Skip to main content
Arquivos Brasileiros de Cardiologia logoLink to Arquivos Brasileiros de Cardiologia
editorial
. 2021 Mar 3;116(3):452–453. [Article in Portuguese] doi: 10.36660/abc.20201164
View full-text in English

Novas Perspectivas no Tratamento da Hipertensão

Editor: Heno F Lopes1,
PMCID: PMC8159559  PMID: 33909774

A hipertensão arterial é certamente o maior fator de risco para doenças cardiovasculares. Tiocianatos, barbitúricos, brometos e bismuto foram testados no tratamento da hipertensão arterial no início da década de 1940.1 O uso dessas drogas foi interrompido por se mostrarem ineficazes e com diversos efeitos colaterais. Em meados da década de 1950, bloqueadores ganglionares como hexametônio, pentolínio, mecamilamina e substâncias simpatolíticas de ação periférica (guanetidina) foram testadas no tratamento da hipertensão arterial e mostraram-se eficazes na sua redução, mas pouco toleradas.2 Novos medicamentos foram introduzidos para este fim na década de 1950, incluindo diuréticos.3

Em 1956, em estudo observacional, Moser e Magaulay acompanharam 106 pacientes hipertensos que receberam rauwolfia, hidralazina, reserpina, mecamilamina e clorotiazida como tratamento para hipertensão arterial, isoladamente ou em combinação. A dose de clorotiazida utilizada neste estudo variou de 0,5 a 1,5 gramas e a combinação de clorotiazida resultou em melhor controle da pressão arterial. Desde esse estudo observacional até os dias atuais, vários estudos relacionados ao tratamento farmacológico da hipertensão foram realizados.4 O primeiro estudo randomizado e controlado por placebo realizado foi o Veteran Administration (VA), publicado em 1967.5 É importante notar que o critério de inclusão do estudo para o tratamento ativo versus placebo foi a pressão diastólica entre 115 e 129 mmHg. Após a publicação do estudo VA-I em 19675 e do VA-II em 19706, diversos estudos randomizados controlados abordando o tratamento da hipertensão arterial foram realizados. O foco inicial do tratamento para hipertensão arterial foi a excreção renal de sódio, uma vez que se pensava inicialmente que as doenças renais fossem a principal causa da hipertensão. Posteriormente, os mecanismos fisiopatológicos da hipertensão foram elucidados e a terapia foi direcionada aos principais deles. A ativação do sistema nervoso simpático como importante mecanismo fisiopatológico da hipertensão já havia sido percebida na década de 1950, e várias formas de bloqueio do sistema nervoso simpático e até simpatectomia foram então testadas.7 A partir da década de 1980, com a introdução da microneurografia e a técnica de spillover de norepinefrina, a importância da ativação do sistema nervoso simpático na fisiopatologia da hipertensão tornou-se ainda mais evidente.8,9 Embora mal tolerados, os bloqueadores adrenérgicos centrais e periféricos sempre fizeram parte do tratamento da hipertensão arterial.10 A ativação do sistema renina-angiotensina aldosterona (SRA) e a curva de pressão da natriurese alterada são dois outros mecanismos importantes na fisiopatologia da hipertensão arterial. Atualmente, o uso de diuréticos para correção da curva alterada de pressão da natriurese e de inibidores do sistema renina-angiotensina aldosterona, que atuam em diferentes locais, tem sido rotina no tratamento da hipertensão arterial.11

O sistema nervoso simpático e o sistema renina-angiotensina aldosterona estão envolvidos diretamente nos mecanismos fisiopatológicos da hipertensão arterial. Um aspecto importante nesse sentido é que a ativação desses dois sistemas está relacionada a um processo inflamatório no paciente hipertenso.12 Eles interagem com citocinas inflamatórias, como a interleucina-6 (IL-6) e o fator de necrose tumoral alfa (TNF-α). O sistema nervoso simpático estimula a secreção de citocinas pró-inflamatórias e, ao mesmo tempo, funciona como fonte de citocinas.13 A angiotensina-II é um importante fator pró-inflamatório. Está relacionada à produção de TNF-α e IL-6 e estimula a proteína-1 quimioatraente de monócitos (MCP-1) e o fator nuclear B.14,15 Por outro lado, o tipo de droga utilizada no tratamento de pacientes hipertensos pode reduzir o processo inflamatório relacionado à hipertensão. O uso de moxonidina simpatolítica de ação central no tratamento de mulheres hipertensas na pós-menopausa resultou em uma redução do TNF-α.16

Em um estudo envolvendo pacientes com hipertensão resistente, Barbaro et al. encontraram valores mais elevados de TNF-α em pacientes com hipertensão resistente em comparação com o grupo normotenso.17 Os resultados apontam para TNF-α como um possível mediador de dano vascular em pacientes com hipertensão resistente. Bautista et al.,18 encontraram associação dos níveis de IL-6 e TNF-α com os valores da pressão arterial, independentemente da idade, sexo, índice de massa corporal, história familiar de hipertensão e outras citocinas pró-inflamatórias. No estudo,19 os autores avaliaram o infliximabe, medicamento inibidor do TNF-α, para o tratamento de hipertensos resistentes. O infliximabe em dose única de 3 mg/kg (infusão) resultou em queda de 6,3 mmHg na pressão arterial média e 4,9 mmHg na pressão diastólica. Este efeito agudo do infliximabe na pressão arterial abre uma nova perspectiva no tratamento da hipertensão arterial. Independentemente da queda da pressão arterial, o uso de anti-TNF-α bloqueia um fator que pode ser agravante nas lesões vasculares. Sabe-se que a gravidade da hipertensão está relacionada a um ciclo vicioso decorrente da ativação dos sistemas pressóricos (sistema nervoso simpático e sistema renina-angiotensina-aldosterona).20 A interrupção desse ciclo é essencial para a proteção do organismo e para uma melhor ação de drogas hipotensoras já bem conhecidas.

Footnotes

Minieditorial referente ao artigo: Efeitos da Terapia com Anti-TNF-Α na Pressão Arterial em Pacientes com Hipertensão Resistente: Um Estudo Piloto Randomizado, Duplo-Cego e Controlado por Placebo

Referências

  • 1.Moser M. Historical Perspectives on the Management of Hypertension. J Clin Hypertens. 2006;8(Suppl 2):15–20. doi: 10.1111/j.1524-6175.2006.05836.x. [DOI] [PMC free article] [PubMed] [Google Scholar]; 1. Moser M. Historical Perspectives on the Management of Hypertension. J Clin Hypertens. 2006;8(Suppl 2):15–20. [DOI] [PMC free article] [PubMed]
  • 2.Moser M, Mattingly TW. Critical evaluation of drug therapy of hypertension. Postgraduate medicine. 1955;17(5):351–361. doi: 10.1080/00325481.1955.11708206. [DOI] [PubMed] [Google Scholar]; 2. Moser M, Mattingly TW. Critical evaluation of drug therapy of hypertension - Postgraduate medicine 1955;17(5):351-61. [DOI] [PubMed]
  • 3.Moser M, Magaulay AI. Chlorothiazide as an Adiunct in the Treatment of Essential Hypertension. Am J Cardiol. 1959;3(2):214–219. doi: 10.1016/0002-9149(59)90289-9. [DOI] [PubMed] [Google Scholar]; 3. Moser M, and Magaulay AI. Chlorothiazide as an Adiunct in the Treatment of Essential Hypertension. Am J Cardiol 1959;3(2):214-9. [DOI] [PubMed]
  • 4.Saklayen MG, Deshpande NV. Timeline of History of Hypertension Treatment. Front Cardiovasc Med. 2016;3:3–3. doi: 10.3389/fcvm.2016.00003. [DOI] [PMC free article] [PubMed] [Google Scholar]; 4. Saklayen MG and Deshpande NV. Timeline of History of Hypertension Treatment. Front Cardiovasc Med. 2016;3(:3. doi: 10.3389/fcvm.2016.00003. [DOI] [PMC free article] [PubMed]
  • 5.Veterans Administration Cooperative Study Group on Antihypertensive Agents Effect of treatment on morbidity in hypertension: results in patients with diastolic blood pressure averaging 115 through 129 mm Hg. JAMA. 1967;202(11):1028–1034. [PubMed] [Google Scholar]; 5. Veterans Administration Cooperative Study Group on Antihypertensive Agents: Effect of treatment on morbidity in hypertension: results in patients with diastolic blood pressure averaging 115 through 129 mm Hg. JAMA. 1967;202(11):1028–34. [PubMed]
  • 6.Veterans Administration Cooperative Study Group on Antihypertensive Agents Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA. 1970;213(7):1143–1152. [PubMed] [Google Scholar]; 6. Veterans Administration Cooperative Study Group on Antihypertensive Agents: Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA. 1970;213(7):1143–52. [PubMed]
  • 7.Moser M, Mattingly TW. Critical evaluation of drug therapy of hypertension. Postgrad Med. 1955;17(5):351–361. doi: 10.1080/00325481.1955.11708206. [DOI] [PubMed] [Google Scholar]; 7. Moser M, Mattingly TW. Critical evaluation of drug therapy of hypertension - Postgrad Med. 1955;17(5):351-61. [DOI] [PubMed]
  • 8.Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from direct intraneural recordings. Hypertension. 1988;14(2):1277–1283. doi: 10.1161/01.hyp.14.2.177. [DOI] [PubMed] [Google Scholar]; 8. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: evidence from direct intraneural recordings. Hypertension. 1988;14(2):1277-83. [DOI] [PubMed]
  • 9.Esler M, Lambert G, Jennings G. Increased regional sympathetic nervous activity in human hypertension: causes and consequences. J Hypertens. 1990;8(7):S53–S57. [PubMed] [Google Scholar]; 9. Esler M, Lambert G, Jennings G. Increased regional sympathetic nervous activity in human hypertension: causes and consequences. J Hypertens. 1990;8(7):S53–57. [PubMed]
  • 10.DeQuattro V, Li D. Sympatholytic therapy in primary hypertension: a user friendly role for the future. Journal of Human Hypertension. 2002;16(Suppl 1):S118–S123. doi: 10.1038/sj.jhh.1001356. [DOI] [PubMed] [Google Scholar]; 10. DeQuattro V and Li D. Sympatholytic therapy in primary hypertension: a user friendly role for the future. Journal of Human Hypertension 2002; 16(Suppl 1):S118–S123. [DOI] [PubMed]
  • 11.Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, et al. Systematic Review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e116–e135. doi: 10.1161/HYP.0000000000000067. [DOI] [PubMed] [Google Scholar]; 11. Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, et al. Systematic Review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71(6):e116-e135. [DOI] [PubMed]
  • 12.Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38(3):399–403. doi: 10.1161/01.hyp.38.3.399. [DOI] [PubMed] [Google Scholar]; 12. Chae CU, Lee RT, Rifai N, and Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension 2001;38(3): 399 – 403. [DOI] [PubMed]
  • 13.Zhang ZH, Wei SG, Francis J, Felder RB. Cardiovascular and renal sympathetic activation by blood-borne TNF in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R916–R927. doi: 10.1152/ajpregu.00406.2002. [DOI] [PubMed] [Google Scholar]; 13. Zhang ZH, Wei SG, Francis J, and Felder RB. Cardiovascular and renal sympathetic activation by blood-borne TNF in rat: the role of central prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003;284(4):R916 – R927. [DOI] [PubMed]
  • 14.Han Y, Runge MS, Braiser AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-B transcription factors. Circ Res. 1999;84(6):695–703. doi: 10.1161/01.res.84.6.695. [DOI] [PubMed] [Google Scholar]; 14. Han Y, Runge MS, and Braiser AR. Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-B transcription factors. Circ Res. 1999;84(6): 695– 703. [DOI] [PubMed]
  • 15.Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, Egido J. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int. 2002;82(Suppl):S12–S22. doi: 10.1046/j.1523-1755.62.s82.4.x. [DOI] [PubMed] [Google Scholar]; 15. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, and Egido J. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int. 2002;82(Suppl):S12–S22. [DOI] [PubMed]
  • 16.Poyhonen-Alho MK, Manhem K, Katzman P, Kibarskis A, Antikainen RL, Erkkola RU, et al. Central sympatholytic therapy has anti-inflammatory properties in hypertensive postmenopausal women. J Hypertens. 2008;26(12):2445–2449. doi: 10.1097/HJH.0b013e328311cf37. [DOI] [PubMed] [Google Scholar]; 16. Poyhonen-Alho MK, Manhem K, Katzman P, Kibarskis A, Antikainen RL, Erkkola RU, et al. Central sympatholytic therapy has anti-inflammatory properties in hypertensive postmenopausal women. J Hypertens. 2008; 26(12):2445–9. [DOI] [PubMed]
  • 17.Barbaro NR, Araújo TM, Tanus-Santos JE, Anhê GF, Fontana V, Moreno H. Vascular Damage in Resistant Hypertension: TNF-Alpha Inhibition Effects on Endothelial Cells. BioMed Res Internat. 2015;2015(1-8) doi: 10.1155/2015/631594. 631594. [DOI] [PMC free article] [PubMed] [Google Scholar]; 17. Barbaro NR, Araújo TM, Tanus-Santos JE, Anhê GF, Fontana V, Moreno H Vascular Damage in Resistant Hypertension: TNF-Alpha Inhibition Effects on Endothelial Cells. BioMed Res Internat. 2015;2015:1-8.631594 [DOI] [PMC free article] [PubMed]
  • 18.Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-a) and essential hypertension. Journal of Human Hypertension. 2005;19(2):149–154. doi: 10.1038/sj.jhh.1001785. [DOI] [PubMed] [Google Scholar]; 18. Bautista LE, Vera LM, Arenas IA, and Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-a) and essential hypertension. Journal of Human Hypertension 2005;19(2):149–54. [DOI] [PubMed]
  • 19.Faria AP, Ritter AMV, Santa-Catharina A, Souza DP, EstephNaseri EP, Bertolo Manoel B., et al. Effects of Anti-TNF alpha Therapy on Blood Pressure in Resistant Hypertensive Subjects: A Randomized, Double-Blind, Placebo- Controlled Pilot Study. Arq Bras Cardiol. 2021;116(3):443–451. doi: 10.36660/abc.202190703. [DOI] [PMC free article] [PubMed] [Google Scholar]; 19. Faria AP, Ritter AMV, Santa-Catharina A, Souza DP, EstephNaseri EP, Manoel B. Bertolo, et al. Effects of Anti-TNF alpha Therapy on Blood Pressure in Resistant Hypertensive Subjects: A Randomized, Double-Blind, Placebo- Controlled Pilot Study. Arq Bras Cardiol. 2021; 116(3):443-451. [DOI] [PMC free article] [PubMed]
  • 20.Matsukawa T, Mano T, Gotoh E, Ishii M. Elevated Sympathetic Nerve Activity in Patients with Accelerated Essential Hypertension. J Clin Invest. 1993;92(1):25–28. doi: 10.1172/JCI116558. [DOI] [PMC free article] [PubMed] [Google Scholar]; 20. Matsukawa T, Mano T, Gotoh E, Ishii M. Elevated Sympathetic Nerve Activity in Patients with Accelerated Essential Hypertension. J Clin Invest. 1993;92(1):25-8. [DOI] [PMC free article] [PubMed]
Arq Bras Cardiol. 2021 Mar 3;116(3):452–453. [Article in English]

New Perspectives in the Treatment of Hypertension

Editor: Heno F Lopes1,

Arterial hypertension is by far the biggest risk factor for cardiovascular diseases. Thiocyanates, barbiturates, bromides and bismuth were tested in the treatment of arterial hypertension in the early 1940s.1 The use of these drugs was discontinued because they were proven ineffective and had several side effects. In the mid-1950s, ganglion blockers such as hexamethonium, pentolinium, mecamylamine and peripherally acting sympatholytic substances (guanethidine) were tested as treatment of arterial hypertension and were shown effective in reducing blood pressure, but little tolerated.2 New drugs were introduced to treat hypertension in the 1950s, including diuretics.3

In 1956, in an observational study, Moser and Magaulay followed up 106 hypertensive patients who received rauwolfia, hydralazine, reserpine, mecamylamine and chlorothiazide as treatment for arterial hypertension, alone or in combination. The dose of chlorothiazide used in this study ranged from 0.5 to 1.5 grams and the combination of chlorothiazide resulted in better control of blood pressure. Since that observational study by Moser and Magaulay to the present day, several studies related to the pharmacological treatment of hypertension have been carried out.4 The first randomized, placebo-controlled study conducted on the treatment of arterial hypertension was the Veterans Administration (VA), published in 1967.5 It is worth noting that the study inclusion criterion for active versus placebo treatment was diastolic pressure between 115 and 129 mmHg. After the publication of the VA-I study in 19675 and the VA-II in 1970,6 several randomized controlled studies addressing the treatment of arterial hypertension were carried out. The initial focus of treatment for arterial hypertension was renal sodium excretion, as renal disorders were initially thought to be the main cause of hypertension. Subsequently, the pathophysiological mechanisms of hypertension were elucidated and the therapy was directed to the main pathophysiological mechanisms. The activation of the sympathetic nervous system as an important pathophysiological mechanism of hypertension had already been perceived in the 1950s, and various forms of sympathetic nervous system block and even sympathectomy were then attempted.7 Beginning in the 1980s, with the introduction of the microneurography and the norepinephrine spillover technique, the importance of activation of the sympathetic nervous system in the pathophysiology of hypertension was even more evident.8,9 Although poorly tolerated, central and peripheral adrenergic blockers have always been part of the treatment of arterial hypertension.10 The activation of the renin-angiotensin aldosterone system (RAS) and the altered natriuresis pressure curve are two other important mechanisms in the pathophysiology of arterial hypertension. Currently, the use of diuretics to correct the altered natriuresis pressure curve and inhibitors of the renin-angiotensin aldosterone system, which act at different sites, has been routine in the treatment of arterial hypertension.11

The sympathetic nervous system and the renin-angiotensin aldosterone system are involved directly in the pathophysiological mechanisms of arterial hypertension. An important aspect in this sense is that the activation of these two systems is related to an inflammatory process in the hypertensive patient.12 They interact with inflammatory cytokines such as interleukin-6 (IL-6) and the tumor necrosis factor-alpha (TNF-α). The sympathetic nervous system stimulates the secretion of proinflammatory cytokines and at the same time it functions as a source of cytokines.13 Angiotensin-II is an important proinflammatory factor. It is related to the production of TNF-α and IL-6 and stimulates the monocyte chemoattractant protein-1 (MCP-1) and the nuclear factor-B.14,15 On the other hand, the type of drug used in the treatment of hypertensive patients can reduce the inflammatory process related to hypertension. The use of centrally acting sympatholytic moxonidine in the treatment of postmenopausal hypertensive women resulted in a reduction in TNF-α.16

In a study involving patients with resistant hypertension, Barbaro et al.17 found higher TNF-α values in patients with resistant hypertension compared to the normotensive group.17 The results point to TNF-α as a possible mediator of vascular damage in patients with resistant hypertension. Bautista et al.18 found an association of IL-6 and TNF-α levels with blood pressure values, regardless of age, sex, body mass index, family history of hypertension and other proinflammatory cytokines. In the study,19 the authors evaluated Infliximab, a drug that inhibits TNF-α, for the treatment of resistant hypertensive patients. Infliximab in a single dose of 3 mg/kg (infusion) resulted in a drop of 6.3 mmHg in mean arterial pressure and 4.9 mmHg in diastolic pressure. This acute effect of Infliximab on blood pressure opens a new perspective in the treatment of arterial hypertension. Regardless of the drop in blood pressure, using anti-TNF-α blocks a factor that can be aggravating in vascular injuries. It is known that the severity of hypertension is related to a vicious circle resulting from the activation of pressure systems (sympathetic nervous system and renin-angiotensin aldosterone system).20 The interruption of this circle is essential to protect the organism and for a better action of hypotensive drugs already well known.

Footnotes

Short Editorial related to the article: Effects of Anti-TNF-Α Therapy on Blood Pressure in Resistant Hypertensive Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Study


Articles from Arquivos Brasileiros de Cardiologia are provided here courtesy of Sociedade Brasileira de Cardiologia

RESOURCES