibilidad del 57%, especificidad del 50%). En mujeres, una cintura > 102 cm (sensibilidad del 64%, especificidad del 89%) y el IMC > 34 (sensibilidad del 91%, especificidad del 89%).
Conclusiones
En la práctica clínica, el IMC y el diámetro de la cintura son muy buenos predictores de la resistencia a la insulina, mientras que el índice cintura/cadera y los pliegues cutáneos no aportan información de valor.
Palabras clave: Obesidad, Diabetes mellitus tipo 2, Insulinorresistencia
Abstract
Objective
To determine the correlation between certain obesity measurements and insulin resistance (measured by HOMA).
Design
Descriptive cross-sectional study.
Setting
Urban health centre with elderly population.
Participants
A random sample of 70 people was chosen from among an adult population with risk factors for DM2 or already diagnosed.
Main measurements
Parameters of obesity were collected (weight, BMI, body perimeters, waist/hip index, and cutaneous folds), as were clinical parameters (blood pressure and cardiovascular risk), and analyses (glycaemia and insulinaemia—both basal and after 2 hours of oral overload of glucose—, HOMA, lipid profile, and microalbuminuria study). Resistance to insulin (IR) was defined as a HOMA ≥3.8.
Results
Individuals with IR had significantly higher values of weight (85.5 vs 75.5 kg), BMI (35.1 vs 29.4 kg/m2), waist perimeter (108 vs 100.3 cm) than those without IR. In neither group were any significant differences as to the waist/hip index found. The BMI and/or waist perimeter values that were more likely to suffer IR were established. In men, the values were waist >107 cm (sensitivity, 43%; specificity, 62%) and BMI>29 (sensitivity, 57%; specificity, 50%). In women, they were a waist >102 cm (sensitivity, 64%; specificity, 89%) and BMI>34 (sensitivity, 91%; specificity, 89%).
Conclusions
In clinical practice the BMI and the diameter of the waist are very good predictors of IR, whilst the waist/hip index and cutaneous folds do not provide any information of value.
Key words: Obesity, Type 2 Diabetes, Insulin resistance
Bibliografía
- 1.Reaven G.H., Chen Y.D. Role of insulin in regulation of lipoprotein metabolism in diabetes. Diab Metabol Rev. 1988;4:639–652. doi: 10.1002/dmr.5610040703. [DOI] [PubMed] [Google Scholar]
- 2.Palaniappan L., Carnethon M.R., Wang Y., Hanley A.J., Fortmann S.P. Predictors of the incident metabolic syndrome in adults: the Insulin Resistance Atherosclrosis Study. Diabetes Care. 2004;27:788–793. doi: 10.2337/diacare.27.3.788. [DOI] [PubMed] [Google Scholar]
- 3.Reaven P. Metabolic syndrome. J Insur Med. 2004;36:132–142. [PubMed] [Google Scholar]
- 4.World Health Organisation Study Group Diabetes mellitus. WHO Tech Rep Ser. 1985;727:1–104. [PubMed] [Google Scholar]
- 5.Jorgensen M.E., Borch-Johnsen K. The metabolic syndrome, is one global definition possible? Diabet Med. 2004;21:1064–1065. doi: 10.1111/j.1464-5491.2004.01400.x. [DOI] [PubMed] [Google Scholar]
- 6.Serrano Ríos M., Grupo de Trabajo Resistencia a la insulina de la Sociedad Española de Diabetes tipo 2 Resistencia a la insulina y su implicación en múltiples factores de riesgo asociados a diabetes tipo 2. Med Clin (Barc) 2002;119:458–463. doi: 10.1016/s0025-7753(02)73455-6. [DOI] [PubMed] [Google Scholar]
- 7.Lebovitz H.E. Insulin resistance: definition and consequences. Exp Clin Endocrinol Diab. 2001;109(Suppl 2):S135–S148. doi: 10.1055/s-2001-18576. [DOI] [PubMed] [Google Scholar]
- 8.Costa B., Cabré J.J., Martín F. Síndrome metabólico, resistencia a la insulina y diabetes. ¿Qué se oculta bajo la punta del iceberg? Aten Primaria. 2003;31:436–445. doi: 10.1016/S0212-6567(03)79204-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Haffner S.M. Insulin resistance, inflammation, and the prediabetic state. Am J Cardiol. 2003;92:J18–J26. doi: 10.1016/s0002-9149(03)00612-x. [DOI] [PubMed] [Google Scholar]
- 10.Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. [DOI] [PubMed] [Google Scholar]
- 11.Foz M., Barbany M., Remesar K., Carrillo M., Aranceta J., García- Luna P.P. Consenso SEEDO’2000 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med Clin (Barc) 2000;115:587–597. [PubMed] [Google Scholar]
- 12.American College of Endocrinology (ACE) Position statement on the insulin resistance syndrome. Endocr Pract. 2003;9:237–252. [PubMed] [Google Scholar]
- 13.Jia W.P., Lu J.X., Xiang K.S., Bao Y.Q., Lu H.J., Chen L. Prediction of abdominal visceral obesity from body mass index, waist circumference and waist-hip ratio in Chinese adults: receiver operating characteristic curves analysis. Biomed Environ Sci. 2003;16:206–211. [PubMed] [Google Scholar]
- 14.Kurpad S.S., Tandon H., Srinivasan K. Waist circumference correlates better with body mass index than waist-to-hip ratio in Asian Indians. Natl Med J India. 2003;16:189–192. [PubMed] [Google Scholar]
- 15.Sayeed M.A., Mahtab H., Latif Z.A., Khanam P.A., Ahsan K.A., Banu A. Waist-to-height ratio is a better obesity index than body mass index and waist-to-hip ratio for predicting diabetes, hypertensionandlipidemia. Bangladesh Med Res Counc Bull. 2003;29:1–10. [PubMed] [Google Scholar]
- 16.Hsieh S.D., Muto T. The superiority of waist-to-height ratio as ana antrhropometric index to evaluate clustering of coronary risk factors among non-obese men and women. Prev Med. 2005;40:216–220. doi: 10.1016/j.ypmed.2004.05.025. [DOI] [PubMed] [Google Scholar]
- 17.Savva S.C., Tornaritis M., Savva M.E., Kourides Y., Panagi E., Silikiotou N. Waist circumference and waist-to. height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord. 2000;24:1453–1458. doi: 10.1038/sj.ijo.0801401. [DOI] [PubMed] [Google Scholar]
- 18.Tulloch-Reid M.K., Willimas D.E., Looker H.C., Hanson R.L., Knowler W.C. Do mesures of body fat distribution provide information on the risk of type2 diabetes in addition to measures of general obesity? Comparison of anthropometric predcitors of type 2 diabetes in PIMA Indians. Diabetes Care. 2003;26:2556–2561. doi: 10.2337/diacare.26.9.2556. [DOI] [PubMed] [Google Scholar]
- 19.Lemieux I., Pascot A., Couillard C., Lamarche B., Tchernof A., Almeras N. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia, hyperapolipoprotein B, small, dense LDL) in men? Circulation. 2000;102:179–184. doi: 10.1161/01.cir.102.2.179. [DOI] [PubMed] [Google Scholar]
- 20.Mur T., Franch J., Morató J., Mena A., Vilarrubias N., Llobera A. Macroangiopatía en la diabetes tipo II. El estudio Raval Sud. Aten Primaria. 1995;16:67–72. [PubMed] [Google Scholar]
- 21.Botas P., Delgado E., Castano G., Díaz de Grenu C., Prieto J., Díaz- Cadorniga F.J. Comparison of the diagnostic criteria for diabetes mellitus, WHO-1985, ADA-1997 and WHO-1999 in the adult population of Asturias (Spain) Diabet Med. 2003;20:904–908. doi: 10.1046/j.1464-5491.2003.01006.x. [DOI] [PubMed] [Google Scholar]
- 22.The Seventh Report of the Joint Nacional Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7): is it really practical? Natl Med J India. 2004;17:227. Disponible en: www.nhlbi.nih.gov/guidelines/hypertension [PubMed]
- 23.Wilson P.WF., D’Agostino R.B., Levy D., Belanger A.M., Silvershartz H., Kannel W.B. Prediction of coronary heart disease using risk factors categories. Circulation. 1998;97:1837–1847. doi: 10.1161/01.cir.97.18.1837. [DOI] [PubMed] [Google Scholar]
- 24.Ascaso Juan F., Romero P. Cuantificación de insulinorrestencia con los valores de insulina basal e índice HOMA en una población no diabética. Med Clin (Barc) 2001;117:530–553. doi: 10.1016/s0025-7753(01)72168-9. [DOI] [PubMed] [Google Scholar]
- 25.Jensen J.S., Borch-Johnsen K., Feldt-Rasmussen B., Appleyard M., Jensen G. Urinary albumin excretion and history of myocardial infarction in a cross-sectional study of 2,613 individuals. J Cardiovascular Risk. 1997;4:121–125. [PubMed] [Google Scholar]
- 26.Dinneen S.F., Gerstein H.C. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus: a systematic overview of the literature. Arch Intern Med. 1997;157:1413–1418. [PubMed] [Google Scholar]