Skip to main content
Arquivos Brasileiros de Cardiologia logoLink to Arquivos Brasileiros de Cardiologia
. 2021 Feb 3;116(3):494–500. [Article in Portuguese] doi: 10.36660/abc.20200426
View full-text in English

GDF-15 como Biomarcador em Doenças Cardiovasculares

Bruna Miers May 1, Mauricio Pimentel 2, Leandro Ioschpe Zimerman 2, Luis Eduardo Rohde 2
PMCID: PMC8159541  PMID: 33566936

Resumo

Nos últimos anos, vários biomarcadores estão ganhando importância clínica na avaliação diagnóstica e prognóstica de pacientes com doenças cardiovasculares. O fator de crescimento e diferenciação celular-15 (GDF-15) é uma citocina induzida por estresse e inflamação, membro da família do TGF-, cuja produção no miocárdio foi demonstrada experimentalmente em resposta à injúria isquêmica ou sobrecarga cardíaca. Este novo marcador foi positivamente correlacionado com aumento do risco de eventos cardiovasculares em estudos populacionais e configurou-se preditor independente de mortalidade e prognóstico adverso em pacientes com doença arterial coronariana e insuficiência cardíaca. Este trabalho tem como objetivo revisar o valor diagnóstico e prognóstico do GDF-15 em diferentes cenários na cardiologia.

Keywords: Doenças Cardiovasculares, Biomarcadores, GDF-15 Fator de Diferenciação de Crescimento, Citocinas, Estresse, Inflamação, Prognóstico

Introdução

O fator de crescimento e diferenciação celular-15 (GDF-15) é uma citocina da família do fator de transformação do crescimento beta (TGF-) encontrada em baixa quantidade nos tecidos e no plasma, exceto pela placenta e próstata. Antigamente chamado de citocina inibidora de macrófagos-1 (MIC-1), o GDF-15 foi descoberto há mais de 20 anos e assim nomeado devido a um possível papel antagonista após a ativação de macrófagos por citocinas inflamatórias (interleucinas e fator de necrose tumoral) em estudos experimentais. A sua função no organismo permanece incerta até hoje e pode variar conforme o tecido estudado. A expressão desse marcador é regulada por estresse e injúria tecidual, e está associada a condições inflamatórias em diferentes órgãos, inclusive no miocárdio. 1

Em modelos animais, o GDF-15 apresentou-se inicialmente como uma proteína cardioprotetora, prevenindo morte celular, e dilatação e hipertrofia cardíaca. Expressão aumentada do marcador foi encontrada após estímulos agressores como sobrecarga de pressão e isquemia tecidual. 2 , 3 A ativação da enzima NOS-2 (óxido nítrico sintase 2), em situações de estresse, participa na regulação positiva de GDF-15 por vias de sinalização intracelular dependentes de óxido nítrico. 3 Em ratos geneticamente modificados para apresentarem deficiência de GDF-15, na isquemia miocárdica induzida, eram observadas áreas de infarto maiores com maior apoptose de miócitos, indicando uma possível função de limitação de dano miocárdico do marcador. 3 A Figura 1 apresenta os principais fatores que influenciam a expressão do GDF-15.

Figura 1. – Fatores que modificam a expressão do fator de crescimento e diferenciação celular-15 (GDF-15) no sistema cardiovascular.

Figura 1

Outro trabalho experimental correlacionou níveis elevados do GDF-15 em cardiomiócitos de ratos com uma redução na ativação do hormônio do crescimento (GH), sugerindo sua participação na via de sinalização do GH. Após essa descoberta, os mesmos autores realizaram estudo em crianças com cardiopatia congênita, encontrando níveis significativamente maiores de GDF-15 no plasma de crianças com cardiopatia e deficiência de crescimento, em relação a controles saudáveis e a cardiopatas com crescimento normal. 4

Após os resultados dos trabalhos iniciais, o GDF-15 passou a ser investigado em vários contextos clínicos, apresentando-se na maior parte dos estudos como um biomarcador associado a maior risco de desenvolver eventos cardiovasculares. 5 - 9 Atualmente, a dosagem sérica do GDF-15 encontra-se disponível comercialmente apenas na Europa, em outras regiões os kits são acessíveis apenas para fins de pesquisa clínica e experimental. 10 A dosagem é realizada por imunoensaios, ensaios por quantificação de complexos antígeno-anticorpo marcados por radioisótopos (técnica de imunorradiometria – IRMA), por enzimas (ELISA) ou luminescentes (quimioluminescência). A faixa de detecção varia entre 400-20000 ng/L, com boa precisão e reprodutibilidade (taxas de imprecisão intra e inter-ensaios abaixo de 10%). O método mais utilizado hoje é o por ELISA, pelo menor custo e maior acessibilidade. 11 , 12

O objetivo deste artigo é revisar o papel do GDF-15 em diferentes cenários da cardiologia, avaliando-se a possibilidade de sua incorporação como biomarcardor no diagnóstico e estratificação de risco de cardiopatias prevalentes.

Risco Cardiovascular em Indivíduos Saudáveis

O primeiro estudo em humanos a relacionar o GDF-15 com doença cardiovascular foi publicado em 2002 e incluiu 27 628 mulheres saudáveis acompanhadas por quatro anos. Os resultados demonstraram um aumento de 2,7 vezes no risco de evoluir com eventos cardiovasculares (infarto, acidente vascular cerebral e morte cardiovascular) nas participantes com níveis da citocina acima de 856 ng/L. 13 Em uma coorte com 1391 pacientes sem doença cardiovascular estabelecida, o marcador foi preditor independente de mortalidade por todas as causas e de morte cardiovascular com hazard ratio (HR) de 1,5 (IC 95%: 1,3-1,8), com poder discriminatório comparável ao peptídeo natriurético cerebral (BNP) (HR 1,3; IC 95%: 1,2-1,5). 14

Dados do Framingham Heart Study, onde foram avaliados 85 biomarcadores (incluindo BNP, PCR e GDF-15) em 3523 participantes ao longo de 14 anos de seguimento, mostraram que o GDF-15 foi o único marcador, em análise multivariada, a manter associação significativa com os três desfechos avaliados: eventos cardíacos ateroscleróticos (HR 1,43; IC 95%: 1,20-1,58), insuficiência cardíaca (IC) (HR 2,08; IC 95%: 1,72-2,53) e mortalidade (HR 1,96; IC 95%: 1,76-2,17). 8

Doença Arterial Coronariana (DAC)

O GDF-15 foi estudado em pacientes admitidos no hospital após síndrome coronariana aguda (SCA) e em portadores de doença coronariana estável.

Síndromes Coronarianas Agudas

Pacientes que apresentavam níveis aumentados de GDF-15 em dosagem realizada na internação devido à SCA evoluíram com um número maior de eventos como morte cardiovascular, reinfarto e acidente vascular cerebral em 12 meses de seguimento após a alta, demostrando um valor prognóstico com relação à progressão de doença aterosclerótica. 15

Outro estudo observacional recente demonstrou a mesma associação prognóstica do marcador com eventos cardiovasculares maiores (mortalidade total, infarto não fatal e internação por IC). Porém, em análise multivariada ajustada para outros fatores de risco, o GDF-15 permaneceu significativo apenas para mortalidade e desenvolvimento de IC. 16

Ainda no contexto de doença aguda, um ensaio clínico avaliando estratégia invasiva versus conservadora na SCA sem supradesnivelamento do segmento ST encontrou incidência significativa mais alta de eventos nos pacientes com níveis elevados de GDF-15 alocados no grupo da estratégia conservadora. Os autores sugerem que a dosagem do marcador possa complementar os escores de risco na seleção daqueles que se beneficiam mais da estratégia invasiva precoce. 17

Corroborando com essa ideia, o uso do escore GRACE, ajustado para GDF-15, associado à medida dos níveis de GDF-15 na admissão ao hospital, aumentou a acurácia do escore [área sob a curva (AUC) ROC de 0,79 para 0,85]. Entre os pacientes que não apresentaram eventos durante o seguimento de 6 meses, 54 foram classificados como risco intermediário pelo escore de GRACE e teriam sido reclassificados em baixo risco se utilizado o escore ajustado. 18 Tzikas et al., 19 encontraram que o GDF-15 é preditor independente de eventos cardiovasculares de modo semelhante à troponina, com forte correlação com a gravidade da doença coronariana avaliada pelo escore Syntax após cateterismo cardíaco. 19

Avaliando-se especificamente pacientes com infarto agudo do miocárdio com supradesnivelamento do segmento ST (IAMCSST) tratados com angioplastia primária, a taxa de mortalidade em 10 anos após o evento agudo aumentou de 6% para 19% nos pacientes com GDF-15 acima da mediana. 20 Outro estudo avaliou a alteração dinâmica do GDF-15 durante as primeiras 24 horas de um evento de IAMCSST e mostrou pico da citocina em 12 horas, e manutenção dos níveis elevados até final das 24 horas. Níveis maiores na dosagem realizada após 24 horas se correlacionaram à maior mortalidade em 30 dias. 21 Em relação à extensão do infarto e prognóstico, quanto maior a dosagem do marcador, maior o risco de remodelamento e dilatação ventricular em 12 meses. 22 Estudo prospectivo analisou 92 biomarcadores em 847 pacientes com doença coronariana acompanhados por seis anos após infarto agudo. GDF-15 foi um dos dois únicos marcadores com poder para predizer mortalidade, após ajuste para fatores clínicos. 23

Em metanálise incluindo oito estudos com pacientes acompanhados após uma SCA, o GDF-15 foi considerado um forte preditor de mortalidade com risco relativo (RR) de 6,08 (IC 95%: 4,79-7,71; p < 0,001) e reinfarto não-fatal, com RR de 1,76 (IC 95%: 1,49-2,07; p < 0,001). 24 Uma metanálise mais recente com 13 estudos e um total de 43 547 pacientes com SCA corrobora esses resultados: RR para mortalidade de 6,75 (IC 95%: 5,81-7,84; p < 0,001) e para reinfarto não-fatal 1,95 (IC 95%: 1,72-2,21, p < 0,001). 25

Ainda no cenário de SCAs, em que está indicado o uso de dupla antiagregação plaquetária, o GDF-15 também foi preditor de risco de sangramento. 15 Em uma análise post-hoc do ensaio clínico PLATO (ticagrelor x clopidogrel no IAMCSST), foi identificado um risco três vezes mais alto de sangramento nos pacientes que mantém níveis do marcador acima de 1800 ng/L em dosagem realizada um mês após a SCA, independentemente da droga utilizada. 26 Nesse contexto, em que os níveis de GDF-15 mantêm-se elevados após o evento agudo, um marcador de risco de sangramento pode ajudar na decisão de manter a terapia antitrombótica dupla além do tempo usualmente recomendado.

Doença Coronariana Estável

Na doença coronariana crônica, GDF-15 foi dosado em uma coorte com 14577 pacientes portadores de angina estável, revascularização prévia, e doença multiarterial ou infarto há mais de um ano. Ao longo do seguimento, níveis acima de 1827 ng/L associaram-se a maior risco de morte cardiovascular (HR 2,63; IC 95%: 1,9-3,6; p<0,001), morte súbita cardíaca (HR 3,06; IC 95%: 1,9-4,8; p<0,001) e hospitalização por IC (HR 5,8; IC 95%: 3,2-10; p = 0,006), de forma independente a outros marcadores como troponina, proteína C reativa e BNP. Neste estudo, 27 o GDF-15 não se correlacionou com novo evento trombótico após ajuste para os demais biomarcadores.

Insuficiência Cardíaca (IC)

O GDF-15 foi avaliado em diversas coortes de pacientes portadores de IC e comparado, na maioria, a peptídeos natriuréticos [BNP ou fragmento N-terminal do pró-hormônio do BNP (NT-proBNP)]. A principal diferença entre eles é a proporção do aumento no plasma conforme o tipo de disfunção ventricular. O NT-proBNP, um marcador de estresse hemodinâmico do ventrículo esquerdo, está aumentado na IC com fração de ejeção reduzida de forma mais significativa do que na IC com fração de ejeção preservada. Em contrapartida, o GDF-15 encontra-se elevado de forma semelhante na disfunção sistólica e diastólica, sugerindo que injúria inflamatória seja parte da fisiopatologia de ambas as condições. O GDF-15 apresentou-se como importante preditor de eventos adversos e mortalidade, independentemente da fração de ejeção e nível sérico de NT-proBNP. 28 - 33

IC com Fração de Ejeção Teduzida (ICFEr)

A avaliação do GDF-15 em diferentes estágios da IC define-o como um biomarcador de evolução de doença, aumentando exponencialmente conforme a piora de classe funcional e o remodelamento do ventrículo esquerdo. Os níveis de GDF-15 já estão elevados na fase pré-clínica da IC (estágio B) e a associação do marcador ao NT-proBNP aumentou a acurácia diagnóstica para IC, inclusive nessa fase inicial. 34 Na mesma direção, outro estudo prospectivo correlacionou o GDF-15 à progressão da disfunção ventricular e perda de capacidade funcional em pacientes com fração de ejeção menor que 35%, encontrando níveis séricos progressivamente maiores conforme a gravidade da IC. Este resultado se manteve significativo após ajuste para outros fatores de risco como o consumo de oxigênio de pico (VO2 pico), idade e taxa de filtração glomerular. 35

O primeiro grande estudo que avaliou o valor prognóstico do GDF-15 na ICFEr foi realizado utilizando-se a base de dados do ensaio clínico Val-HeFT ( Valsartan Heart Failure Trial ), que avaliou o uso de valsartan em pacientes com IC. O GDF-15 foi avaliado no início do estudo (n=1734) e após 12 meses de seguimento (n=1517). No início do estudo, 85% dos pacientes apresentavam valores de GDF-15 elevados (>1200ng/ml). Em análise multivariada incluindo variáveis clínicas, BNP, troponina e proteína C reativa, valores elevados de GDF-15 permaneceram associados de forma independente com aumento do risco de mortalidade total (HR 1,007; IC 95%: 1,001-1,014; p=0,02), mas não com a ocorrência de primeiro evento mórbido (HR 1,003; IC 95%: 0,997-1,008; p=0,34), que incluía morte, morte súbita com ressuscitação, hospitalizações por IC, ou necessidade de uso de inotrópicos ou vasodilatadores intravenosos por mais de 4h sem hospitalização. Em 12 meses de seguimento, os valores de GDF-15 aumentaram de modo semelhante no grupo placebo e no grupo valsartan, sendo associados de modo independente com mortalidade total e primeiro evento mórbido. Este achado sugere que o GDF-15 represente um eixo fisiopatológico que não é afetado pelas terapias prescritas. 7

Mais recentemente, o GDF-15 foi estudado em 1935 pacientes incluídos no estudo PARADIGM-HF, que comparou sacubitril/valsartana versus enalapril em pacientes com ICFEr. O GDF-15 basal e os seus níveis em um e oito meses de tratamento foram associados significativamente com aumento do risco de mortalidade total e de eventos cardiovasculares. Cada incremento de 20% no GDF-15 basal foi associado com maior risco de mortalidade total (HR 1,13; IC 95%:1,08-1,18; p<0,001), desfecho combinado de morte cardiovascular ou hospitalização por IC (HR 1,09; IC 95%: 1,05-1,14; P<0,001) e morte por IC (HR 1,16; IC 95% 1,05-1,28; p<0,001). O incremento no nível sérico de GDF-15 durante o estudo não foi influenciado pelos tratamentos prescritos. 36

O papel do marcador foi estudado ainda em pacientes submetidos a implante de ressincronizador cardíaco. Durante o seguimento de 158 pacientes, 72% apresentaram boa resposta à ressincronização, mas aqueles em que o nível sérico basal do GDF-15 era superior a 2720 ng/L tiveram risco significativamente maior de morte cardiovascular e reinternações por IC em 2,5 anos. Apesar de se demonstrar o valor prognóstico do biomarcador nesta população, o nível basal e a variação em um ano pós-implante não foram capazes de predizer resposta ao dispositivo. 37

No cenário de doença avançada, foram dosados cinco biomarcadores (PCR, NT-proBNP, GDF-15, galectina-3 e troponina) em pacientes com classe funcional NYHA (New York Heart Association) III. Entre eles, o GDF-15 foi o melhor preditor de mortalidade a longo prazo, inclusive com maior valor preditivo que NT-proBNP (AUC 0,78 versus 0,63). 38

Em pacientes com miocardiopatia não-isquêmica grave, GDF-15 foi analisado em biópsias realizadas durante implante de dispositivos de assistência ventricular ou transplante cardíaco, e se mostrou fortemente correlacionado ao grau de fibrose miocárdica nessas amostras. 39 Nesta coorte, observou-se que um mês após o implante do suporte circulatório, os níveis do marcador reduziram-se significativamente comparado ao pré-implante, sugerindo mais uma vez a sua associação com o grau de disfunção miocárdica. 39

IC com Fração de Ejeção Preservada (ICFEp)

Atualmente, os critérios diagnósticos para ICFEp são baseados principalmente em sintomas de IC e alterações ecocardiográficas sugerindo elevação nas pressões de enchimento cardíacas. Ainda assim, há bastante heterogeneidade nos conceitos e critérios adotados pelas Sociedades e no diagnóstico de consultório na prática clínica. Em pacientes com ICFEp, foram detectados níveis elevados de GDF-15, e sua associação direta com a relação E/e’ no ecocardiograma. A combinação de NT-proBNP e GDF-15 elevados aumentou a acurácia diagnóstica (atingindo uma AUC de 0,93) para ICFEp. 40 Ainda, estudos de coorte prospectivos com esta população demonstraram que quanto maior o nível sérico do GDF-15, maior o grau de disfunção diastólica e pior a classe funcional NYHA. 41 , 42

Um desafio diagnóstico é a definição de ICFEp em obesos mórbidos, devido a limitações ecocardiográficas como janela desfavorável, dispneia multifatorial e níveis reduzidos de BNP. No estudo de Baessler et al., 43 em pacientes com índice de massa corporal acima de 30 kg/m 2 , o GDF-15 se correlacionou com elevação nas pressões de enchimento ao ecocardiograma. A adição do GDF-15 aos critérios ecocardiográficos de disfunção diastólica obteve melhor performance diagnóstica nessa população, comparada à associação do BNP aos mesmos critérios (AUC 0,76 x AUC 0,56, respectivamente). 43

IC Agudamente Descompensada

A concentração sérica do GDF-15 na admissão de pacientes agudamente descompensados é elevada (a maioria dos estudos encontrou valores acima de 1200 ng/L). Quanto mais alta a concentração do marcador ou se os níveis aumentam durante a internação, maior o risco de reinternações por IC e mortalidade após a alta hospitalar. 44 , 45

Estudo 46 com 55 pacientes portadores de ICFEr realizou dosagens seriadas de diversos biomarcadores durante a internação por descompensação cardíaca e 30 dias após a alta, demonstrando que a curva do GDF-15 se assemelha à de dois outros marcadores: ST2 (biomarcardor pertencente à família dos receptores de interleucina-1) e BNP. Neste estudo, um rápido decréscimo no nível do marcador é evidenciado com a melhora clínica dos pacientes, diferente do que ocorreu com outras proteínas inflamatórias como proteína C reativa, TNF-alfa, IL-6, galectinas e mieloperoxidase. 46

Modelos construídos adicionando o GDF-15 a marcadores clássicos como troponina e BNP demonstram que a sua dosagem na IC aguda acrescenta valor prognóstico. Esse dado sugere a presença de várias vias fisiopatológicas independentes em pacientes hospitalizados por IC e novamente denota relevância clínica do marcador nesse cenário. 47 , 48

A Figura 2 apresenta as principais correlações do GDF-15 com diferentes aspectos clínicos da IC.

Figura 2. – Implicação do aumento nos níveis de fator de crescimento e diferenciação celular-15 (GDF-15) em diferentes aspectos clínicos na insuficiência cardíaca. IC: insuficiência cardíaca; CV: cardiovasculares; ICFEp: insuficiência cardíaca com fração de ejeção preservada; NYHA: New York Heart Association; ICFEr: insuficiência cardíaca com fração de ejeção reduzida; DAC: doença arterial coronariana.

Figura 2

Morte Súbita

O GDF-15 também foi estudado no contexto de estratificação de risco de morte súbita em pacientes com doenças cardiovasculares. No cenário de doença coronariana estável, demonstrou-se que pacientes com GDF-15 elevado apresentam maior risco de morte súbita com razão de risco ( hazard ratio ) de 3,0 (IC 95%: 1,94-4,84; p < 0,001). 27

Em um estudo coorte recente, realizou-se a dosagem de ST2 e GDF-15 em 52 pacientes portadores de IC de etiologia não isquêmica, acompanhados por um tempo médio de sete anos. O GDF-15 correlacionou-se com um aumento em duas vezes no risco de morte por arritmia e morte súbita com ressuscitação (HR 2,2; IC 95% 1,1-4,5; p=0,028) e foi superior ao ST2 em predizer mortalidade por qualquer causa (HR 2,4; IC 95%: 1,4-4,2; p = 0,003 versus HR 1,6; IC 95%: 1,05-2,7; p = 0,03). 49

Fibrilação Atrial (FA)

Em pacientes com FA, em tratamento adequado e anticoagulados, aqueles com níveis mais elevados do marcador apresentaram taxas 4 a 5 vezes mais altas de mortalidade, independentemente da idade, sexo e escore CHA 2 DS 2 VASc. 50 Resultado semelhante foi encontrado por Sharma et al., 51 sendo o GDF-15 fortemente associado à morte por progressão da IC e sangramento. 51

Pacientes portadores de FA não valvar, não anticoagulados, cujos níveis de GDF-15 sérico são acima de 809 ng/dL têm mais risco de ter trombo no átrio esquerdo, independente de idade, volume do átrio e CHA 2 DS 2 VASc. 52

Em um estudo com 14.798 pacientes anticoagulados, foi encontrado um risco 3,5 vezes mais elevado de sangramento maior nos participantes com GDF-15 elevado, independente da terapia antitrombótica utilizada e demais comorbidades. 50 Após esse achado, foi desenvolvido nesta população e validado em outra amostra semelhante o escore de risco ABC (baseado em idade, biomarcadores - GDF-15, hemoglobina e troponina - e história clínica de sangramento), para sangramentos, sendo o GDF-15 o integrante de maior contribuição para o risco. Esse escore obteve melhor acurácia que o escore mais utilizado na prática clínica (HAS-BLED). 53

Doença Renal Crônica

Remodelamento cardíaco, fibrose e inflamação são possíveis fatores envolvidos no aumento da incidência de eventos cardiovasculares em pacientes com doença renal crônica (DRC).

Avaliando-se biomarcadores possivelmente representativos dessas condições, demonstrou-se que as proteínas ST2, galectina-3 e GDF-15 associaram-se significativamente à mortalidade nestes pacientes, mas não a eventos ateroscleróticos. Entre esses, apenas o GDF-15 correlacionou-se ao risco de desenvolver IC. 54

Resultado semelhante foi encontrado por Bansal et al., 55 em que o GDF-15 foi preditor de IC em pacientes com disfunção renal, assim como o NT-proBNP. Entretanto, ao contrário do peptídeo natriurético, o GDF-15 teve uma correlação mais forte com ICFEp. 55

Pacientes com taxa de filtração glomerular abaixo de 60 mL/min/1,73m 2 apresentam níveis significativamente maiores de GDF-15 e NT-proBNP, quando comparados a pacientes com função renal normal. Em uma coorte com 358 pacientes com DRC e disfunção sistólica, o GDF-15 refinou a estratificação prognóstica de pacientes com NT-proBNP baixo e foi fortemente associado a eventos adversos, de maneira mais significativa que o próprio peptídeo. 56

Na Tabela 1 encontram-se os valores, em média, dos níveis séricos de GDF-15 associados às condições clínicas exploradas nesta revisão.

Tabela 1. Pontos de corte do fator de crescimento e diferenciação celular-15 (GDF-15) empregados no diagnóstico e prognóstico em diferentes condições clínicas (valores expressos em ng/L).

Valor para diagnóstico Predição de eventos adversos
Eventos cardiovasculares Morte cardiovascular Morte súbita Mortalidade total
IC com fração de ejeção reduzida 7,33,34 > 1200 > 2040 > 2252 * > 2040
IC com fração de ejeção preservada 31,40,42 > 1160 * NA NA *
Síndrome coronariana aguda 15,19 > 967 > 1550 > 1550 NA > 1259
Doença arterial coronariana estável 27 NA > 1253 > 1827 > 1253 > 915

NA: Não avaliável (sem estudos para aquele desfecho ou estudos pequenos não confiáveis). * Uso do biomarcador como variável contínua, sem ponto de corte específico.

Conclusão

O GDF-15 é um biomarcador sérico cuja expressão parece ser afetada por estresse, injúria tecidual e inflamação, embora seu eixo fisiopatológico ainda não seja completamente entendido. Estudos observacionais com pessoas saudáveis demonstraram associação do GDF-15 com maior risco de eventos cardiovasculares ao longo do tempo. Em pacientes com doença arterial coronariana e IC, o GDF-15 correlacionou-se a um risco elevado de mortalidade total e eventos adversos. A incorporação do GDF-15 melhorou a performance diagnóstica da ICFEp e contribuiu para a elaboração de escore mais acurado para risco de sangramento na FA. A utilização do GDF-15 na prática clínica como marcador prognóstico e sua capacidade de orientar a tomada de decisão clínica depende ainda de novos estudos com maior número de pacientes.

Vinculação Acadêmica

Este artigo é parte de dissertação de Mestrado de Bruna Miers May pela Universidade Federal do Rio Grande do Sul - Programa de Pós-Graduação em Ciências da Saúde: Cardiologia e Ciências Cardiovasculares.

Fontes de Financiamento .O presente estudo não teve fontes de financiamento externas.

Referências

  • 1.. Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and Growth Control. Front Physiol. 2018;9:1–7. [DOI] [PMC free article] [PubMed]; Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and Growth Control. Front Physiol . 2018;9:1–7. doi: 10.3389/fphys.2018.01712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.. Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res. 2006;98(3):342–50. [DOI] [PubMed]; Xu J, Kimball TR, Lorenz JN, Brown DA, Bauskin AR, Klevitsky R, et al. GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation. Circ Res . 2006;98(3):342–350. doi: 10.1161/01.RES.0000202804.84885.d0. [DOI] [PubMed] [Google Scholar]
  • 3.. Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. The transforming growth factor- superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351–60. [DOI] [PubMed]; Kempf T, Eden M, Strelau J, Naguib M, Willenbockel C, Tongers J, et al. The transforming growth factor- superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res . 2006;98(3):351–360. doi: 10.1161/01.RES.0000202805.73038.48. [DOI] [PubMed] [Google Scholar]
  • 4.. Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, et al. GDF 15 is a heart-derived hormone that regulates body growth. EMBO Mol Med. 2017;9(8):1150–64. [DOI] [PMC free article] [PubMed]; Wang T, Liu J, McDonald C, Lupino K, Zhai X, Wilkins BJ, et al. GDF 15 is a heart-derived hormone that regulates body growth. EMBO Mol Med . 2017;9(8):1150–1164. doi: 10.15252/emmm.201707604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.. Wollert KC, Kempf T, Wallentin L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem. 2017;63:140–51. [DOI] [PubMed]; Wollert KC, Kempf T, Wallentin L. Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem . 2017;63:140–151. doi: 10.1373/clinchem.2016.255174. [DOI] [PubMed] [Google Scholar]
  • 6.. Khan SQ, Ng K, Dhillon O, Kelly D, Quinn P, Squire IB, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J. 2009;30(9):1057–65. [DOI] [PubMed]; Khan SQ, Ng K, Dhillon O, Kelly D, Quinn P, Squire IB, et al. Growth differentiation factor-15 as a prognostic marker in patients with acute myocardial infarction. Eur Heart J . 2009;30(9):1057–1065. doi: 10.1093/eurheartj/ehn600. [DOI] [PubMed] [Google Scholar]
  • 7.. Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the valsartan heart failure trial. Circulation. 2010;122(14):1387–95. [DOI] [PubMed]; Anand IS, Kempf T, Rector TS, Tapken H, Allhoff T, Jantzen F, et al. Serial measurement of growth-differentiation factor-15 in heart failure: Relation to disease severity and prognosis in the valsartan heart failure trial. Circulation . 2010;122(14):1387–1395. doi: 10.1161/CIRCULATIONAHA.109.928846. [DOI] [PubMed] [Google Scholar]
  • 8.. Ho JE, Lyass A, Courchesne P, Chen G, Liu C, Yin X, et al. Protein biomarkers of cardiovascular disease and mortality in the community. J Am Heart Assoc. 2018;7(14):e008108. [DOI] [PMC free article] [PubMed]; Ho JE, Lyass A, Courchesne P, Chen G, Liu C, Yin X, et al. Protein biomarkers of cardiovascular disease and mortality in the community. J Am Heart Assoc . 2018;7(14):e008108. doi: 10.1161/JAHA.117.008108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.. Xie S, Lu L, Liu L. Growth differentiation factor-15 and the risk of cardiovascular diseases and all-cause mortality : A meta-analysis of prospective studies. Clin Cardiol. 2019;42(5):513–23. [DOI] [PMC free article] [PubMed]; Xie S, Lu L, Liu L. Growth differentiation factor-15 and the risk of cardiovascular diseases and all-cause mortality : A meta-analysis of prospective studies. Clin Cardiol . 2019;42(5):513–523. doi: 10.1002/clc.23159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.. Chaikijurajai T, Tang WHW. Reappraisal of Inflammatory Biomarkers in Heart Failure. Curr Heart Fail Rep. 2020 Feb;17(1):9-19. [DOI] [PMC free article] [PubMed]; Chaikijurajai T, Tang WHW. Reappraisal of Inflammatory Biomarkers in Heart Failure. Curr Heart Fail Rep . 2020 Feb;17(1):9–19. doi: 10.1007/s11897-019-00450-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.. Wollert KC, Kempf T, Giannitsis E, Bertsch T, Braun SL, Maier H, et al. An Automated Assay for Growth Differentiation Factor 15. J Appl Lab Med An AACC Publ. 2017;1(5):510–21. [DOI] [PubMed]; Wollert KC, Kempf T, Giannitsis E, Bertsch T, Braun SL, Maier H, et al. An Automated Assay for Growth Differentiation Factor 15. J Appl Lab Med An AACC Publ . 2017;1(5):510–521. doi: 10.1373/jalm.2016.022376. [DOI] [PubMed] [Google Scholar]
  • 12.. Kempf T, Horn-Wichmann R, Brabant G, Peter T, Allhoff T, Klein G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem. 2007;53(2):284–91. [DOI] [PubMed]; Kempf T, Horn-Wichmann R, Brabant G, Peter T, Allhoff T, Klein G, et al. Circulating concentrations of growth-differentiation factor 15 in apparently healthy elderly individuals and patients with chronic heart failure as assessed by a new immunoradiometric sandwich assay. Clin Chem . 2007;53(2):284–291. doi: 10.1373/clinchem.2006.076828. [DOI] [PubMed] [Google Scholar]
  • 13.. Brown DA, Breit SN, Buring J, Fairlie WD, Bauskin AR, Liu T, et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study. Lancet. 2002 Jun;359(9324):2159–63. [DOI] [PubMed]; Brown DA, Breit SN, Buring J, Fairlie WD, Bauskin AR, Liu T, et al. Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study. Lancet . 2002 Jun;359(9324):2159–2163. doi: 10.1016/S0140-6736(02)09093-1. [DOI] [PubMed] [Google Scholar]
  • 14.. Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: The rancho bernardo study. Circulation. 2011;123(19):2101–10. [DOI] [PMC free article] [PubMed]; Daniels LB, Clopton P, Laughlin GA, Maisel AS, Barrett-Connor E. Growth-differentiation factor-15 is a robust, independent predictor of 11-year mortality risk in community-dwelling older adults: The rancho bernardo study. Circulation . 2011;123(19):2101–2110. doi: 10.1161/CIRCULATIONAHA.110.979740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.. Hagström E, James SK, Bertilsson M, Becker RC, Himmelmann A, Husted S, et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: Results from the PLATO study. Eur Heart J. 2016;37(16):1325–33. [DOI] [PubMed]; Hagström E, James SK, Bertilsson M, Becker RC, Himmelmann A, Husted S, et al. Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: Results from the PLATO study. Eur Heart J . 2016;37(16):1325–1333. doi: 10.1093/eurheartj/ehv491. [DOI] [PubMed] [Google Scholar]
  • 16.. Peiró ÓM, García-Osuna Á, Ordóñez-Llanos J, Cediel G, Bonet G, Rojas S, et al. Long-term prognostic value of growth differentiation factor-15 in acute coronary syndromes. Clin Biochem. 2019 Nov;73:62-69. [DOI] [PubMed]; Peiró ÓM, García-Osuna Á, Ordóñez-Llanos J, Cediel G, Bonet G, Rojas S, et al. Long-term prognostic value of growth differentiation factor-15 in acute coronary syndromes. Clin Biochem . 2019 Nov;73:62–69. doi: 10.1016/j.clinbiochem.2019.07.014. [DOI] [PubMed] [Google Scholar]
  • 17.. Wollert KC, Kempf T, Lagerqvist B, Lindahl B, Olofsson S, Allhoff T, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non-ST-elevation acute coronary syndrome. Circulation. 2007;116(14):1540–8. [DOI] [PubMed]; Wollert KC, Kempf T, Lagerqvist B, Lindahl B, Olofsson S, Allhoff T, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non-ST-elevation acute coronary syndrome. Circulation . 2007;116(14):1540–1548. doi: 10.1161/CIRCULATIONAHA.107.697714. [DOI] [PubMed] [Google Scholar]
  • 18.. Widera C, Pencina MJ, Meisner A, Kempf T, Bethmann K, Marquardt I, et al. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur Heart J. 2012;33(9):1095–104. [DOI] [PMC free article] [PubMed]; Widera C, Pencina MJ, Meisner A, Kempf T, Bethmann K, Marquardt I, et al. Adjustment of the GRACE score by growth differentiation factor 15 enables a more accurate appreciation of risk in non-ST-elevation acute coronary syndrome. Eur Heart J . 2012;33(9):1095–1104. doi: 10.1093/eurheartj/ehr444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.. Tzikas S, Palapies L, Bakogiannis C, Zeller T, Sinning C, Baldus S, et al. GDF-15 predicts cardiovascular events in acute chest pain patients. PLoS One. 2017;12(8):1–13. [DOI] [PMC free article] [PubMed]; Tzikas S, Palapies L, Bakogiannis C, Zeller T, Sinning C, Baldus S, et al. GDF-15 predicts cardiovascular events in acute chest pain patients. PLoS One . 2017;12(8):1–13. doi: 10.1371/journal.pone.0182314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.. Bodde MC, Hermans MPJ, van der Laarse A, Mertens B, Romijn FPHTM, Schalij MJ, et al. Growth Differentiation Factor-15 Levels at Admission Provide Incremental Prognostic Information on All-Cause Long-term Mortality in ST-Segment Elevation Myocardial Infarction Patients Treated with Primary Percutaneous Coronary Intervention. Cardiol Ther. 2019;8(1):29–41. [DOI] [PMC free article] [PubMed]; Bodde MC, Hermans MPJ, van der Laarse A, Mertens B, Romijn FPHTM, Schalij MJ, et al. Growth Differentiation Factor-15 Levels at Admission Provide Incremental Prognostic Information on All-Cause Long-term Mortality in ST-Segment Elevation Myocardial Infarction Patients Treated with Primary Percutaneous Coronary Intervention. Cardiol Ther . 2019;8(1):29–41. doi: 10.1007/s40119-019-0127-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.. Rueda F, Lupón J, García-garcía C, Cediel G, Nevado MCA, Gregori JS, et al. Acute-phase dynamics and prognostic value of growth differentiation factor-15 in ST-elevation myocardial infarction. Clin Chem Lab Med. 2019 Jun;57(7):1093-1101. [DOI] [PubMed]; Rueda F, Lupón J, García-garcía C, Cediel G, Nevado MCA, Gregori JS, et al. Acute-phase dynamics and prognostic value of growth differentiation factor-15 in ST-elevation myocardial infarction. Clin Chem Lab Med. . 2019 Jun;57(7):1093–1101. doi: 10.1515/cclm-2018-1189. [DOI] [PubMed] [Google Scholar]
  • 22.. Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P. Relation of growth-differentiation factor 15 to left ventricular remodeling in ST-segment elevation myocardial infarction. Am J Cardiol. 2011 Oct;108(7):955–8. [DOI] [PubMed]; Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P. Relation of growth-differentiation factor 15 to left ventricular remodeling in ST-segment elevation myocardial infarction. Am J Cardiol . 2011 Oct;108(7):955–958. doi: 10.1016/j.amjcard.2011.05.028. [DOI] [PubMed] [Google Scholar]
  • 23.. Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol. 2017;24(15):1576–83. [DOI] [PubMed]; Skau E, Henriksen E, Wagner P, Hedberg P, Siegbahn A, Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur J Prev Cardiol . 2017;24(15):1576–1583. doi: 10.1177/2047487317725017. [DOI] [PubMed] [Google Scholar]
  • 24.. Zhang S, Dai D, Wang X, Zhu H, Jin H, Zhao R, et al. Growth differentiation factor-15 predicts the prognoses of patients with acute coronary syndrome: A meta-analysis. BMC Cardiovasc Disord. 2016;16(1):1–7. [DOI] [PMC free article] [PubMed]; Zhang S, Dai D, Wang X, Zhu H, Jin H, Zhao R, et al. Growth differentiation factor-15 predicts the prognoses of patients with acute coronary syndrome: A meta-analysis. BMC Cardiovasc Disord . 2016;16(1):1–7. doi: 10.1186/s12872-016-0250-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.. Wang Y, Zhen C, Wang R, Wang G. Growth-differentiation factor-15 predicts adverse cardiac events in patients with acute coronary syndrome: A meta-analysis. Am J Emerg Med. 2019;37(7):1346–52. [DOI] [PubMed]; Wang Y, Zhen C, Wang R, Wang G. Growth-differentiation factor-15 predicts adverse cardiac events in patients with acute coronary syndrome: A meta-analysis. Am J Emerg Med . 2019;37(7):1346–1352. doi: 10.1016/j.ajem.2019.04.035. [DOI] [PubMed] [Google Scholar]
  • 26.. Lindholm D, Hagström E, James SK, Becker RC, Cannon CP, Himmelmann A, et al. Growth Differentiation Factor 15 at 1 Month After an Acute Coronary Syndrome Is Associated With Increased Risk of Major Bleeding. J Am Heart Assoc. 2017;6(4):e005580. [DOI] [PMC free article] [PubMed]; Lindholm D, Hagström E, James SK, Becker RC, Cannon CP, Himmelmann A, et al. Growth Differentiation Factor 15 at 1 Month After an Acute Coronary Syndrome Is Associated With Increased Risk of Major Bleeding. J Am Heart Assoc . 2017;6(4):e005580. doi: 10.1161/JAHA.117.005580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.. Hagström E, Held C, Stewart RAH, Aylward PE, Budaj A, Cannon CP, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin Chem. 2017;63(1):325–33. [DOI] [PubMed]; Hagström E, Held C, Stewart RAH, Aylward PE, Budaj A, Cannon CP, et al. Growth differentiation factor 15 predicts all-cause morbidity and mortality in stable coronary heart disease. Clin Chem . 2017;63(1):325–333. doi: 10.1373/clinchem.2016.260570. [DOI] [PubMed] [Google Scholar]
  • 28.. Van Kimmenade RRJ, Januzzi JL. Emerging biomarkers in heart failure. Clin Chem. 2012;58(1):127–38. [DOI] [PubMed]; Van Kimmenade RRJ, Januzzi JL. Emerging biomarkers in heart failure. Clin Chem . 2012;58(1):127–138. doi: 10.1373/clinchem.2011.165720. [DOI] [PubMed] [Google Scholar]
  • 29.. Sinning C, Zengin E, Zeller T, Schnabel RB, Blankenberg S, Westermann D. Candidate biomarkers in heart failure with reduced and preserved ejection fraction. Biomarkers. 2015;20(4):258–65. [DOI] [PubMed]; Sinning C, Zengin E, Zeller T, Schnabel RB, Blankenberg S, Westermann D. Candidate biomarkers in heart failure with reduced and preserved ejection fraction. Biomarkers . 2015;20(4):258–265. doi: 10.3109/1354750X.2015.1068856. [DOI] [PubMed] [Google Scholar]
  • 30.. Sinning C, Kempf T, Schwarzl M, Lanfermann S, Ojeda F, Schnabel RB, et al. Biomarkers for characterization of heart failure – Distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol. 2017;227:272–7. [DOI] [PubMed]; Sinning C, Kempf T, Schwarzl M, Lanfermann S, Ojeda F, Schnabel RB, et al. Biomarkers for characterization of heart failure – Distinction of heart failure with preserved and reduced ejection fraction. Int J Cardiol . 2017;227:272–277. doi: 10.1016/j.ijcard.2016.11.110. [DOI] [PubMed] [Google Scholar]
  • 31.. Chan MMY, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liew OW, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2016;18(1):81–8. [DOI] [PubMed]; Chan MMY, Santhanakrishnan R, Chong JPC, Chen Z, Tai BC, Liew OW, et al. Growth differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail . 2016;18(1):81–88. doi: 10.1002/ejhf.431. [DOI] [PubMed] [Google Scholar]
  • 32.. Santhanakrishnan R, Chong JPC, Ng TP, Ling LH, Sim D, Toh G. Leong K, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail. 2012;14(12):1338–47. [DOI] [PubMed]; Santhanakrishnan R, Chong JPC, Ng TP, Ling LH, Sim D, Toh G, Leong K, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs. reduced ejection fraction. Eur J Heart Fail . 2012;14(12):1338–1347. doi: 10.1093/eurjhf/hfs130. [DOI] [PubMed] [Google Scholar]
  • 33.. Sharma A, Stevens SR, Lucas J, Fiuzat M, Adams KF, Whellan DJ, et al. Utility of Growth Differentiation Factor-15, A Marker of Oxidative Stress and Inflammation, in Chronic Heart Failure: Insights From the HF-ACTION Study. JACC Hear Fail. 2017;5(10):724–34. [DOI] [PMC free article] [PubMed]; Sharma A, Stevens SR, Lucas J, Fiuzat M, Adams KF, Whellan DJ, et al. Utility of Growth Differentiation Factor-15, A Marker of Oxidative Stress and Inflammation, in Chronic Heart Failure: Insights From the HF-ACTION Study. JACC Hear Fail . 2017;5(10):724–734. doi: 10.1016/j.jchf.2017.07.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.. Li J, Cui Y, Huang A, Li Q, Jia W, Liu K, et al. Additional Diagnostic Value of Growth Differentiation Factor-15 (GDF-15) to N-Terminal B-Type Natriuretic Peptide (NT-proBNP) in Patients with Different Stages of Heart Failure. Med Sci Monit. 2018 Jul;24:4992–9. [DOI] [PMC free article] [PubMed]; Li J, Cui Y, Huang A, Li Q, Jia W, Liu K, et al. Additional Diagnostic Value of Growth Differentiation Factor-15 (GDF-15) to N-Terminal B-Type Natriuretic Peptide (NT-proBNP) in Patients with Different Stages of Heart Failure. Med Sci Monit . 2018 Jul;24:4992–4999. doi: 10.12659/MSM.910671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.. Rullman E, Melin M, Mandić M, Gonon A, Fernandez-Gonzalo R, Gustafsson T. Circulatory factors associated with function and prognosis in patients with severe heart failure. Clin Res Cardiol. 2020;109(6):655-672. [DOI] [PMC free article] [PubMed]; Rullman E, Melin M, Mandić M, Gonon A, Fernandez-Gonzalo R, Gustafsson T. Circulatory factors associated with function and prognosis in patients with severe heart failure. Clin Res Cardiol . 2020;109(6):655–672. doi: 10.1007/s00392-019-01554-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.. Bouabdallaoui N, Claggett B, Zile MR, McMurray JJV, O’Meara E, Packer M, et al. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: the PARADIGM-HF trial. Eur J Heart Fail. 2018;20(12):1701–9. [DOI] [PubMed]; Bouabdallaoui N, Claggett B, Zile MR, McMurray JJV, O’Meara E, Packer M, et al. Growth differentiation factor-15 is not modified by sacubitril/valsartan and is an independent marker of risk in patients with heart failure and reduced ejection fraction: the PARADIGM-HF trial. Eur J Heart Fail . 2018;20(12):1701–1709. doi: 10.1002/ejhf.1301. [DOI] [PubMed] [Google Scholar]
  • 37.. Foley PWX, Stegemann B, Ng K, Ramachandran S, Proudler A, Frenneaux MP, et al. Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. Eur Heart J. 2009;30(22):2749–57. [DOI] [PMC free article] [PubMed]; Foley PWX, Stegemann B, Ng K, Ramachandran S, Proudler A, Frenneaux MP, et al. Growth differentiation factor-15 predicts mortality and morbidity after cardiac resynchronization therapy. Eur Heart J . 2009;30(22):2749–2757. doi: 10.1093/eurheartj/ehp300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.. Lok DJ, Klip IT, Lok SI, Porte PWB De, Badings E, Van Wijngaarden J, et al. Incremental Prognostic Power of Novel Biomarkers Protein , Galectin-3 , and High-Sensitivity Troponin-T) in Patients With Advanced Chronic Heart Failure. Am J Cardiol. 2013;112(6):831–7. [DOI] [PubMed]; Lok DJ, Klip IT, Lok SI, Porte PWB De, Badings E, Van Wijngaarden J, et al. Incremental Prognostic Power of Novel Biomarkers Protein , Galectin-3 , and High-Sensitivity Troponin-T) in Patients With Advanced Chronic Heart Failure. Am J Cardiol . 2013;112(6):831–837. doi: 10.1016/j.amjcard.2013.05.013. [DOI] [PubMed] [Google Scholar]
  • 39.. Lok SI, Winkens B, Goldschmeding R, Van Geffen AJP, Nous FMA, Van Kuik J, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012;14(11):1249–56. [DOI] [PubMed]; Lok SI, Winkens B, Goldschmeding R, Van Geffen AJP, Nous FMA, Van Kuik J, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail . 2012;14(11):1249–1256. doi: 10.1093/eurjhf/hfs120. [DOI] [PubMed] [Google Scholar]
  • 40.. Stahrenberg R, Edelmann F, Mende M, Kockskämper A, Düngen HD, Lüers C, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail. 2010;12(12):1309–16. [DOI] [PMC free article] [PubMed]; Stahrenberg R, Edelmann F, Mende M, Kockskämper A, Düngen HD, Lüers C, et al. The novel biomarker growth differentiation factor 15 in heart failure with normal ejection fraction. Eur J Heart Fail . 2010;12(12):1309–1316. doi: 10.1093/eurjhf/hfq151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.. Dinh W, Füth R, Lankisch M, Hess G, Zdunek D, Scheffold T, et al. Growth-differentiation factor-15: A novel biomarker in patients with diastolic dysfunction? Arq Bras Cardiol. 2011;97(1):65-75. [DOI] [PubMed]; Dinh W, Füth R, Lankisch M, Hess G, Zdunek D, Scheffold T, et al. Growth-differentiation factor-15: A novel biomarker in patients with diastolic dysfunction? Arq Bras Cardiol . 2011;97(1):65–75. doi: 10.1590/s0066-782x2011005000058. [DOI] [PubMed] [Google Scholar]
  • 42.. Izumiya Y, Hanatani S, Kimura Y. Growth Differentiation Factor-15 Is a Useful Prognostic Marker in Patients With Heart Failure With Preserved Ejection Fraction. Can J Cardiol. 2014;30(3):338–44. [DOI] [PubMed]; Izumiya Y, Hanatani S, Kimura Y. Growth Differentiation Factor-15 Is a Useful Prognostic Marker in Patients With Heart Failure With Preserved Ejection Fraction. Can J Cardiol . 2014;30(3):338–344. doi: 10.1016/j.cjca.2013.12.010. [DOI] [PubMed] [Google Scholar]
  • 43.. Baessler A, Strack C, Rousseva E, Wagner F, Bruxmeier J, Schmiedel M, et al. Growth-differentiation factor-15 improves reclassification for the diagnosis of heart failure with normal ejection fraction in morbid obesity. Eur J Heart Fail. 2012;14(11):1240–8. [DOI] [PubMed]; Baessler A, Strack C, Rousseva E, Wagner F, Bruxmeier J, Schmiedel M, et al. Growth-differentiation factor-15 improves reclassification for the diagnosis of heart failure with normal ejection fraction in morbid obesity. Eur J Heart Fail . 2012;14(11):1240–1248. doi: 10.1093/eurjhf/hfs116. [DOI] [PubMed] [Google Scholar]
  • 44.. Cotter G, Voors AA, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: Results from the RELAX-AHF study. Eur J Heart Fail. 2015;17(11):1133–43. [DOI] [PubMed]; Cotter G, Voors AA, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. Growth differentiation factor 15 (GDF-15) in patients admitted for acute heart failure: Results from the RELAX-AHF study. Eur J Heart Fail . 2015;17(11):1133–1143. doi: 10.1002/ejhf.331. [DOI] [PubMed] [Google Scholar]
  • 45.. Jankovic-Tomasevic R, Pavlovic SU, Jevtovic-Stoimenov T, Apostolovic S, Stanojevic D, Jovanovic I, et al. Prognostic utility of biomarker growth differentiation factor- 15 in patients with acute decompensated heart failure. Acta Cardiol. 2016;71(5):587–95. [DOI] [PubMed]; Jankovic-Tomasevic R, Pavlovic SU, Jevtovic-Stoimenov T, Apostolovic S, Stanojevic D, Jovanovic I, et al. Prognostic utility of biomarker growth differentiation factor- 15 in patients with acute decompensated heart failure. Acta Cardiol . 2016;71(5):587–595. doi: 10.2143/AC.71.5.3167503. [DOI] [PubMed] [Google Scholar]
  • 46.. Boulogne M, Sadoune M, Launay JM, Baudet M, Cohen-Solal A, Logeart D. Inflammation versus mechanical stretch biomarkers over time in acutely decompensated heart failure with reduced ejection fraction. Int J Cardiol. 2017;226:53–9. [DOI] [PubMed]; Boulogne M, Sadoune M, Launay JM, Baudet M, Cohen-Solal A, Logeart D. Inflammation versus mechanical stretch biomarkers over time in acutely decompensated heart failure with reduced ejection fraction. Int J Cardiol . 2017;226:53–59. doi: 10.1016/j.ijcard.2016.10.038. [DOI] [PubMed] [Google Scholar]
  • 47.. Demissei BG, Cotter G, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. Eur J Heart Fail. 2017;19(8):1001–10. [DOI] [PubMed]; Demissei BG, Cotter G, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. A multimarker multi-time point-based risk stratification strategy in acute heart failure: results from the RELAX-AHF trial. Eur J Heart Fail . 2017;19(8):1001–1010. doi: 10.1002/ejhf.749. [DOI] [PubMed] [Google Scholar]
  • 48.. Bettencourt P, Ferreira-Coimbra J, Rodrigues P, Marques P, Moreira H, Pinto MJ, et al. Towards a multi-marker prognostic strategy in acute heart failure: a role for GDF-15. ESC Hear Fail. 2018;5(6):1017–22. [DOI] [PMC free article] [PubMed]; Bettencourt P, Ferreira-Coimbra J, Rodrigues P, Marques P, Moreira H, Pinto MJ, et al. Towards a multi-marker prognostic strategy in acute heart failure: a role for GDF-15. ESC Hear Fail . 2018;5(6):1017–1022. doi: 10.1002/ehf2.12301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.. Stojkovic S, Kaider A, Koller L, Brekalo M, Wojta J, Diedrich A, et al. GDF-15 is a better complimentary marker for risk stratification of arrhythmic death in non-ischaemic, dilated cardiomyopathy than soluble ST2. J Cell Mol Med. 2018;22(4):2422–9. [DOI] [PMC free article] [PubMed]; Stojkovic S, Kaider A, Koller L, Brekalo M, Wojta J, Diedrich A, et al. GDF-15 is a better complimentary marker for risk stratification of arrhythmic death in non-ischaemic, dilated cardiomyopathy than soluble ST2. J Cell Mol Med . 2018;22(4):2422–2429. doi: 10.1111/jcmm.13540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.. Wallentin L, Hijazi Z, Andersson U, Alexander JH, De Caterina R, Hanna M, et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE). Circulation. 2014;130(21):1847–58. [DOI] [PubMed]; Wallentin L, Hijazi Z, Andersson U, Alexander JH, De Caterina R, Hanna M, et al. Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: Insights from the Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) Circulation . 2014;130(21):1847–1858. doi: 10.1161/CIRCULATIONAHA.114.011204. [DOI] [PubMed] [Google Scholar]
  • 51.. Sharma A, Hijazi Z, Andersson U, Al-Khatib SM, Lopes RD, Alexander JH, et al. Use of biomarkers to predict specific causes of death in patients with Atrial fibrillation: Insights from the Aristotle Trial. Circulation. 2018;138(16):1666–76. [DOI] [PubMed]; Sharma A, Hijazi Z, Andersson U, Al-Khatib SM, Lopes RD, Alexander JH, et al. Use of biomarkers to predict specific causes of death in patients with Atrial fibrillation: Insights from the Aristotle Trial. Circulation . 2018;138(16):1666–1676. doi: 10.1161/CIRCULATIONAHA.118.034125. [DOI] [PubMed] [Google Scholar]
  • 52.. Hu XF, Zhan R, Xu S, Wang J, Wu J, Liu X, et al. Growth differentiation factor 15 is associated with left atrial/left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Clin Cardiol. 2018;41(1):34–8. [DOI] [PMC free article] [PubMed]; Hu XF, Zhan R, Xu S, Wang J, Wu J, Liu X, et al. Growth differentiation factor 15 is associated with left atrial/left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Clin Cardiol . 2018;41(1):34–38. doi: 10.1002/clc.22844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.. Hijazi Z, Oldgren J, Lindbäck J, Alexander JH, Connolly SJ, Eikelboom JW, et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet. 2016;387(10035):2302–11. [DOI] [PubMed]; Hijazi Z, Oldgren J, Lindbäck J, Alexander JH, Connolly SJ, Eikelboom JW, et al. The novel biomarker-based ABC (age, biomarkers, clinical history)-bleeding risk score for patients with atrial fibrillation: a derivation and validation study. Lancet . 2016;387(10035):2302–2311. doi: 10.1016/S0140-6736(16)00741-8. [DOI] [PubMed] [Google Scholar]
  • 54.. Tuegel C, Katz R, Alam M, Bhat Z, Bellovich K, de Boer I, et al. GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD. Am J Kidney Dis. 2018 Oct;72(4):519–28. [DOI] [PMC free article] [PubMed]; Tuegel C, Katz R, Alam M, Bhat Z, Bellovich K, de Boer I, et al. GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD. Am J Kidney Dis . 2018 Oct;72(4):519–528. doi: 10.1053/j.ajkd.2018.03.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.. Bansal N, Zelnick L, Go A, Anderson A, Christenson R, Deo R, et al. Cardiac Biomarkers and Risk of Incident Heart Failure in Chronic Kidney Disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J Am Heart Assoc. 2019;8(21):1448-57. [DOI] [PMC free article] [PubMed]; Bansal N, Zelnick L, Go A, Anderson A, Christenson R, Deo R, et al. Cardiac Biomarkers and Risk of Incident Heart Failure in Chronic Kidney Disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J Am Heart Assoc . 2019;8(21):1448–1457. doi: 10.1161/JAHA.119.012336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.. Benes J, Kotrc M, Wohlfahrt P, Conrad MJ, Franekova J, Jabor A, et al. The Role of GDF-15 in Heart Failure Patients With Chronic Kidney Disease. Can J Cardiol. 2019;35(4):462–70. [DOI] [PubMed]; Benes J, Kotrc M, Wohlfahrt P, Conrad MJ, Franekova J, Jabor A, et al. The Role of GDF-15 in Heart Failure Patients With Chronic Kidney Disease. Can J Cardiol . 2019;35(4):462–470. doi: 10.1016/j.cjca.2018.12.027. [DOI] [PubMed] [Google Scholar]
Arq Bras Cardiol. 2021 Feb 3;116(3):494–500. [Article in English]

GDF-15 as a Biomarker in Cardiovascular Disease

Bruna Miers May 1, Mauricio Pimentel 2, Leandro Ioschpe Zimerman 2, Luis Eduardo Rohde 2

Abstract

In the last years, several diagnostic and prognostic biomarkers have been studied in cardiovascular disease. Growth differentiation factor-15 (GDF-15), a cytokine belonging to the transforming growth factor- (TGF-) family, is highly up-regulated in stress and inflammatory conditions and has been correlated to myocardial injury and pressure cardiac overload in animal models. This new biomarker has been positively correlated with increased risk of cardiovascular events in population studies and shown an independent predictor of mortality in patients with coronary artery disease and heart failure. This review aimed to summarize the current evidence on the diagnostic and prognostic value of GDF-15 in different settings in cardiology.

Keywords: Cardiovascular Diseases; Biomarkers; GDF-15 Growth Differentiation Factor 15; Cytokines; Stress; Inflammation, Prognostic

Introduction

The growth differentiation factor-15 (GDF-15) is a cytokine belonging to the transforming growth factor beta (TGF-ß) family, with low concentrations in tissue and plasma, except for the placenta and prostate. GDF-15, discovered more than 20 years ago, was formerly named the macrophage inhibitory cytocine-1 (MIC-1) due to its possible role as an antagonist of macrophage activation by inflammatory cytokines (interleukins and tumor necrosis factor) in experimental studies. The role of this cytokine in human body has not been elucidated yet and seems to vary with tissue types. The expression of this marker is upregulated by stress and tissue damage, and is associated with inflammatory conditions of different organs, including the myocardium.1

In animal models, the GDF-15 was initially reported as a cardioprotective protein, preventing cell death, and cardiac dilatation and hypertrophy. An increased expression of this marker was seen in response to damaging stimuli, such as pressure overload and tissue ischemia.2 , 3The activation of nitric oxide synthase (NOS-2) enzyme in stressful situations is involved in the up-regulation of GDF-15 via intracellular signaling pathways, depending on nitric oxide.3In genetically modified rats deficient in GDF-15, greater infarction areas with myocyte apoptosis were detected in induced myocardial infarction, suggesting a protective role of GDF-15 against myocardial injury.3Figure 3 presents the main factors that influence the GDF-15 expression.

Another experimental study correlated the increased levels of GDF-15 in cardiomyocytes of rats with reduced activation of growth hormone (GH), suggesting the involvement of this marker in GH signaling pathway. After this finding, the same authors conducted a study on children with congenital heart disease, and found significantly higher levels of GDH-15 in plasma of children with concomitant heart disease and failure to thrive compared with healthy controls and children with heart disease and normal growth.4

Since then, the GDF-15 has been investigated in several clinical conditions, and associated with a greater risk for cardiovascular events in most of the studies.5 - 9Today, the kits for determination of serum GDF-15 levels can be found commercially available in Europe, while in other regions, they are used for research and experimental purposes only.10The measurement is made by immunoassays, by immunoradiometric assay (IRMA) that determines the amount of the radiolabeled antigen–antibody complex, by enzymes (ELISA) or by luminescence (chemiluminescence). The detection range varies from 400 to 20000 ng/L, with good precision and reproducibility (within-and between-assay imprecision lower than 10%). The most used test today is the ELISA due to is lower cost and higher accessibility.11 , 12

The aim of this article is to review the role of GDF-15 in different cardiac diseases and evaluate the possibility of incorporating it as a biomarker in the diagnosis and risk stratification of common heart diseases.

Cardiovascular Risk in Healthy Individuals

The first human study to correlate GDF-15 with cardiovascular disease was published in 2002 and included 27,628 healthy women, followed-up for four years. The results indicated a 2.7-fold increase in the risk of developing cardiovascular events in women with GDF-15 concentrations above 856 ng/L.13In a cohort of 1,391 patients with no history of heart disease, GDF-15 was an independent predictor of mortality and cardiovascular mortality, with a hazard ratio (HR) of 1.5 (95% CI 1.3-1.8), with a discriminatory power comparable to B-type natriuretic peptide (BNP) (HR 1.3; 95% CI 1.2-1.5).14

Data from the Framingham Heart study, in which 85 biomarkers were evaluated (including BNP, PCR and GDF-15) in 3,523 participants over 14 years, showed that the GDF-15 was the only marker, in a multivariate analysis, to show a significant association with the three outcome results: atherosclerotic events (HR 1.43; 95%CI: 1.20-1.58), heart failure (HF) (HR 2.08; 95%CI: 1.72-2.53) and mortality (HR 1.96; 95%CI: 1.76-2.17).8

Coronary Artery Disease (CAD)

GDF-15 was studied in patients admitted for acute coronary syndrome (ACS) and patients with stable coronary disease.

Acute Coronary Syndromes

Patients with elevated GDF-15 at admission for ACS had more events such as cardiovascular deaths, reinfarction and stroke at 12 months after discharge, indicating a prognostic value regarding the course of atherosclerotic disease.15

Another recent observational study showed the same prognostic association of GDF-15 with major cardiovascular events (overall mortality, non-fatal infarction, and hospitalization for HF). However, in a multivariate analysis adjusted for other risk factors, the GDF-15 remained significant only for mortality and development of HF.16

Still in the context of acute diseases, a clinical trial comparing invasive versus conservative strategy in non-ST-elevation acute coronary syndrome showed a significantly higher incidence of events in patients with elevated GDF-15 levels, allocated to the conservative strategy group. The authors suggested that the determination of GDF-15 should complement risk scores in the screening for patients who would benefit more of an early invasive strategy.17

In agreement with this idea, the use of the GRACE risk score, adjusted for GDF-15, combined with GDF-15 measurement at hospital admission increased the score accuracy (area under the receiver-operating characteristic curve from 0.79 to 0.85). During the six-month follow-up, 54 of the patients without events were classified into low risk according to the adjusted score.18Tzikas et al.19found that GDF-15 is an independent predictor of cardiovascular events, comparable to troponin. Also, the authors observed that GDF-15 levels were strongly correlated with the severity of coronary disease assessed by the Syntax score after coronary revascularization.19

In a study on patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, the10-year all-cause mortality rate following an acute event increased from 6% to 19% in patients GDF-15 levels above the median.20Another study evaluated GDF-15 temporal dynamics during the first 24 hours of ST-elevation myocardial infarction and showed that GDF-15 peaked at 12 h and remained elevated at 24 h. At 24 hours, higher levels of GDF-15 were correlated with higher 30-day mortality.21With respect to the extension of infarction and prognosis, the higher the GDF-15 levels, the greater the risk for ventricular remodeling and dilation in 12 months.22A prospective study analyzed 92 biomarkers in 847 patients with coronary disease followed for six years after acute infarction. GDF-15 was one of the markers with a predictive power for mortality after adjustments for clinical factors.23

A meta-analysis of eight studies with STEMI patients, the GDF-15 was considered a strong predictor of mortality, with a relative risk (RR) of 6.08 (95%CI: 4.79-7.71; p < 0.001) and of non-fatal reinfarction, with a RR of 1.76 (95%CI: 1.49-2.07; p < 0.001).24These findings are corroborated in a more recent meta-analysis of 13 studies and 43,547 patients with ACS: RR for mortality of 6.75 (95%CI: 5.81-7.84; p < 0.001) and RR for non-fatal reinfarction of 1.95 (95%CI: 1.72-2.21, p < 0.001).25

In addition, for ACS patients with indication for dual antiplatelet therapy, GDF-15 was a predictor of bleeding risk.15In a post-hoc analysis of the PLATO trial (ticagrelor vs. clopidogrel in STEMI), patients with elevated GDF-15 (>1800 ng/L) at one month after an ACS was associated with a three-fold increased risk of bleeding, regardless of the drug used.26In this case of elevated GDF-15 levels after an acute event, a marker of bleeding risk may help in the decision to continue the dual antithrombotic therapy beyond the usual time.

Stable Coronary Disease

In chronic coronary disease, GDF-15 was measured in a cohort of 14,577 patients with stable angina and history of revascularization, multivessel disease or infarction for more than one year. During the follow-up period, GDF-15 levels above 1,827ng/L were associated with increased risk of cardiovascular death (HR 2.63; 95%CI 1.9-3.6; p<0.001), cardiac sudden death (HR 3.06; 95%CI: 1.9-4.8; p<0.001) and hospitalization for HF (HR 5.8; 95%CI: 3.2-10.0; p = 0.006), regardless of other markers such as troponin, reactive C protein, and BNP. In this study,27no correlation was found between GDF-15 and new thrombotic event after adjustment for the other biomarkers.

Heart Failure

GDF-15 was assessed in different cohorts of patients with HF, and compared with natriuretic peptides [BNP or the N-terminal fragment of BNP precursor (NT-proBNP)]. The main difference between them was the magnitude of increase in plasma concentrations according to the type of ventricular dysfunction. NT-proBNP, a marker for hemodynamic stress on the left ventricle was more significantly increased in HF with reduced ejection fraction than in HF with preserved ejection fraction. On the other hand. GDF-15 was similarly increased in both systolic and diastolic dysfunction, suggesting that the inflammatory injury is involved in the pathophysiology of both conditions. The GDF-15 was shown to be an important predictor of adverse events and mortality, independent of ejection fraction and serum levels of NT-proBNP.28 - 33

HF with Reduced Ejection Fraction (HFrEF)

The assessment of GDF-15 in different stages of HF has revealed that the cytokine is a biomarker of disease progression, which increases exponentially with worsening of functional class and remodeling of the left ventricle. The GDF-15 levels are already elevated in the preclinical stage of HF (stage B) and its combination with NT-proBNP increased the diagnostic accuracy for HF, including at this initial stage.34In the same line of thought, another prospective study correlated GDF-15 with ventricular dysfunction progression and loss of functional capacity in patients with ejection fraction below 35%, and showed that GDF-15 levels increased with the severity of HF. This result remained significant after adjustment for other risk factors such as peak oxygen consumption (VO2 peak), age and glomerular filtration rate.35

The first large study that evaluated the prognostic value of GDF-15 in HFrEF was conducted with data from the Valsartan Heart Failure Trial (Val-HeFT) that evaluated the use of valsartan in HF patients. GDF-15 levels were evaluated in the beginning of the study (n=1,734) and at 12 months of follow-up (n=1,517). In the beginning of the study, 85% of patients had increased GDF-15 levels (>1,200 ng/mL). In a multivariate analysis including clinical variables, BNP, troponin and C-reactive protein, elevated levels of GDF-15 were independently associated with an increase in the risk of overall mortality (HR 1.007; 95%CI: 1.001-1.014; p=0.02), but not with the occurrence of the first morbid event (HR 1.003; 95%CI: 0.997-1.008; p=0.34), that included death, sudden death with resuscitation, hospitalization for HF, or administration of intravenous inotropic or vasodilator drugs for more than 4 hours without hospitalization. After 12 months of follow-up, the increase in the GDF-15 values was similar for the placebo and the valsartan groups and was independently associated with overall mortality and first morbid event. This result suggests that the GDF-15 represents a pathophysiological axis that is not addressed by the therapies prescribed.7

More recently, the GDF-15 was studied in 1,935 patients included in the PAADIGM-HF study, which compared sacubitril/valsartan versus enalapril in patients with HFrEF. Baseline GDF-15 and the levels at one month and eight months of treatment were associated with increased risk of overall mortality and cardiovascular events (HR 1.13; 95%CI: 1.08-1.18; p<0.001), combined endpoint of cardiovascular death or hospitalization for HF (HR 1.09, 95% CI 1.05-1.14, p < 0.001) and HF death. The increment in GDF-15 levels was not influenced by the therapies.36

The role of GDF-15 was also evaluated in patients undergoing cardiac resynchronization therapy. Of 158 patients, 72% had a good response to treatment; however, patients with serum GDF-15 above 2,720 ng/L had significantly higher risk of cardiovascular mortality, and rehospitalization for HF in 2.5 years. Despite the prognostic value of GDF-15 in this population, baseline levels and changes from baseline one year after implantation failed to predict the response to the resynchronization device.37

In advanced HF, five biomarkers (PCR, NT-proBNP, GDF-15, galectin-3, and troponin) were measured in patients New York Heart Association class III. Among these, GDF-15 was the marker that best predicted long-term mortality, with better predictive value as compared with NT-proBNP (area under the curve [AUC] 0.78 versus 0.63).38

In patients with severe non-ischemic cardiomyopathy, GDF-15 was evaluated in myocardial tissue obtained during implantation of left ventricular assist devices or during heart transplantation, and found to be strongly correlated with the severity of myocardial fibrosis.39In this cohort, at one month after implantation of mechanical circulatory support, GDF-15 levels were significantly decreased compared with pre-implantation levels, which reinforces its association with the severity of myocardial dysfunction.39

HF with Preserved Ejection Fraction (HFpEF)

Today, the diagnostic criteria for HFpEF are mainly based on HF symptoms and echocardiographic changes suggesting elevated cardiac filling pressures. However, there is still high heterogeneity of concepts and criteria adopted by the Societies and in the diagnosis in clinical practice. In HFpEF patients, elevated GDF-15 were detected, with a direct association with echocardiographic E/e ratio. The combination of NT-proBNP with elevated GDF-15 increased the diagnostic accuracy (AUC of 0.93) for HFpEF.40Also, prospective cohort studies with this population showed that the higher the GDF-15 levels, the more severe the diastolic dysfunction and NYHA functional class.41 , 42

One diagnostic challenge is the definition of HFpEF in morbidly obese patients, due to echocardiographic limitations such as unfavorable window, multifactorial dyspnea, and reduced BNP levels. In the study by Baessler et al.,43on patients with body mass index above 30 kg/m2, GDF-15 correlated with increased filling pressures at echocardiography. The inclusion of the GDF-15 in the echocardiographic criteria for diastolic dysfunction yielded better diagnostic performance in this population, compared with the combination of BNP with the same criteria (AUC 0.76 x AUC 0.56, respectively).43

Acutely Decompensated HF

Serum GDF-15 concentrations of patients with acutely decompensated HF are elevated at admission (most studies have reported GDF-15 levels above 1,200 ng/L). The higher the GDF-15 concentrations, or if GDF-15 levels increased during hospitalization, the greater the risk of rehospitalizations for HF and post-discharge mortality.44 , 45

In a study46with 55 patients with HFrEF, the authors conducted serial measurements of several biomarkers during hospitalization for cardiac decompensation and at 30 days of discharge, and showed that the curve pf GDF-15 was similar to two other markers: suppression of tumorigenicity 2 (ST2, a biomarker belonging to the interleukin-1 receptor family) and BNP. In this study, the rapid fall in GDF-15 levels was marked by an evident clinical improvement of patients, different to what was observed with other pro-inflammatory proteins, including C-reactive protein, TNF-alpha, IL-6, galectins and myeloperoxidase.46

Models combining the GDF-15 with classical biomarkers such as troponin and BNP have demonstrated that the measurement of this cytokine in acute HF adds prognostic value. This data suggests that the presence of several independent pathophysiological pathways in patients hospitalized for HF, and indicates, once again, the clinical relevance of this biomarker in this scenario.47 , 48

Figure 2 shows the main correlations of GDF-15 with clinical aspects in HF.

Figure 2. – Implications of increased growth differentiation factor-15 (GDF-15) levels in different clinical conditions of heart failure; HF: heart failure; HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection fraction; NYHA: New York Heart Association; CAD: coronary artery disease.

Figure 2

Sudden Death

GDF-15 was also studied in risk stratification for sudden death in patients with cardiovascular diseases. Patients with stable coronary disease and elevated GDF-15 had increased risk for sudden death (HR 3.0) (95%CI: 1.94-4.84; p < 0.001).27

In a recent cohort study, measurements of ST2 and GDF-15 levels were determined in 52 nonischemic HF patients followed for a mean of seven years. GDF-15 was correlated with a two-fold increased risk for death for arrhythmia and sudden death with resuscitation (HR 2.2; 95%CI 1.1-4.5; p=0.028) and was superior to ST2 in predicting all-cause mortality (HR 2.4; 95%CI: 1.4-4.2; p = 0.003 versus HR 1.6; 95%CI: 1.05-2.7; p = 0.03).49

Atrial Fibrillation (AF)

Among patients with atrial fibrillation, receiving adequate treatment and anticoagulation, those with elevated GDF-15 had four to five-fold higher mortality rate, independently of age, sex and CHA2DS2VASc.50A similar finding was seen in the study by Sharma et al.,51where GDF-15 was strongly associated with death due to HF and bleeding.51

Nonanticoagulated nonvalvular AF patients with serum levels of GDF-15 above 809 ng/dL are at higher risk for developing left atrial thrombus, regardless of age, atrial volume, and CHA2DS2VASc.52

In a study with 14,798 anticoagulated patients, those with elevated GDF-15 levels had a 3.5-fold increased risk of major bleeding, regardless of the antithrombotic therapy and other comorbidities.50After this finding, the ABC (age, biomarkers [GDF-15, hemoglobin and troponin], and clinical history)-bleeding risk score was developed and validated, and the GDF-15 was the biomarker that most contributed to the risk. The ABC bleeding score showed better accuracy than the HAS-BLED score, which is the most used score in clinical practice.53

Chronic Renal Disease

Cardiac remodeling, fibrosis, and inflammation are possibly involved in the increase of cardiovascular events in patients with chronic renal disease (CRD).

Analysis of biomarkers possible representative of these conditions, the ST2, galectin-3 and GDF-15 were found to be significantly associated with mortality in these patients, but not with atherosclerotic events. Among these, only GDF-15 correlated with the risk of developing HF.54

Similar results were found by Bansal et al.,55who reported that GDF-15 was a predictor of HF in patients with renal dysfunction, similarly to NT-proBNP. However, unlike the natriuretic peptide, the GDF-15 was more strongly correlated with HFpEF.55

Patients with a glomerular filtration rate below 60 mL/min/1.73m2showed significantly higher levels of GDF-15 and NT-proBNP as compared with patients with normal renal function. In a cohort of 358 patients with CRD and systolic dysfunction, GDF-15 refined the prognostic stratification of patients with low NT-proBNP and was more strongly associated with adverse events than the peptide itself.56

Table 1 describes serum GDF-15 levels (mean) associated with the clinical conditions addressed in this review.

Table 1. – Cut-off points of growth differentiation factor-15 (GDF-15) used for diagnosis and prognosis in different clinical conditions (values in ng/L).

Diagnostic cut-off levels Prediction of adverse events
Cardiovascular evens Cardiovascular death Sudden death Overall mortality
HF with reduced ejection fraction7,33,34 > 1,200 > 2,040 > 2,252 * > 2,040
HF with preserved ejection fraction31,40,42 > 1,160 * NA NA *
Acute coronary syndrome15,19 > 967 > 1,550 > 1,550 NA > 1,259
Stable coronary artery disease27 NA > 1,253 > 1,827 > 1,253 > 915

NA: Not accessible (no study including the outcome, or unreliable, small studies). * Use of growth differentiation factor-15 (GDF-15) as a continuous variable, without specific cut-off point.

Conclusion

GDF-15 is a serum biomarker whose expression seems to be affected by stress, tissue damage, and inflammation, although its pathophysiological pathway has not been elucidated yet. Observational studies with healthy individuals have shown an association of GDF-15 with higher risk of cardiovascular events over time. In patients with coronary artery disease and HF, GDF-15 was correlated with increased risk of overall mortality and adverse events. The use of GDF-15 improved the diagnostic performance for detecting HFpEF and contributed to the development of a more accurate risk score to predict bleeding in AF. The use of GDF-15 as a prognostic marker in clinical practice and its capacity to guide the decision-making process still depends on new studies with larger samples.

Figure 1. – Influencing factors of growth differentiation factor-15 (GDF-15) in the cardiovascular system.

Figure 1

Study Association

This article is part of the thesis of master submitted by Bruna Miers May, from Universidade Federal do Rio Grande do Sul - Programa de Pós-Graduação em Ciências da Saúde: Cardiologia e Ciências Cardiovasculares.

Sources of Funding .There were no external funding sources for this study.


Articles from Arquivos Brasileiros de Cardiologia are provided here courtesy of Sociedade Brasileira de Cardiologia

RESOURCES