Skip to main content
Chemical Science logoLink to Chemical Science
. 2020 Nov 9;11(45):12371. doi: 10.1039/d0sc90242j

Correction: Polariton chemistry: controlling molecular dynamics with optical cavities

Raphael F Ribeiro 1, Luis A Martínez-Martínez 1, Matthew Du 1, Jorge Campos-Gonzalez-Angulo 1, Joel Yuen-Zhou 1,
PMCID: PMC8162464  PMID: 34094447

Abstract

Correction for ‘Polariton chemistry: controlling molecular dynamics with optical cavities’ by Raphael F. Ribeiro et al., Chem. Sci., 2018, 9, 6325–6339, DOI: 10.1039/C8SC01043A.


The authors regret that incorrect values are reported in Table 1 of the original article. The corrected Table 1 is shown below.

Timescales relevant for the description of organic (J-aggregate) microcavity relaxation dynamics at room temperaturea.

Process Initial state(s) Final state(s) Timescale Ref. in original article Ref. in this Correction
Rabi oscillations 15–80 fs (50–300 meV) 93 1
Cavity leakage Cavity photon 35–100 fs 94–96 2–4
Vibrational relaxation UP Dark states ∼50 fs 11 5
Dark states LP ∼10 ps 99 6
Photoluminescence UP ∼100 fs 95 3
LP ∼100 fs 95 3
Bare exciton ∼1–100 ps 94, 100 and 101 2, 7 and 8
a

In typical organic dyes, vibrational relaxation following electronic excitation occurs on the order of 10–1000 fs.9,10

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

  1. Hobson P. A. Barnes W. L. Lidzey D. G. Gehring G. A. Whittaker D. M. Skolnick M. S. Walker S. Appl. Phys. Lett. 2002;81:3519–3521. doi: 10.1063/1.1517714. [DOI] [Google Scholar]
  2. Song J.-H. He Y. Nurmikko A. V. Tischler J. Bulovic V. Phys. Rev. B: Condens. Matter Mater. Phys. 2004;69:235330. doi: 10.1103/PhysRevB.69.235330. [DOI] [Google Scholar]
  3. Michetti P. La Rocca G. C. Phys. Rev. B: Condens. Matter Mater. Phys. 2008;77:195301. doi: 10.1103/PhysRevB.77.195301. [DOI] [Google Scholar]
  4. Coles D. M. Michetti P. Clark C. Tsoi W. C. Adawi A. M. Kim J.-S. Lidzey D. G. Adv. Funct. Mater. 2011;21:3691–3696. doi: 10.1002/adfm.201100756. [DOI] [Google Scholar]
  5. Agranovich V. M. Litinskaia M. Lidzey D. G. Phys. Rev. B: Condens. Matter Mater. Phys. 2003;67:085311. doi: 10.1103/PhysRevB.67.085311. [DOI] [Google Scholar]
  6. Litinskaya M. Reineker P. Agranovich V. M. J. Lumin. 2004;110:364–372. doi: 10.1016/j.jlumin.2004.08.033. [DOI] [Google Scholar]
  7. Wang S. Chervy T. George J. Hutchison J. A. Genet C. Ebbesen T. W. J. Phys. Chem. Lett. 2014;5:1433–1439. doi: 10.1021/jz5004439. [DOI] [PubMed] [Google Scholar]
  8. Miyano K. Ishikawa H. Tomioka A. Mater. Sci. Eng., B. 1997;48:122–125. doi: 10.1016/S0921-5107(97)00091-3. [DOI] [Google Scholar]
  9. Taylor A. J. Erskine D. J. Tang C. L. Chem. Phys. Lett. 1984;103:430–435. doi: 10.1016/0009-2614(84)80334-6. [DOI] [Google Scholar]
  10. Reiser D. Laubereau A. Opt. Commun. 1982;42:329–334. doi: 10.1016/0030-4018(82)90242-5. [DOI] [Google Scholar]

Articles from Chemical Science are provided here courtesy of Royal Society of Chemistry

RESOURCES