Skip to main content
Frontiers in Physiology logoLink to Frontiers in Physiology
editorial
. 2021 May 19;12:689429. doi: 10.3389/fphys.2021.689429

Interleukin-6 Trans-signaling: A Pathway With Therapeutic Potential for Diabetic Retinopathy

Shruti Sharma 1,2,3,*
PMCID: PMC8170152  PMID: 34093244

New Therapies for Diabetic Retinopathy are an Urgent Unmet Need

Diabetic retinopathy (DR), a sight-threatening neurovasculopathy, is the leading cause of blindness in working-aged adults (Zhang et al., 2010; Hendrick et al., 2015). DR is characterized by pathologic vascular proliferation, oxidative damage, and inflammation within the retina (Tang and Kern, 2011; Antonetti et al., 2012; Klaassen et al., 2013). The progression of DR is highly correlated to the duration of diabetes (Fong et al., 2004). While restoring glycemic control and regulating other systemic factors are important for slowing DR development, limited therapeutic options are available once symptoms progress, and these are primarily aimed at treating late-stage disease (Fullerton et al., 2014; Do et al., 2015; Lee et al., 2015; Gardner and Sundstrom, 2017).

The number of DR patients is expected to increase over the coming decades. Currently, the only recommended treatments for advanced retinopathy are laser photocoagulation or anti-VEGF injections, but a substantial proportion of patients are resistant to these treatments. Laser photocoagulation can control pathological neovascularization, but it may lead to complications, such as impaired central vision, nocturnal diminution of vision, and blindness. The beneficial effects of anti-VEGF injections are usually transient, as the treatment does not promote tissue repair, and repeated injections increase the risk of intraocular infection. Furthermore, despite receiving anti-VEGF injections, a small proportion of patients with macular edema still show persistent disease (Lavine et al., 2017; Roy et al., 2017). Moreover, neither treatment targets early-stage disease. Another study examined the effect of candesartan, an angiotensin-II receptor antagonist, on patients with type 1 diabetes and found a moderate 18% reduction in incidence of retinopathy with no effect on the progression of existing retinopathy (Group and Chaturvedi, 2002). Therefore, new therapies to prevent retinal injury and enhance repair represent a critical unmet need.

Interleukin-6 Trans-Signaling: A Potential Therapeutic Target for Diabetic Retinopathy

The pleiotropic cytokine, interleukin-6 (IL-6), is one of the major mediators of retinal vascular inflammation associated with DR (Shimizu et al., 2002; Funatsu et al., 2005; Mocan et al., 2006; Kawashima et al., 2007; Hou et al., 2008; Barnes et al., 2011; Koleva-Georgieva et al., 2011; Gustavsson et al., 2013; Koskela et al., 2013; Chen et al., 2016; Srividya et al., 2018; Valle et al., 2019). IL-6 signaling through its membrane-bound IL-6 receptor is known as “classical signaling.” Importantly, IL-6 signaling is also observed in cells that do not express the membrane-bound IL-6 receptor through a soluble IL-6 receptor (sIL-6R), known as “trans-signaling” (Barnes et al., 2011; Rose-John, 2012). There is increasing evidence in the literature suggesting that IL-6 classical signaling is anti-inflammatory, whereas trans-signaling induces the pro-inflammatory effects of IL-6 (Rabe et al., 2008; Ebihara et al., 2011; Fisher et al., 2011; Scheller et al., 2011; Wei et al., 2013). Trans-signaling has also been reported to have stronger effects than classical signaling (Reeh et al., 2019).

Recent advances in the field have led to the development of several therapeutic interventions targeting IL-6 signaling pathways, including anti-IL6 antibodies: siltuximab, sirukumab, olokizumab, and clazakizumab; anti-IL6R antibodies: tocilizumab, sarilumab, satralizumab, and vobarilizumab; and selective inhibitors of IL-6 trans-signaling only: sgp130Fc (olamkicept). Anti-IL6 and anti-IL6R therapeutic strategies globally block IL-6 signaling, essentially targeting both classical and trans-signaling pathways. Tocilizumab, an IL-6 receptor-inhibiting monoclonal antibody, is useful in the treatment of various autoimmune and inflammatory conditions, notably rheumatoid arthritis (Ohsugi and Kishimoto, 2008). However, this treatment was associated with negative side effects, such as liver toxicity and increases in triacylglycerol and cholesterol levels (Kawashiri et al., 2011).

Long-term hyperglycemia-mediated oxidative stress and inflammation lead to blood-retinal barrier (BRB) dysfunction and increased vascular permeability, allowing extravasation of plasma proteins into the interstitium (Frey and Antonetti, 2011; Klaassen et al., 2013). This dysfunction leads to edema, deposition of hard exudates in the retina, microaneurysms, and retinal hemorrhage (Cheung et al., 2010; Cunha-Vaz et al., 2011; Eshaq et al., 2017). BRB breakdown and subsequent macular edema are the main causes of blindness in DR (Antonetti et al., 1999; Joussen et al., 2007; Gardner et al., 2009; Klaassen et al., 2013; Sugimoto et al., 2013; Kita et al., 2015; Lee et al., 2015). IL-6 plays a significant role in initiating BRB breakdown in DR (Mesquida et al., 2019; Valle et al., 2019). Studies have shown that IL-6 signaling decreases barrier function in retinal endothelial cells and increases vascular leakage through downregulating tight junction proteins (Yun et al., 2017; Jo et al., 2019). IL-6 trans-signaling causes oxidative stress, inflammation, and endothelial barrier disruption in human retinal endothelial cells (Valle et al., 2019). Further, in a mouse model of early DR, inhibition of IL-6 trans-signaling significantly reduced diabetes-induced oxidative damage at the systemic level and in the retina (Robinson et al., 2020).

IL-6 also plays an important role in localized immune responses by mediating the recruitment of circulating leukocytes, attachment to the endothelium, and migration through the vascular wall (Romano et al., 1997; Rojas et al., 2010; Ebihara et al., 2011). Arrest and firm adhesion of leukocytes occur by their binding to endothelial cells using intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). In diabetic patients, increased ICAM-1 expression in retinal vessels is correlated with an increase in migrating neutrophils (Noda et al., 2012). We previously found elevated levels of soluble ICAM-1 and VCAM-1 in patients with DR (Sharma et al., 2015) and increased ICAM-1 protein levels in human retinal endothelial cells after IL-6 trans-signaling activation (Valle et al., 2019). Numerous studies have demonstrated that IL-6 increases the expression of ICAM-1, VCAM-1, and selectins (Wung et al., 2005; Lin et al., 2013), but distinct roles of classical and trans-signaling have not been studied. Future studies delineating the relationship between IL-6 trans-signaling and leukocyte migration in the retinal vasculature will enhance our understanding of inflammation and BRB breakdown associated with DR.

Molecular Tools for Delineating the Roles of IL-6 Classical and Trans-Signaling

sgp130Fc

The soluble gp130 (sgp130) is a natural inhibitor of IL-6 trans-signaling (Wolf et al., 2016; Rose-John, 2017; Baran et al., 2018). The commercially available compound, sgp130Fc (soluble gp130Fc fused chimera), is an optimized fusion protein of the natural sgp130 and IgG1-Fc (Tenhumberg et al., 2008). sgp130Fc binds to IL-6 in complex with soluble IL-6R (IL-6/sIL-6R) and does not interfere with IL-6 alone or IL-6 bound to IL-6R on the cell surface. Therefore, sgp130Fc selectively inhibits IL-6 trans-signaling without disrupting IL-6 classical signaling via the membrane bound IL-6R. Compared to endogenous sgp130, sgp130Fc has been shown to possess 10 to 100 times greater ability for inhibiting IL-6 trans-signaling responses (Jostock et al., 2001). The use of this compound alongside existing global IL-6 inhibitors allows for a direct comparison of the therapeutic potential of global vs. selective trans-signaling inhibition.

Hyper IL-6

Hyper-IL-6 is a fusion protein using a flexible peptide linker between soluble IL-6R and IL-6 to connect both molecules. Therefore, instead of a mixture of IL-6 and soluble IL-6R, hyper IL-6 can be used to stimulate IL-6 trans-signaling in cells. Also, hyper IL-6 is ~100 × more potent than the combination of IL-6/sIL-6R (Fischer et al., 1997; Jostock et al., 2001; Drucker et al., 2010). This compound is particularly useful for studies involving cells that express the membrane-bound IL-6 receptor, as a mixture of IL-6 and soluble IL-6R could theoretically activate both classical and trans-signaling. Hyper IL-6 allows for selective activation of IL-6 trans-signaling without any classical signaling activation.

L-gp130

The transmission of the IL-6 signaling through the plasma membrane is mediated through glycoprotein 130 kDa (gp130). IL-6 receptor associates with the ubiquitously expressed protein gp130, initiating dimerization and intracellular signaling. L-gp130 is a designer protein in which the entire extracellular portion of gp130 is replaced by the leucine zipper of the Jun protein for constitutive dimerization and activation. Thus, L-gp130 protein can be used for permanent gp130 activation to mimic constitutive IL-6 signaling in cells (Stuhlmann-Laeisz et al., 2006).

Transgenic Mice Overexpressing sgp130Fc

Transgenic mice that constitutively overexpress sgp130Fc are valuable resources to selectively block IL-6 trans-signaling in vivo (Rabe et al., 2008). Two types of transgenic mice are available for either central or peripheral expression of sgp130Fc. Peripheral sgp130Fc transgenic mice express sgp130Fc in the liver under the control of the phophoenol pyruvate-carboxykine (PEPCK) promotor for systemic release into the circulatory system (Rabe et al., 2008; Kraakman et al., 2015). The central sgp130Fc transgenic strain allows for inhibition of IL-6 trans-signaling in the central nervous system through sgp130Fc expression under control of a glial fibrillary acidic protein (GFAP) promotor (Campbell et al., 2014). Functionally, these models mimic intravenous (peripheral) or intravitreal (central) drug delivery, two common methods used in the treatment of ocular diseases.

Concluding Remarks

Increasing evidence suggests that the IL-6 pathway plays a prominent role in the pathogenesis of DR. The complex IL-6 receptor system allows for multiple signaling modalities, including classical signaling and trans-signaling. Classical signaling is critical for the regenerative or anti-inflammatory activities of IL-6, while recent studies have demonstrated that IL-6 trans-signaling is primarily pro-inflammatory. In DR, IL-6 trans-signaling mediates barrier disruption in retinal endothelial cells, and blockade of this pathway maintained normal endothelial barrier function. Selective inhibition of IL-6 trans-signaling with sgp130Fc also suppressed ocular inflammation and oxidative stress in a mouse model of DR. These findings indicate that a pathway primarily driven by IL-6 + soluble IL-6R contributes to vascular inflammation in the diabetic retina. Therefore, inhibiting only the trans-signaling pathway of IL-6 will likely be therapeutically superior to a complete IL-6 blockade, because important physiologic functions of IL-6 classical signaling will remain intact. An emerging challenge is identifying means of targeting this inflammatory pathway, as well as determining which DR patients may benefit most from therapies blocking IL-6 trans-signaling. The selective inhibition of IL-6 trans-signaling using the sgp130Fc fusion protein is in clinical trials for the treatment of several inflammatory diseases (Rose-John, 2017) and may be repurposed in the future as an excellent target for DR therapy.

Author Contributions

The author confirms being the sole contributor of this work and has approved it for publication.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

Funding. This study was supported by the National Institutes of Health, National Eye Institute (Bethesda, MD, USA) grant # R01-EY026936 awarded to SS.

References

  1. Antonetti D. A., Klein R., Gardner T. W. (2012). Diabetic retinopathy. N. Engl. J. Med. 366, 1227–1239. 10.1056/NEJMra1005073 [DOI] [PubMed] [Google Scholar]
  2. Antonetti D. A., Lieth E., Barber A., Gardner T.W. (1999). “Molecular mechanisms of vascular permeability in diabetic retinopathy,” in Seminars in Ophthalmology (Taylor and Francis: ), 240–248. 10.3109/08820539909069543 [DOI] [PubMed] [Google Scholar]
  3. Baran P., Hansen S., Waetzig G. H., Akbarzadeh M., Lamertz L., Huber H. J., et al. (2018). The balance of interleukin (IL)-6, IL-6.soluble IL-6 receptor (sIL-6R), and IL-6.sIL-6R.sgp130 complexes allows simultaneous classic and trans-signaling. J. Biol. Chem. 293, 6762–6775. 10.1074/jbc.RA117.001163 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barnes T. C., Anderson M. E., Moots R. J. (2011). The many faces of interleukin-6: the role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. Int. J. Rheumatol. 2011:721608. 10.1155/2011/721608 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell I. L., Erta M., Lim S. L., Frausto R., May U., Rose-John S., et al. (2014). Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J. Neurosci. 34, 2503–2513. 10.1523/JNEUROSCI.2830-13.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen H., Zhang X., Liao N., Wen F. (2016). Increased levels of IL-6, sIL-6R, and sgp130 in the aqueous humor and serum of patients with diabetic retinopathy. Mol. Vis. 22, 1005–1014. [PMC free article] [PubMed] [Google Scholar]
  7. Cheung N., Mitchell P., Wong T. Y. (2010). Diabetic retinopathy. Lancet. 376, 124–136. 10.1016/S0140-6736(09)62124-3 [DOI] [PubMed] [Google Scholar]
  8. Cunha-Vaz J., Bernardes R., Lobo C. (2011). Blood-retinal barrier. Eur. J. Ophthalmol. 21(Suppl. 6), S3–S9. 10.5301/EJO.2010.6049 [DOI] [PubMed] [Google Scholar]
  9. Do D. V., Wang X., Vedula S. S., Marrone M., Sleilati G., Hawkins B. S., et al. (2015). Blood pressure control for diabetic retinopathy. Cochrane Database Syst. Rev. 1:CD006127. 10.1002/14651858.CD006127.pub2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drucker C., Gewiese J., Malchow S., Scheller J., Rose-John S. (2010). Impact of interleukin-6 classic-and trans-signaling on liver damage and regeneration. J. Autoimmun. 34, 29–37. 10.1016/j.jaut.2009.08.003 [DOI] [PubMed] [Google Scholar]
  11. Ebihara N., Matsuda A., Nakamura S., Matsuda H., Murakami A. (2011). Role of the IL-6 classic- and trans-signaling pathways in corneal sterile inflammation and wound healing. Invest. Ophthalmol. Vis. Sci. 52, 8549–8557. 10.1167/iovs.11-7956 [DOI] [PubMed] [Google Scholar]
  12. Eshaq R. S., Aldalati A. M. Z., Alexander J. S., Harris N. R. (2017). Diabetic retinopathy: breaking the barrier. Pathophysiology. 24, 229–241. 10.1016/j.pathophys.2017.07.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fischer M., Goldschmitt J., Peschel C., Brakenhoff J. P., Kallen K.-J., Wollmer A., et al. (1997). A bioactive designer cytokine for human hematopoietic progenitor cell expansion. Nat. Biotechnol. 15, 142–145. 10.1038/nbt0297-142 [DOI] [PubMed] [Google Scholar]
  14. Fisher D. T., Chen Q., Skitzki J. J., Muhitch J. B., Zhou L., Appenheimer M. M., et al. (2011). IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J. Clin. Invest. 121, 3846–3859. 10.1172/JCI44952 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fong D. S., Aiello L., Gardner T. W., King G. L., Blankenship G., Cavallerano J. D., et al. (2004). Retinopathy in diabetes. Diabetes Care. 27(Suppl. 1), s84–s87. 10.2337/diacare.27.10.2540 [DOI] [PubMed] [Google Scholar]
  16. Frey T., Antonetti D. A. (2011). Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxid. Redox Signal. 15, 1271–1284. 10.1089/ars.2011.3906 [DOI] [PubMed] [Google Scholar]
  17. Fullerton B., Jeitler K., Seitz M., Horvath K., Berghold A., Siebenhofer A. (2014). Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 2014:CD009122. 10.1002/14651858.CD009122.pub2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Funatsu H., Yamashita H., Noma H., Mimura T., Nakamura S., Sakata K., et al. (2005). Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients. Graefe's Arch. Clin. Exp. Ophthalmol. 243, 3–8. 10.1007/s00417-004-0950-7 [DOI] [PubMed] [Google Scholar]
  19. Gardner T. W., Larsen M., Girach A., Zhi X., Protein Kinase C, Diabetic Retinopathy Study (PKC-DRS2) Study Group (2009). Diabetic macular oedema and visual loss: relationship to location, severity and duration. Acta Ophthalmol. 87, 709–713. 10.1111/j.1755-3768.2009.01545.x [DOI] [PubMed] [Google Scholar]
  20. Gardner T. W., Sundstrom J. M. (2017). A proposal for early and personalized treatment of diabetic retinopathy based on clinical pathophysiology and molecular phenotyping. Vis. Res. 139, 153–160. 10.1016/j.visres.2017.03.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Group D. P. S., Chaturvedi N. (2002). The Diabetic Retinopathy Candesartan Trials (DIRECT) programme, rationale and study design. J. Renin Angiotensin Aldosterone Syst. 3, 255–261. 10.3317/jraas.2002.047 [DOI] [PubMed] [Google Scholar]
  22. Gustavsson C., Agardh C. D., Agardh E. (2013). Profile of intraocular tumour necrosis factor-alpha and interleukin-6 in diabetic subjects with different degrees of diabetic retinopathy. Acta Ophthalmol. 91, 445–452. 10.1111/j.1755-3768.2012.02430.x [DOI] [PubMed] [Google Scholar]
  23. Hendrick A. M., Gibson M. V., Kulshreshtha A. (2015). Diabetic retinopathy. Prim. Care. 42, 451–464. 10.1016/j.pop.2015.05.005 [DOI] [PubMed] [Google Scholar]
  24. Hou T., Tieu B. C., Ray S., Recinos A., III., Cui R., Tilton R. G., et al. (2008). Roles of IL-6-gp130 signaling in vascular inflammation. Curr. Cardiol. Rev. 4:179. 10.2174/157340308785160570 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jo D. H., Yun J. H., Cho C. S., Kim J. H., Kim J. H., Cho C. H. (2019). Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia. 67, 321–331. 10.1002/glia.23542 [DOI] [PubMed] [Google Scholar]
  26. Jostock T., Mullberg J., Ozbek S., Atreya R., Blinn G., Voltz N., et al. (2001). Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167. 10.1046/j.1432-1327.2001.01867.x [DOI] [PubMed] [Google Scholar]
  27. Joussen A. M., Smyth N., Niessen C. (2007). “Pathophysiology of diabetic macular edema,” in Diabetic Retinopathy (Karger Publishers: ), 1–12. 10.1159/000098495 [DOI] [PubMed] [Google Scholar]
  28. Kawashima M., Shoji J., Nakajima M., Kamura Y., Sato Y. (2007). Soluble IL-6 receptor in vitreous fluid of patients with proliferative diabetic retinopathy. Jpn. J. Ophthalmol. 51, 100–104. 10.1007/s10384-006-0411-4 [DOI] [PubMed] [Google Scholar]
  29. Kawashiri S.-,y., Kawakami A., Yamasaki S., Imazato T., Iwamoto N., Fujikawa K., et al. (2011). Effects of the anti-interleukin-6 receptor antibody, tocilizumab, on serum lipid levels in patients with rheumatoid arthritis. Rheumatol. Int. 31, 451–456. 10.1007/s00296-009-1303-y [DOI] [PubMed] [Google Scholar]
  30. Kita T., Clermont A. C., Murugesan N., Zhou Q., Fujisawa K., Ishibashi T., et al. (2015). Plasma kallikrein-kinin system as a VEGF-independent mediator of diabetic macular edema. Diabetes. 64, 3588–3599. 10.2337/db15-0317 [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Klaassen I., Van Noorden C. J., Schlingemann R. O. (2013). Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 34, 19–48. 10.1016/j.preteyeres.2013.02.001 [DOI] [PubMed] [Google Scholar]
  32. Koleva-Georgieva D. N., Sivkova N. P., Terzieva D. (2011). Serum inflammatory cytokines IL-1β, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy. Folia Med. 53, 44–50. 10.2478/v10153-010-0036-8 [DOI] [PubMed] [Google Scholar]
  33. Koskela U. E., Kuusisto S. M., Nissinen A. E., Savolainen M. J., Liinamaa M. J. (2013). High vitreous concentration of IL-6 and IL-8, but not of adhesion molecules in relation to plasma concentrations in proliferative diabetic retinopathy. Ophthal. Res. 49, 108–114. 10.1159/000342977 [DOI] [PubMed] [Google Scholar]
  34. Kraakman M. J., Kammoun H. L., Allen T. L., Deswaerte V., Henstridge D. C., Estevez E., et al. (2015). Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 21, 403–416. 10.1016/j.cmet.2015.02.006 [DOI] [PubMed] [Google Scholar]
  35. Lavine J. A., Farnoodian M., Wang S., Darjatmoko S. R., Wright L. S., Gamm D. M., et al. (2017). β2–adrenergic receptor antagonism attenuates CNV through inhibition of VEGF and IL-6 expression. Investig. Ophthalmol. Visual Sci. 58, 299–308. 10.1167/iovs.16-20204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lee R., Wong T. Y., Sabanayagam C. (2015). Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2:17. 10.1186/s40662-015-0026-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lin Y.-M., Chang Z.-L., Liao Y.-Y., Chou M.-C., Tang C.-H. (2013). IL-6 promotes ICAM-1 expression and cell motility in human osteosarcoma. Cancer Lett. 328, 135–143. 10.1016/j.canlet.2012.08.029 [DOI] [PubMed] [Google Scholar]
  38. Mesquida M., Drawnel F., Lait P. J., Copland D. A., Stimpson M. L., Llorenc V., et al. (2019). Modelling macular edema: the effect of IL-6 and IL-6R blockade on human blood-retinal barrier integrity in vitro. Transl. Vis. Sci. Technol. 8:32. 10.1167/tvst.8.5.32 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mocan M. C., Kadayifcilar S., Eldem B. (2006). Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Can. J. Ophthalmol. 41, 747–752. 10.3129/i06-070 [DOI] [PubMed] [Google Scholar]
  40. Noda K., Nakao S., Ishida S., Ishibashi T. (2012). Leukocyte adhesion molecules in diabetic retinopathy. J. Ophthalmol. 2012:279037. 10.1155/2012/279037 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ohsugi Y., Kishimoto T. (2008). The recombinant humanized anti-IL-6 receptor antibody tocilizumab, an innovative drug for the treatment of rheumatoid arthritis. Expert Opin. Biol. Ther. 8, 669–681. 10.1517/14712598.8.5.669 [DOI] [PubMed] [Google Scholar]
  42. Rabe B., Chalaris A., May U., Waetzig G. H., Seegert D., Williams A. S., et al. (2008). Transgenic blockade of interleukin 6 transsignaling abrogates inflammation. Blood. 111, 1021–1028. 10.1182/blood-2007-07-102137 [DOI] [PubMed] [Google Scholar]
  43. Reeh H., Rudolph N., Billing U., Christen H., Streif S., Bullinger E., et al. (2019). Response to IL-6 trans-and IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: fusing experimental insights and dynamic modelling. Cell Commun. Signal. 17, 1–21. 10.1186/s12964-019-0356-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Robinson R., Srinivasan M., Shanmugam A., Ward A., Ganapathy V., Bloom J., et al. (2020). Interleukin-6 trans-signaling inhibition prevents oxidative stress in a mouse model of early diabetic retinopathy. Redox Biol. 34:101574. 10.1016/j.redox.2020.101574 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rojas M., Zhang W., Lee D. L., Romero M. J., Nguyen D. T., Al-Shabrawey M., et al. (2010). Role of IL-6 in angiotensin II–induced retinal vascular inflammation. Investig. Ophthalmol. Vis. Sci. 51, 1709–1718. 10.1167/iovs.09-3375 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Romano M., Sironi M., Toniatti C., Polentarutti N., Fruscella P., Ghezzi P., et al. (1997). Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 6, 315–325. 10.1016/S1074-7613(00)80334-9 [DOI] [PubMed] [Google Scholar]
  47. Rose-John S. (2012). IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8:1237. 10.7150/ijbs.4989 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Rose-John S. (2017). The soluble interleukin 6 receptor: advanced therapeutic options in inflammation. Clin. Pharmacol. Ther. 102, 591–598. 10.1002/cpt.782 [DOI] [PubMed] [Google Scholar]
  49. Roy S., Kern T. S., Song B., Stuebe C. (2017). Mechanistic insights into pathological changes in the diabetic retina: implications for targeting diabetic retinopathy. Am. J. Pathol. 187, 9–19. 10.1016/j.ajpath.2016.08.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta. 1813, 878–888. 10.1016/j.bbamcr.2011.01.034 [DOI] [PubMed] [Google Scholar]
  51. Sharma S., Purohit S., Sharma A., Hopkins D., Steed L., Bode B., et al. (2015). Elevated serum levels of soluble TNF receptors and adhesion molecules are associated with diabetic retinopathy in patients with type-1 diabetes. Mediat. Inflamm. 2015:279393. 10.1155/2015/279393 [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shimizu E., Funatsu H., Yamashita H., Yamashita T., Hori S. (2002). Plasma level of interleukin-6 is an indicator for predicting diabetic macular edema. Jpn. J. Ophthalmol. 46, 78–83. 10.1016/S0021-5155(01)00452-X [DOI] [PubMed] [Google Scholar]
  53. Srividya G., Jain M., Mahalakshmi K., Gayathri S., Raman R., Angayarkanni N. (2018). A novel and less invasive technique to assess cytokine profile of vitreous in patients of diabetic macular oedema. Eye. 32, 820–829. 10.1038/eye.2017.285 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Stuhlmann-Laeisz C., Lang S., Chalaris A., Krzysztof P., Enge S., Eichler J., et al. (2006). Forced dimerization of gp130 leads to constitutive STAT3 activation, cytokine-independent growth, and blockade of differentiation of embryonic stem cells. Mol. Biol. Cell. 17, 2986–2995. 10.1091/mbc.e05-12-1129 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Sugimoto M., Cutler A., Shen B., Moss S. E., Iyengar S. K., Klein R., et al. (2013). Inhibition of EGF signaling protects the diabetic retina from insulin-induced vascular leakage. Am. J. Pathol. 183, 987–995. 10.1016/j.ajpath.2013.05.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tang J., Kern T. S. (2011). Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 30, 343–358. 10.1016/j.preteyeres.2011.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tenhumberg S., Waetzig G. H., Chalaris A., Rabe B., Seegert D., Scheller J., et al. (2008). Structure-guided optimization of the interleukin-6 trans-signaling antagonist sgp130. J. Biol. Chem. 283, 27200–27207. 10.1074/jbc.M803694200 [DOI] [PubMed] [Google Scholar]
  58. Valle M. L., Dworshak J., Sharma A., Ibrahim A. S., Al-Shabrawey M., Sharma S. (2019). Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells. Exp. Eye Res. 178, 27–36. 10.1016/j.exer.2018.09.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wei L. H., Chou C. H., Chen M. W., Rose-John S., Kuo M. L., Chen S. U., et al. (2013). The role of IL-6 trans-signaling in vascular leakage: implications for ovarian hyperstimulation syndrome in a murine model. J. Clin. Endocrinol. Metab. 98, E472–E484. 10.1210/jc.2012-3462 [DOI] [PubMed] [Google Scholar]
  60. Wolf J., Waetzig G. H., Chalaris A., Reinheimer T. M., Wege H., Rose-John S., et al. (2016). Different soluble forms of the interleukin-6 family signal transducer gp130 fine-tune the blockade of interleukin-6 trans-signaling. J. Biol. Chem. 291, 16186–16196. 10.1074/jbc.M116.718551 [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wung B., Ni C., Wang D. (2005). ICAM-1 induction by TNFα and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J. Biomed. Sci. 12, 91–101. 10.1007/s11373-004-8170-z [DOI] [PubMed] [Google Scholar]
  62. Yun J. H., Park S. W., Kim K. J., Bae J. S., Lee E. H., Paek S. H., et al. (2017). Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J. Cell. Physiol. 232, 1123–1134. 10.1002/jcp.25575 [DOI] [PubMed] [Google Scholar]
  63. Zhang X., Saaddine J. B., Chou C. F., Cotch M. F., Cheng Y. J., Geiss L. S., et al. (2010). Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA. 304, 649–656. 10.1001/jama.2010.1111 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Physiology are provided here courtesy of Frontiers Media SA

RESOURCES