Skip to main content
PLOS ONE logoLink to PLOS ONE
. 2021 Jun 3;16(6):e0252358. doi: 10.1371/journal.pone.0252358

The association between diet and mental health and wellbeing in young adults within a biopsychosocial framework

Verena Rossa-Roccor 1,2,*, Chris G Richardson 1,3, Rachel A Murphy 1,4, Anne M Gadermann 1,3,5
Editor: Sıdıka Bulduk6
PMCID: PMC8174719  PMID: 34081708

Abstract

Objective

Predominantly plant-based diets can co-benefit human physical health and the planet. Young adults appear to be on the forefront of the shift to plant-based diets. However, little is known about the relationship between plant-based diets and mental health in this population even though mental health disorders contribute substantially to the global burden of disease, particularly among this age group.

Design

In this cross-sectional study we utilize a biopsychosocial framework to assess the association between dietary intake and mental health and wellbeing. Mental health was assessed using self-reported measures of anxiety (GAD-7), depression (PHQ-9) and quality of life (single-item). Dietary intake in the prior month was assessed using a dietary screener (DSQ) and participants were asked to self-identify a diet preference (e.g., vegan).

Setting and participants

339 university undergraduate students.

Results

A principal component analysis of dietary intake found three dominant dietary patterns (plant-based, animal-based, and ‘junk foods’); 28.1% (n = 95) of participants self-identified as pescatarian, vegetarian, vegan, other. The association between dietary patterns, diet preference and mental health was assessed through regression analysis. After controlling for covariables, we found a significant positive association between the junk food component and depression (z-score β = .21, p≤.001; adj. R2 = .39) and anxiety (z-score β = .14; p≤.001; adj. R2 = .32) while no association was found between plant-based, animal-based or self-identified diet preference and the mental health measures.

Conclusions

We did not find a negative association between predominantly plant-based diet patterns and mental health and wellbeing. It is important to consider dietary composition and to conceptualize diet as a health behaviour that is embedded in a biopsychosocial framework.

Introduction

Holistic health fields of enquiry such as planetary health view diet as being embedded in a complex system of interrelations between individual, social, cultural, and environmental factors. In March 2019, the EAT Lancet Commission on Healthy Diets from Sustainable Food Systems put forward the first global benchmark diet capable of sustaining human and planetary health [1]. The recommendations herein include two sets of frameworks: on the one hand, they specify food intake ensuring human health and on the other hand, they suggest specific planetary boundaries for food production. More specifically, these ‘win-win diets’ highlight the co-benefits of plant- over animal-based foods. The authors state that “when viewed together as an integrated human health and environmental sustainability agenda, ‘win-win’ diets, that fall within the safe operating space for food systems, will help to achieve global human health and environmental sustainability goals” [1].

The authors of this landmark report were able to draw on extensive evidence on the benefit of planetary healthy, i.e., predominantly plant-based diets, on physical health. However, the potential mental health impacts of these diets remain largely unknown. This lack of evidence is surprising given that mental and behavioural disorders are the leading cause of years lived with disability worldwide [2]. Depression and anxiety are the two leading mental health disorders in terms of global disease burden: Depressive disorders account for 40% of disability-adjusted life years (DALYs), anxiety disorders account for 15% of DALYs caused by all mental and substance use disorders [2]. Lifetime prevalence rates range from 10 to 15% for depression [3] and average 17% for all anxiety disorders combined [4]. Furthermore, mental illness often develops into a chronic, lifelong health issue that can have profound and devastating effects on an individual’s life trajectory by impacting and disrupting social functioning and capital [5], educational attainment [6], economic output [7], and overall quality of life (QoL) [8].

Approximately 75% of all mental illnesses have their onset before the age of 25 [911]. University students in particular are vulnerable for depression, anxiety, and substance use disorders [12] and mental health issues within this population are on the rise [13, 14]. This warrants interventions that support students in this developmental phase which offers potential for preventive and early intervention as it is accompanied by significant brain development with elevated neural plasticity [15, 16]. To meet this growing need, research in the area of nutritional psychiatry is now considering dietary interventions to prevent and treat mental illnesses [17]. These interventions have the potential to contribute to improved emotional functioning and long-term health, as the adoption of a healthy diet during this developmental period may contribute substantially to the prevention of (chronic) non-communicable diseases in later stages of life [18].

Young people are also particularly likely to adopt plant-based diets [19, 20]. Current estimates see approximately 7% of Canada’s population self-identifying as vegetarian or vegan (compared to only 2% in 2003)–with those under the age of 35 being three times more likely than older generations to identify as vegetarian or vegan while predictions see this number increasing rapidly [20]. The numbers of those who do not completely abstain from meat or other animal-based products but aim to substantially decrease their consumption, particularly of greenhouse gas and water-intense red meats and ruminant products, are even higher: According to recent consumer polls, 43% of Canadians are aiming to incorporate more plant-based foods into their diets [21] which is reflected in a constant decline of overall per capita meat consumption in Canada over the last three decades [22].

There are different definitions and conceptualizations of plant-based diets. One approach is to assess diet preference, i.e., someone identifies as vegetarian, vegan, or newer categories such as ‘flexitarian’, a term describing individuals who eat “primarily vegetarian with the occasional inclusion of meat or fish” [23]. Using this categorical definition of plant-based diets, preliminary findings ranged from vegetarians reporting significantly better mood and less anxiety and stress compared to non-vegetarians [24, 25] to vegetarians having higher odds of lifetime prevalence of depression, anxiety, and physical disorders compared to non-vegetarians [2630]. However, findings show that self-report of diet preference (i.e., stating whether one identifies as vegan, vegetarian, etc.) says very little about actual diet pattern and quality [31]. Certain plant-based foods such as whole grains, vegetables, legumes, nuts, and fruits are indeed known to have health benefits while high intake of others such as refined grains, fried potatoes, sweets and desserts, or fruit juices are generally considered unhealthy [32]. Therefore, compositions of diet patterns and diet quality of those who describe themselves as vegetarians, vegans, pescatarians, etc. likely differ greatly between individuals and need to be assessed more carefully. Research on the association between diet and mental health utilizing composite dietary measures such as dietary patterns and diet quality indices also shows heterogenous results. However, the trend seems to point towards better mental health among those following predominantly plant-based diets, i.e., diets that are high in vegetable, fruit, whole grain intake with moderate intake of fish and worse mental health among those following a ‘Western’ diet high in animal and processed foods [3335].

In this study, we conceptualized plant-based diets as diet patterns that consist mostly or exclusively of plant-based foods. We assessed diet through two approaches: using a categorical definition of plant-based diet asking respondents to self-identify according to diet preferences (no preference, pescatarian, vegetarian, vegan, other with open text entry option) and the diet pattern-based approach through dietary pattern analysis. We then compared both approaches in terms of their association with depression, anxiety, and QoL hypothesizing that diet patterns high in plant foods rather than diet preference would be negatively associated with the outcomes.

One limitation that all previous studies on this topic have in common is their narrow focus on a primarily biomedical understanding of the relationship between diet and mental health. Neither mental health nor dietary behaviours exist in a vacuum. As described in an extensive body of research, stress, stressful life events, body image, physical activity, sleep, and social support are all predictors for mental health and wellbeing outcomes [3641]. Simultaneously, these factors are conceptually related to diet and therefore fulfill the criteria of presenting possible confounders in the relationship under investigation in this study [4247]. Previous studies have not sufficiently considered these factors, particularly the social dimension of dietary habits, in their theoretical frameworks and statistical models.

With this study, we therefore sought to address several gaps in the literature. We assessed diet patterns in a population of undergraduate university students. We further examined whether plant-based diet pattern and self-reported preferences are associated with mental health (depression and anxiety) and wellbeing (QoL) in this population (for simplicity, we refer to both as ‘mental health’ herein). Finally, we extend the understanding of this relationship by considering this question within a biopsychosocial rather than a currently predominant biomedical framework in this field, thereby adding important confounding variables to the analysis.

Methods

Study design and participants

The study design was cross-sectional. We collected data through an online self-report survey from March to April of 2019. The main outcome variables of interest were depression, anxiety, and QoL as indicator of overall mental wellbeing. The main explanatory variable was diet as assessed through dietary pattern over the prior month as well as self-reported diet preference. The survey contained additional items on social support, health behaviours and status, body image, stress, stressful life events, and socioeconomic background.

We recruited participants among undergraduate students at the University of British Columbia (UBC), Vancouver, Canada through convenience sampling; data was collected anonymously. Excluding graduate students (n = 9) and cases that were missing items for any of the main outcome or main explanatory variables (n = 92) yielded a final analytic sample of n = 339 respondents.

Measures

To assess dietary habits, we used the U.S. National Cancer Institute’s Dietary Screening Questionnaire (DSQ) which asks about the frequency of consumption of select foods and beverages in the past 30 days. Evaluations have shown good agreement between estimates of intakes between the DSQ and multiple 24hr recalls with differences in means <2% and differences in prevalence <16% [48]. In its original version, the DSQ includes 26 items. The questionnaire was slightly altered in order to make it more appropriate for the local context and to include items that were relevant to this study such as consumption of poultry, additional dairy products, vegetarian meat alternatives, and non-dairy milk. The final version used in this study was not pilot-tested and had 28 items (see S1 File for complete questionnaire).

In addition to the DSQ, we included one item asking about dietary preference. Participants were asked if they identified as: a) pescatarian (‘you eat fish, eggs, and dairy but no meat or poultry’); b) vegetarian (‘you eat eggs and dairy but no fish, meat or poultry’); c) vegan (‘you don’t eat any animal products’); d) other (‘please specify’; participants were given the option to enter text); e) none of the above.

We assessed QoL as a measure for overall mental wellbeing through a single-item measure (“In general, would you say your quality of life is…”) with responses rated on a 5-point Likert scale (0 = poor, 1 = fair, 2 = good, 3 = very good, 4 = excellent). This single-item measure is one of the most widely used items to measure QoL and has been included in routinely used assessment tools such as the Patient-Reported Outcomes Measurement Information System Scale version 1.2 PROMIS® [49].

We assessed depressive symptoms using the 9-item Patient Health Questionnaire (PHQ-9) which is widely used in both clinical and research settings and has been validated for a variety of populations to detect and assess severity of depressive symptoms [5053]. The total score ranges from 0 to 27. PHQ-9 scores of ≥10 have been reported to have a sensitivity of 88% and a specificity of 88% for major depression [53]. For clinical and diagnostic purposes, the measure can further be used to assess severity of symptoms applying cut-off scores. Cut-off scores for mild, moderate, moderately severe, and severe depression were found to be 5, 10, 15, and 20, respectively [53]. In general, a score ≥10 means that further clinical evaluation is indicated while a score ≥20 indicates that the individual may require psychotherapy and/or medication.

We assessed anxiety symptoms using the 7-item General Anxiety Disorder Questionnaire (GAD-7). Similar to the PHQ-9, this is a standard instrument to detect and assess the severity of anxiety disorder used widely for both clinical and research practices. Although originally designed to detect general anxiety disorder, it has been found that the GAD-7 is useful as a screening instrument for related anxiety disorders such as post-traumatic stress disorder, social anxiety disorder, and panic disorder [54]. The total score ranges from 0 to 21; for GAD-7 scores ≥10, sensitivity and specificity have been reported to be above 80% [55]. Much like the PHQ-9, the GAD-7 can further be used to assess severity of symptoms by applying cut-off scores. Cut-off scores for mild, moderate, and severe anxiety were found to be 5, 10, and 15, respectively [55]. In general, a score ≥10 means that further clinical evaluation is indicated while a score ≥15 indicates that the individual may require psychotherapy and/or medication.

Statistical analyses and missing data

For descriptive purposes, we reported continuous variables through the mean and standard deviation (SD); for categorical variables, we reported frequencies.

The final sample consisted of n = 339 participants. In this analytic sample, the data on the main variables of interest (QoL, depression, anxiety, DSQ) was complete for all respondents. For covariables, responses such as ‘prefer not to say’ and ‘don’t know’ were treated as missing data. Overall, missingness was fairly low in this sample. More specifically, missingness was as follows for the variables included in the logistic regression models: Age: 4.4%; Gender: 2.1%; Ethnicity: 3.2%; Sleep: 2.1%; Physical activity: 2.9%; Stressful life events: 3.5%; Weight satisfaction: 0.9%; Social support: 0.1%. Due to the sensitivity of some of these items as well as a high prevalence of ‘prefer not to say’ responses among the missing observations, we could not assume a missing completely at random pattern. Therefore, complete case analysis would not have been appropriate. Instead, multiple imputation is suggested as best practice [56]. We applied multiple imputation (Markov Chain Monte Carlo Method; five imputations) to address missing data for all covariables that were to be included in the multiple regression model based on the conceptual understanding of the relationship between diet and mental health in order to avoid underestimation of sampling error [57].

We applied principal component analysis (PCA) with varimax rotation as a data reduction approach for the evaluation of the DSQ items. The decision on how many components were to be retained was based on considering the combination of interpretability and conceptual reasoning of the emerging components, the eigenvalues (>1), the scree plot, and the percentage of variance explained by the components. Varimax rotation was chosen as it was assumed that emerging components would not be highly correlated with each other.

The PCA component scores for each participant were entered into regression models as the main explanatory variable when examining the relationship between diet pattern and mental health outcomes (using the total scores of the PHQ-9 and GAD-7 measures). We built three nested linear regression models per outcome using a hierarchical approach. We first entered sociodemographic factors (age, gender, ethnicity), then added lifestyle-related variables (physical activity, sleep, weight satisfaction, stress, stressful life events). The third step was to add social support as a known individual predictor for mental health. Finally, we added the main variables of interest (PCA component scores) to assess its additional contribution to the outcome of interest. These nested models were built for each outcome variable of interest: Model 1: QoL; Model 2: Depression; Model 3: Anxiety. This approach was repeated with self-reported diet preference as the main explanatory variable. Assumptions for linear models were met. Assumptions were checked as follows: Independence of cases was given due to the study design (each observation exists only once, is not paired with an observation in another group nor is it influenced by another observation). Collinearity was assessed through VIF values (largest VIF should be <10; average VIF should not be substantially >1) and tolerance statistics (which should be >0.2; [58]). Normality was assessed through the normal probability plots of the residuals. Homoscedasticity and linearity were checked through residuals vs. fitted plots. All analyses were 2-tailed with a significance level of p≤0.05 and conducted with IBM SPSS Statistics 25®.

Results

Sample characteristics and covariates

The total sample consists of n = 339 participants. Table 1 depicts detailed sample characteristics as well as frequencies of covariables that were included in the regression models such as health behaviours (physical activity and sleep), body image, overall stress, stressful life events, and social support. Overall, we found that almost none of the students (96.1%, n = 326) met the recommended amount of moderate or vigorous physical activity in the previous week. Three quarters of the participants (76.8%, n = 260) reported enough sleep to feel rested on a maximum of four days in the previous week. Two thirds of the students (66.6%, n = 226) experienced more than average or even tremendous stress over the 12 months preceding the survey. Approximately half of the students were somewhat, very, or extremely satisfied with their weight (52.6%, n = 178). Experiencing stressful life events that caused moderate or severe stress was reported by 76.3% (n = 259) of the students. Conversely, the majority of participants (80.4%, n = 272) reported having good, very good, or excellent satisfaction with their social relationships and activities.

Table 1. Participant demographic and psychosocial characteristics.

Characteristic/Item Item categories mean SD n %
Age 19.5 1.9
Gender identity Female 224 66.1
Male 109 32.1
Other (trans, queer, other) 6 1.8
Sexual orientation Heterosexual 257 75.8
Bisexual 33 9.7
Gay/Lesbian 6 1.8
Other 28 8.3
Missing 15 4.4
Relationship status Not in a relationship 221 65.2
In a relationship 95 28.0
Not sure 12 3.5
Missing 11 3.3
Ethnicity White 156 46.0
Asian 135 39.8
Other 48 14.2
Year in school 1st year 211 62.2
2nd year 64 18.9
3rd year 28 8.3
4th year 19 5.6
Higher than 4th year undergrad 9 2.7
Not seeking a degree 1 0.3
Missing 7 2.0
International student Yes 120 35.4
No 213 62.8
Missing 6 1.8
Residence On-campus 248 73.1
With parents 34 10.0
Off-campus alone/with roommates/other 48 14.2
Missing 9 2.7
Physical activity in the past 7 days (20min of vigorous exercise or 30min of moderate exercise) Never 94 27.6
1–3 days/week 167 49.4
4–6 days/week 65 19.1
every day or more than once a day 13 3.9
Enough sleep to feel rested in the morning in the past 7 days ≤ 4 days/week 260 76.8
≥ 5 days/week 79 23.2
Weight satisfaction Not satisfied/slightly unsatisfied 161 47.4
Somewhat satisfied 101 29.9
Very/extremely satisfied 77 22.7
Perceived stress No/less than average stress 25 7.4
Average stress 88 26.0
More than average/tremendous stress 226 66.6
Stressful life events Mild stressors 81 23.7
Moderate stressors 149 44.1
Severe stressors 109 32.2
Social support Poor/fair 67 19.6
Good/very good/excellent 272 80.4

Data for these items was imputed.

Diet

Three dietary components emerged from the PCA of the DSQ items. Component 1 (plant foods) was high in plant-based foods and non-animal-based dairy and meat alternatives as well as whole grains. Component 2 (animal foods) was high in animal-based foods such as different meats and dairy products. Component 3 (junk foods) was high in processed foods, snacks, and candies. The total variance explained by the retained three components was 40.6%. Details on loadings per component for each food item/group after varimax rotation can be seen in Table 2. For better interpretability, we removed food items/groups that did not load ≥0.4 on either of the components (namely, potatoes, tomato sauce, and fruit juice) from the final analysis [59]. In addition, loadings below 0.4 are omitted from the table to improve readability. Two items with cross-loadings were observed. The items on plant-based alternatives to meat and dairy milk had positive loadings on the first component (plant foods) and negative cross-loadings on the second component, which are the animal-based foods.

Table 2. Principal component analysis of dietary components and component loadings for dietary patterns after varimax rotation.

Food item/group Component 1 (plant foods) Component 2 (animal foods) Component 3 (junk foods)
Brown rice and whole grains 0.70
Beans and legumes 0.68
Nuts and seeds 0.66
Green leafy vegetables 0.66
Other vegetables 0.64
Fruit 0.63
Vegetarian/vegan meat alternatives 0.53 -0.46
Non-dairy milk 0.51 -0.41
Whole grain bread 0.49
Cereal 0.43
Poultry 0.80
Red meat 0.75
Processed meat 0.68
Fish and seafood 0.61
Cheese 0.56
Yoghurt 0.50
Dairy milk 0.49
Cookies, cake, pie 0.65
Ice cream 0.61
Donuts etc. 0.60
Chocolate and candy 0.60
Soda 0.54
Pizza 0.51
Fried potatoes 0.50
Coffee or tea with sugar 0.41

This item on the questionnaire included donuts, sweet rolls, Danish, muffins, pan dulce, and pop-tarts.

Almost one third of students (28.1%, n = 95) self-identified as either pescatarian, vegetarian, vegan or other (which were mostly on a spectrum of non-mainstream preferences such as reducetarian or flexitarian). See Table 3 for details.

Table 3. Self-reported diet preference.

Diet preference n %
Pescatarian 13 4.0
Vegetarian 19 5.5
Vegan 37 10.8
Other 26 7.8
Do not identify as any of the above 244 71.9
Total 339 100

Mental health and wellbeing

As can be seen in Table 4, more than half of the participants (56.9%, n = 193) reported their overall QoL to be either very good or excellent with a mean score of 2.6 (±1.0) out of 5. The mean score for depression was 9.3 (±6.1) out of 27; the mean score for anxiety was 7.9 (±5.8) out of 21. In terms of clinical relevance, 75.0% (n = 254) of students had scores which indicate the need for further evaluation concerning symptoms of depression; for anxiety 65.1% (n = 221) had scores indicating need for further evaluation. Of those who scored above 10 points for depression (n = 142), 16.2% (n = 23) would likely benefit from psychotherapy and/or medication; for those who scored above 10 points for anxiety (n = 110) this proportion is even higher with 48.2% (n = 53).

Table 4. Mental health and wellbeing.

Mental health item Item categories mean SD n %
QoL continuous (0 to 5) 2.6 1.0
QoL ordinal Poor 10 2.9
Fair 31 9.1
Good 105 31.1
Very good 138 40.7
Excellent 55 16.2
Depression score (0 to 27) 9.3 6.1
Depression severity No depression 85 25.0
Mild depression 112 32.9
Moderate depression 73 21.7
Moderately severe depression 46 13.6
Severe depression 23 6.8
Anxiety score (0 to 21) 7.9 5.8
Anxiety severity No anxiety 118 34.9
Mild anxiety 111 32.7
Moderate anxiety 57 16.8
Severe anxiety 53 15.6

Abbreviation: QoL, quality of life.

Cut-off for further evaluation.

Psychotherapy and/or medication are indicated.

Association between diet and mental health and wellbeing

Explanatory variables age, sleep, physical activity, stress, stressful life events, weight satisfaction, social support, and PCA scores were entered in the model as continuous variables. Gender and ethnicity were entered as categorical variables. The unadjusted linear regression analysis shows a significant association between several variables. The plant food dietary component was positively associated with QoL (β = .20, p≤.001). The junk food component was positively associated with depression (β = .26, p≤.001), while the animal food component and the plant food component were negatively associated with depression (β = -.07, p≤.05 and β = -.10, p≤.001, respectively). The junk food component was further positively associated with anxiety (β = .18, p = .001) and the animal food component was negatively associated with anxiety (β = -.09, p≤.001). Table 5 shows the detailed results for the unadjusted associations between the main explanatory variable of interest (dietary pattern) and QoL, depression, and anxiety, respectively.

Table 5. Unadjusted effects of principal component analysis (PCA) diet components on quality of life (QoL), depression, and anxiety.

QoL Depression Anxiety
Unstandardized Beta SE Beta Standardized Beta (β) Unstandardized Beta SE Beta Standardized Beta (β) Unstandardized Beta SE Beta Standardized Beta (β)
PCA plant foods 0.20 0.02 0.20** -0.10 0.02 -0.10** -0.06 0.02 -0.06
PCA animal foods 0.01 0.02 0.01 -0.07 0.02 -0.07** -0.09 0.02 -0.09**
PCA junk foods -0.04 0.02 -0.03 0.26 0.02 0.26** 0.18 0.02 0.18**

*p≤.05.

** p≤.001.

After adjusting for all covariables, the positive associations between the junk food component and depression and anxiety remain significant.

Model 1 (dietary pattern and QoL): After adjusting for all covariables, statistically significant negative associations were found between Asian ethnicity, stress, and QoL; significant positive associations were found for physical activity, weight satisfaction, and social support with QoL. Social support showed the strongest positive association for QoL (β = .51 increase in QoL score; p≤.001).

Model 2 (dietary pattern and depression): After adjusting for all covariables, statistically significant negative associations were found between sleep, weight satisfaction, and social support with depression; a statistically significant positive association was found for stress and the junk food dietary component (β = .21 increase in depression score; p≤.001; Δadj. R2 = .04).

Model 3 (dietary pattern and anxiety): After adjusting for all covariables, statistically significant positive associations were found between female gender, stress, stressful life events, and the junk food dietary component (β = .14 increase in anxiety score; p = .002; Δ adj. R2 = .01) with anxiety. Social support was significantly negatively associated with anxiety.

Table 6 shows the detailed results for the three hierarchical multiple linear regression models that examined the association between dietary patterns and mental wellbeing outcomes controlling for covariables that reflected a biopsychosocial understanding of the relationship. Δadj. R2 for each hierarchical step are reported in the footnotes.

Table 6. Adjusted effects of principal component analysis (PCA) diet components on quality of life (QoL), depression, and anxiety.

Model 1: QoL Model 2: Depression Model 3: Anxiety
Unstandardized Beta SE Beta Standardized Beta (β) Unstandardized Beta SE Beta Standardized Beta (β) Unstandardized Beta SE Beta Standardized Beta (β)
Step 1
Constant 3.72 0.52 0.08 3.58 3.36 -0.10 3.31 3.15 -0.25
Age -0.05 0.03 -0.11* 0.26 0.17 0.09 0.16 0.16 0.05
Female gender 0.20 0.12 0.21 -0.10 0.71 -0.02 1.31 0.67 0.23*
Other gender -0.52 0.42 -0.55 4.57 2.80 0.75 4.68 2.62 0.81
Asian ethnicity -0.50 0.11 -0.52** 1.34 0.72 0.22 0.79 0.68 0.14
Other ethnicity -0.02 0.16 -0.02 0.73 1.02 0.12 1.40 0.96 0.24
Step 2
Constant 3.55 0.54 -0.03 5.62 3.13 0.05 0.85 3.00 -0.12
Age -0.03 0.03 -0.07 0.08 0.14 0.03 0.02 0.14 0.01
Female gender 0.26 0.10 0.27* -0.84 0.60 -0.14 0.63 0.58 0.11
Other gender -0.11 0.40 -0.11 1.10 2.36 0.18 1.49 2.26 0.26
Asian ethnicity -0.40 0.10 -0.41** 0.56 0.62 0.09 0.35 0.60 0.06
Other ethnicity 0.07 0.14 0.07 0.04 0.86 0.01 0.76 0.82 0.13
Sleep 0.04 0.02 0.09 -0.58 0.15 -0.20** -0.32 0.14 -0.12*
Physical activity 0.07 0.02 0.14* -0.36 0.15 -0.12* -0.19 0.14 -0.07
Stress -0.30 0.06 -0.27** 2.16 0.34 0.31** 2.55 0.33 0.39**
Stressful life events 0.02 0.07 0.02 0.72 0.40 0.09 1.02 0.39 0.13*
Weight satisfaction 0.11 0.04 0.12* -1.15 0.27 -0.20** -0.54 0.26 -0.10*
Step 3
Constant 1.74 0.48 0.06 10.54 3.24 0.01 4.43 3.13 -0.15
Age -0.01 0.02 -0.01 -0.01 0.14 -0.01 -0.04 0.14 -0.02
Female gender 0.06 0.09 0.06 -0.30 0.60 -0.05 1.02 0.58 0.18
Other gender -0.22 0.33 -0.23 1.40 2.30 0.23 1.70 2.23 0.30
Asian ethnicity -0.28 0.09 -0.30* 0.26 0.60 0.04 0.13 0.59 0.02
Other ethnicity 0.11 0.12 0.11 -0.06 0.83 -0.01 0.69 0.81 0.12
Sleep 0.01 0.02 0.03 -0.50 0.14 -0.17** -0.19 0.14 -0.09
Physical activity 0.06 0.02 0.13* -0.35 0.14 -0.11* -0.19 0.14 -0.07
Stress -0.17 0.05 -0.16** 1.84 0.34 0.27** 2.31 0.33 0.36**
Stressful life events 0.05 0.06 0.04 0.65 0.39 0.08 0.96 0.38 0.13*
Weight satisfaction 0.09 0.04 0.10* -1.10 0.26 -0.19** -0.50 0.26 -0.10*
Social support 0.46 0.04 0.51** -1.26 0.28 -0.22** -0.92 0.27 -0.17**
Step 4
Constant 1.77 0.49 0.07 10.30 3.22 -0.02 4.20 3.15 -0.17
Age -0.01 0.02 -0.01 0.01 0.14 0.01 -0.04 0.14 -0.01
Female gender 0.04 0.10 0.04 -0.02 0.63 -0.01 1.28 0.62 0.22*
Other gender -0.23 0.34 -0.24 1.41 2.26 0.23 1.73 2.22 0.30
Asian ethnicity -0.28 0.09 -0.29* 0.23 0.60 0.04 0.08 0.60 0.01
Other ethnicity 0.11 0.12 0.12 0.02 0.82 0.01 0.72 0.80 0.12
Sleep 0.01 0.02 0.02 -0.49 0.14 -0.17** -0.25 0.14 -0.09
Physical activity 0.06 0.02 0.12* -0.25 0.15 -0.08 -0.10 0.15 -0.04
Stress -0.17 0.05 -0.16** 1.82 0.33 0.27** 2.30 0.33 0.36**
Stressful life events 0.05 0.06 0.04 0.42 0.38 0.05 0.81 0.39 0.11*
Weight satisfaction 0.09 0.04 0.10* -0.96 0.26 -0.17** -0.42 0.25 -0.08
Social support 0.46 0.04 0.51** -1.36 0.28 -0.23** -0.97 0.27 -0.18**
PCA plant foods 0.04 0.04 0.05 -0.07 0.30 -0.01 -0.19 0.29 -0.03
PCA animal foods 0.01 0.04 0.01 -0.15 0.28 -0.02 -0.14 0.28 -0.02
PCA junk foods -0.01 0.04 -0.01 1.26 0.27 0.21** 0.83 0.27 0.14*

Reference category: Male gender.

Reference category: Caucasian ethnicity.

*p≤.05.

** p≤.001.

Note Model 1: Adjusted R2 = .08 for Step 1; Δ adj R2 = .13 for Step 2; Δ adj R2 = .23 for Step 3; Δ adj R2 = .00 for Step 4.

Note Model 2: Adjusted R2 = .01 for Step 1; Δ adj R2 = .30 for Step 2; Δ adj R2 = .04 for Step 3; Δ adj R2 = .04 for Step 4.

Note Model 3: Adjusted R2 = .02 for Step 1; Δ adj R2 = .27 for Step 2; Δ adj R2 = .02 for Step 3; Δ adj R2 = .01 for Step 4.

Diet preference was not significantly associated with any of the outcome variables. Results are available upon request for these statistically non-significant findings.

Discussion

Interpretation

The final adjusted regression models show that the junk food component score was positively associated with depression and anxiety while there were no significant associations between the plant food or the animal food component and any of the mental health outcomes. While the additional variance explained by the dietary component (junk food) with regard to the mental health outcomes seems small (Δ adjusted R2 for the model with depression as outcome = .04 and = .01 for the model with anxiety as outcome, respectively), the magnitude of the standardized regression coefficient is comparable to other covariates in the model that are known to be strongly associated with mental health outcomes (e.g., social support). There are two possible explanations for this. In line with the understanding that mental health and diet exist within a biopsychosocial framework, food intake contributes to a complex network of variables that reduce or enhance the risk for adverse mental health outcomes such as social support and relationships. Second, it has been found that self-reported dietary data typically leads to an underestimation of associations [60]. The possibility of underestimation of the association is therefore likely in this study which would mean that the true effect size may be larger. The non-significant trend in the expected direction for the association of the plant food component with mental health outcomes after adjusting for the covariables in this study should thus be interpreted as inconclusive and needs further exploration.

By adjusting for important confounders which have not previously been included in studies of mental health and diet, this present study corroborates the finding that ‘unhealthy’ dietary patterns are associated with depression and anxiety [34, 61, 62]. One possible causal pathway through which unhealthy foods such as processed (i.e., “foods that are altered to add or introduce substances that substantially change their nature or use”) and ultra-processed foods (i.e., “industrial formulations, usually made mainly or solely from industrial ingredients, which contain little or no whole food”) [63] may negatively impact mental health is that of inflammatory reactions and oxidative stress [64, 65]. Interestingly, in this study, processed plant-based foods such as meat replacements did not load strongly on the junk food component but actually showed high component loadings in the plant food component. However, future research is needed to understand whether these foods reflect healthier dietary patterns, particularly given the rise of consumer demand for plant-based processed foods. For example, the development and application of a dietary screening measure that captures these foods in more detail may render a better understanding of these emerging dietary patterns.

The prevalence of clinically-relevant levels of depression and anxiety is high in this sample of 339 undergraduate students. These prevalence rates are in line with findings from previous research on the mental health of students indicating that the prevalence of mental health issues is higher among university students than in the general population [12, 66]. There are several hypotheses why this may be the case. The typical age-of-onset of many psychiatric disorders overlaps with entry into university [11]; and the transition into university presents a stressful life event which is accompanied by homesickness, potentially social isolation, financial burden and pressure, and stress—all of which are risk factors for the development of depression and anxiety [67].

Conversely, more than half of the participants also report their overall QoL to be either very good or excellent. While this may at first seem counterintuitive, this is actually in line with the concept of QoL being a measure of a full continuum of (mental) wellbeing wherein the presence of symptoms of a disorder such as depression and anxiety merely present one dimension. It has been found, for example, that factors such as self-esteem or social support mitigate the role of depressive symptoms on QoL [68]. Fahy et al. also found that the strongest predictors for QoL in people with severe mental illness were unmet basic, social, and functional needs (in combination with symptom severity) [69]. Thus, assessing QoL in addition to screening for depression and anxiety provides a more complete picture of mental wellbeing and its associated factors in this study.

The possibility of reverse causality is another important consideration that researchers have identified [30] with one prospective cohort study providing probable evidence for reverse causality between depression and a healthy diet pattern [70]. Because dietary changes are perceived as a means to shape health, it can be hypothesized that a change in dietary behaviour could follow the onset of mental health issues as a form of ‘self-medication’. Conversely, the ‘self-medication’ may also take on the form of an unhealthy diet consistent of foods high in sugar and fat to feel instant gratification [71].

Strengths and limitations

This study utilizes a biopsychosocial conceptual understanding of the relationship between exposure and outcome and the inclusion of confounding variables that goes beyond a narrow biomedical approach. The present study builds on previous studies on this topic. Nevertheless, in order to eliminate temporal ambiguity, confounding, and response biases, more sophisticated study designs are needed in future investigations.

The relatively small sample size and the potential lack of power means that some effects of the explanatory variables may have remained uncovered in this study and that an underestimation for these effects was likely present. This could be mitigated in future studies with larger sample sizes. This may have been amplified by the finding that self-reported data on diet typically leads to an underestimation of associations [60].

In this present study, all participants were undergraduate students. The external validity of this study beyond the student population is thus limited as university students differ from their non-student peers and the general population in several characteristics, e.g., in terms of socioeconomic backgrounds, lifestyle behaviours, or substance use [72, 73]. In relation to the general population of undergraduates at the university, this sample was, however, fairly representative as its sociodemographic composition was comparable with that of the overall undergraduate student population. It is also important to note that across the continuum of depressive and anxiety symptoms, eating behaviours may differ (e.g., individuals with major depressive disorder often suffer from very reduced appetite and their overall food intake may be severely decreased). Thus, the findings of this study may not apply to individuals suffering from major depressive and anxiety disorders as this study was not conducted on a clinical sample.

All collected information was exclusively self-reported which introduces non-response, reporting, and recall biases. In this study, the primary interest was to assess diet patterns rather than exact nutrient intake. Self-reported diet data have been deemed adequate and superior to non-self-reported measures such as biomarkers especially when analyzing diet patterns as they provide more complete information on the composition of the overall diet [60]. Given that dietary screeners are less burdensome on participants than methods like repeated 24-hr recalls while still providing sufficient information on food intake, we chose to use the DSQ as measure for diet [48]. Its limitations include that it does not allow for conclusions about the actual amount of food intake nor does it capture the full range of foods in one’s diet. We further used a slightly amended version of the DSQ to make it more applicable to the local context. These amendments were minor and consisted of replacement of foods with limited relevance with those that were more relevant to the research question. We did not conduct a pilot study with this altered measure. However, the wording and structure of the questions were not altered, we therefore assume the potential bias due to issues of interpretability to be negligible. To mitigate the subjectivity and biased information from self-reported mental health issues, this study included validated screening instruments (one-item QoL scale, PHQ-9, GAD-7). Single-item measures for capturing covariates were chosen to reduce respondent burden. While these measures may not be as detailed as multi-dimensional measures, they have been shown to be useful when measuring aspects of respondents’ health [74]. While answers are still self-reported, all measures used herein have been extensively validated.

It is also important to note that the different measures in this study assessed variables with different time frames. More specifically, the DSQ asked about food intake within the past 30 months whereas the PHQ-9 and GAD-7 assessed symptoms in the past two weeks. Other items evaluating covariables did not consider a specific time frame. Hence, based on the time-frames of the measures and the cross-sectional study design, inferences can only be made about the prevalence of the exposures and the outcomes and their degree of association at one point in time.

Conclusions and future directions

We show that plant foods are positively associated with mental health outcomes but this association is attenuated after adjusting for other variables in our biopsychosocial model. We further found no relationship between categories of certain diet preferences such as vegetarian or vegan and mental health. These findings support approaches in nutritional epidemiology that employ dietary pattern analyses. By taking a more sophisticated approach to covariate selection and dietary assessment, our findings add to the evidence that contrasts a widely accepted, albeit outdated, perception of vegetarians and vegans as unhealthy individuals at risk for nutrient deficiency [75, 76]. This study provides a preliminary indication that the ‘win-win’ situation for planetary and somatic health of predominantly plant-based diets is not a ‘win-win-lose’ situation for mental health. Further research will be needed to confirm or refute this finding and would benefit from the inclusion of socioeconomic and cultural determinants as additional covariates of interest. For example, the issue of food security greatly impacts one’s ability to access healthy foods and has been associated with major depressive disorder in US women [77]. In addition, the ability to procure culturally-appropriate foods, which has been nearly eliminated by a colonial food system, is an issue of great extent for Indigenous communities and food traditions across the globe. How this may interact with mental health is of great importance and has been neglected in the public health literature at this point. Moreover, most of the studies on this topic have thus far have been conducted in North America, Europe, or Australia. Insights from countries and cultures other than Western nations would be helpful in understanding cross-cultural differences. Integrating research from social sciences, community action and participatory research, and findings from qualitative studies would also play a pivotal role in understanding the complex relationships under investigation.

Supporting information

S1 File. Questionnaire.

(PDF)

Acknowledgments

We are grateful for the support of David Gill and the University of British Columbia’s SEEDS program who guided this project in an encouraging way and substantially facilitated the integrated knowledge translation and community-based approach of this research. We would also like to extend our gratitude to the members of the stakeholder group, most notably Melissa Baker-Wilson and David Speight for their enthusiasm, support, and open-mindedness. It was a true pleasure to be surrounded by these like-minded, visionary change makers.

Data Availability

All relevant data are within the paper and its Supporting information files.

Funding Statement

The author(s) received no specific funding for this work.

References

  • 1.Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet. 2019;393: 447–492. doi: 10.1016/S0140-6736(18)31788-4 [DOI] [PubMed] [Google Scholar]
  • 2.Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. The Lancet. 2013;382: 1575–1586. doi: 10.1016/S0140-6736(13)61611-6 [DOI] [PubMed] [Google Scholar]
  • 3.Demyttenaere K, Bruffaerts R, Posada-Villa J, Gasquet I, Kovess V, Lepine J, et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. J Am Med Assoc. 2004;291: 2581–2590. [DOI] [PubMed] [Google Scholar]
  • 4.Somers JM, Goldner EM, Waraich P, Hsu L. Prevalence and incidence studies of anxiety disorders: a systematic review of the literature. Can J Psychiatry. 2006;51: 100–113. doi: 10.1177/070674370605100206 [DOI] [PubMed] [Google Scholar]
  • 5.DeSilva MJ, McKenzie K, Harpham T, Huttly SRA. Social capital and mental illness: a systematic review. J Epidemiol Community Health. 2005;59: 619–627. doi: 10.1136/jech.2004.029678 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Breslau J, Lane M, Sampson N, Kessler RC. Mental disorders and subsequent educational attainment in a US national sample. J Psychiatr Res. 2008;42: 708–716. doi: 10.1016/j.jpsychires.2008.01.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Trautmann S, Rehm J, Wittchen H-U. The economic costs of mental disorders: Do our societies react appropriately to the burden of mental disorders? EMBO Rep. 2016;17: 1245–1249. doi: 10.15252/embr.201642951 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Alonso J, Angermeyer MC, Bernert S, Bruffaerts R, Brugha TS, Bryson H, et al. Disability and quality of life impact of mental disorders in Europe: results from the European Study of the Epidemiology of Mental Disorders (ESEMeD) project. Acta Psychiatr Scand. 2004;109: 38–46. [DOI] [PubMed] [Google Scholar]
  • 9.Burcusa SL, Iacono WG. Risk for recurrence in depression. Clin Psychol Rev. 2007;27: 959–985. doi: 10.1016/j.cpr.2007.02.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gibb SJ, Fergusson DM, Horwood LJ. Burden of psychiatric disorder in young adulthood and life outcomes at age 30. Br J Psychiatry. 2010;197: 122–127. doi: 10.1192/bjp.bp.109.076570 [DOI] [PubMed] [Google Scholar]
  • 11.Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S, Üstün TB. Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry. 2007;20: 359. doi: 10.1097/YCO.0b013e32816ebc8c [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Blanco C, Okuda M, Wright C, Hasin DS, Grant BF, Liu S-M, et al. Mental health of college students and their non–college-attending peers: results from the National Epidemiologic Study on Alcohol and Related Conditions. Arch Gen Psychiatry. 2008;65: 1429–1437. doi: 10.1001/archpsyc.65.12.1429 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Prince JP. University student counseling and mental health in the United States: trends and challenges. Ment Health Prev. 2015;3: 5–10. doi: 10.1016/j.mhp.2015.03.001 [DOI] [Google Scholar]
  • 14.Evans TM, Bira L, Gastelum JB, Weiss LT, Vanderford NL. Evidence for a mental health crisis in graduate education. Nat Biotechnol. 2018;36: 282. doi: 10.1038/nbt.4089 [DOI] [PubMed] [Google Scholar]
  • 15.McGorry PD, Mei C. Early intervention in youth mental health: progress and future directions. Evid Based Ment Health. 2018;21: 182–184. doi: 10.1136/ebmental-2018-300060 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Patton GC, Viner R. Pubertal transitions in health. The Lancet. 2007;369: 1130–1139. doi: 10.1016/S0140-6736(07)60366-3 [DOI] [PubMed] [Google Scholar]
  • 17.Logan AC, Jacka FN. Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol. 2014;33: 22. doi: 10.1186/1880-6805-33-22 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sawyer SM, Afifi RA, Bearinger LH, Blakemore S-J, Dick B, Ezeh AC, et al. Adolescence: a foundation for future health. The Lancet. 2012;379: 1630–1640. doi: 10.1016/S0140-6736(12)60072-5 [DOI] [PubMed] [Google Scholar]
  • 19.Flanagan R. More than 3 million Canadians vegetarian or vegan: study. In: CTV News [Internet]. 2018 [cited 13 Mar 2019]. https://www.ctvnews.ca/canada/more-than-3-million-canadians-vegetarian-or-vegan-study-1.4027606
  • 20.Thomson A. “Mind-blowing”: Survey finds most vegans, vegetarians in Canada are under 35. In: CTV News [Internet]. 2018 [cited 13 Mar 2019]. https://www.ctvnews.ca/health/mind-blowing-survey-finds-most-vegans-vegetarians-in-canada-are-under-35-1.3841041
  • 21.The Nielsen Company. Plant-based proteins are gaining dollar share among North Americans. In: Nielsen [Internet]. 2017 [cited 13 Mar 2019]. http://www.nielsen.com/ca/en/insights/news/2017/plant-based-proteins-are-gaining-dollar-share-among-north-americans
  • 22.Weersink A, Massow M von, Gallant M. Meat consumption is changing but it’s not because of vegans. In: The Conversation [Internet]. 2019 [cited 13 Mar 2019]. http://theconversation.com/meat-consumption-is-changing-but-its-not-because-of-vegans-112332
  • 23.Derbyshire EJ. Flexitarian diets and health: a review of the evidence-based literature. Front Nutr. 2016;3: 55. doi: 10.3389/fnut.2016.00055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Beezhold B, Johnston CS, Daigle DR. Vegetarian diets are associated with healthy mood states: a cross-sectional study in Seventh Day Adventist adults. Nutr J. 2010;9: 26. doi: 10.1186/1475-2891-9-26 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Beezhold B, Radnitz C, Rinne A, DiMatteo J. Vegans report less stress and anxiety than omnivores. Nutr Neurosci. 2015;18: 289–296. doi: 10.1179/1476830514Y.0000000164 [DOI] [PubMed] [Google Scholar]
  • 26.Baines S, Powers J, Brown WJ. How does the health and well-being of young Australian vegetarian and semi-vegetarian women compare with non-vegetarians? Public Health Nutr. 2007;10: 436–442. doi: 10.1017/S1368980007217938 [DOI] [PubMed] [Google Scholar]
  • 27.Burkert NT, Muckenhuber J, Großschädl F, Rásky É, Freidl W. Nutrition and health—the association between eating behavior and various health parameters: a matched sample study. PLOS One. 2014;9: e88278. doi: 10.1371/journal.pone.0088278 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Dobersek U, Wy G, Adkins J, Altmeyer S, Krout K, Lavie CJ, et al. Meat and mental health: a systematic review of meat abstention and depression, anxiety, and related phenomena. Crit Rev Food Sci Nutr. 2020;0: 1–14. doi: 10.1080/10408398.2020.1741505 [DOI] [PubMed] [Google Scholar]
  • 29.Hibbeln JR, Northstone K, Evans J, Golding J. Vegetarian diets and depressive symptoms among men. J Affect Disord. 2018;225: 13–17. doi: 10.1016/j.jad.2017.07.051 [DOI] [PubMed] [Google Scholar]
  • 30.Michalak J, Zhang XC, Jacobi F. Vegetarian diet and mental disorders: results from a representative community survey. Int J Behav Nutr Phys Act. 2012;9: 67. doi: 10.1186/1479-5868-9-67 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13: 3–9. doi: 10.1097/00041433-200202000-00002 [DOI] [PubMed] [Google Scholar]
  • 32.Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L, et al. Plant-based dietary patterns and incidence of type 2 Diabetes in US men and women: results from three prospective cohort studies. PLOS Med. 2016;13: e1002039. doi: 10.1371/journal.pmed.1002039 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2014;99: 181–197. doi: 10.3945/ajcn.113.069880 [DOI] [PubMed] [Google Scholar]
  • 34.Lassale C, Batty GD, Baghdadli A, Jacka F, Sánchez-Villegas A, Kivimäki M, et al. Healthy dietary indices and risk of depressive outcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. 2018; 1. doi: 10.1038/s41380-018-0237-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Li Y, Lv M-R, Wei Y-J, Sun L, Zhang J-X, Zhang H-G, et al. Dietary patterns and depression risk: a meta-analysis. Psychiatry Res. 2017;253: 373–382. doi: 10.1016/j.psychres.2017.04.020 [DOI] [PubMed] [Google Scholar]
  • 36.Diener E, Seligman MEP. Very happy people. Psychol Sci. 2002;13: 81–84. doi: 10.1111/1467-9280.00415 [DOI] [PubMed] [Google Scholar]
  • 37.Karatsoreos IN, McEwen BS. Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn Sci. 2011;15: 576–584. doi: 10.1016/j.tics.2011.10.005 [DOI] [PubMed] [Google Scholar]
  • 38.Paluska SA, Schwenk TL. Physical activity and mental health. Sports Med. 2000;29: 167–180. doi: 10.2165/00007256-200029030-00003 [DOI] [PubMed] [Google Scholar]
  • 39.Tiggemann M. Body dissatisfaction and adolescent self-esteem: prospective findings. Body Image. 2005;2: 129–135. doi: 10.1016/j.bodyim.2005.03.006 [DOI] [PubMed] [Google Scholar]
  • 40.Van Kim NA, Nelson TF. Vigorous physical activity, mental health, perceived stress, and socializing among college students. Am J Health Promot. 2013;28: 7–15. doi: 10.4278/ajhp.111101-QUAN-395 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Martin W, Dixon BJ, Thomas H. Enhancing mental well-being. In: Cooper CL, Quick JC, editors. The Handbook of Stress and Health. Chichester, UK: John Wiley & Sons, Ltd; 2017. pp. 459–471. [Google Scholar]
  • 42.Aarø LE, Laberg JC, Wold B. Health behaviours among adolescents: towards a hypothesis of two dimensions. Health Educ Res. 1995;10: 83–93. doi: 10.1093/her/10.1.83 [DOI] [Google Scholar]
  • 43.Conklin AI, Forouhi NG, Surtees P, Khaw K-T, Wareham NJ, Monsivais P. Social relationships and healthful dietary behaviour: evidence from over-50s in the EPIC cohort, UK. Soc Sci Med. 2014;100: 167–175. doi: 10.1016/j.socscimed.2013.08.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Leigh Gibson E. Emotional influences on food choice: sensory, physiological and psychological pathways. Physiol Behav. 2006;89: 53–61. doi: 10.1016/j.physbeh.2006.01.024 [DOI] [PubMed] [Google Scholar]
  • 45.Neely E, Walton M, Stephens C. Young people’s food practices and social relationships: a thematic synthesis. Appetite. 2014;82: 50–60. doi: 10.1016/j.appet.2014.07.005 [DOI] [PubMed] [Google Scholar]
  • 46.Neumark-Sztainer D, Paxton SJ, Hannan PJ, Haines J, Story M. Does body satisfaction matter? Five-year longitudinal associations between body satisfaction and health behaviors in adolescent females and males. J Adolesc Health. 2006;39: 244–251. doi: 10.1016/j.jadohealth.2005.12.001 [DOI] [PubMed] [Google Scholar]
  • 47.Weidner G, Kohlmann C-W, Dotzauer E, Burns LR. The effects of academic stress on health behaviors in young adults. Anxiety Stress Coping. 1996;9: 123–133. [Google Scholar]
  • 48.Thompson FE, Midthune D, Kahle L, Dodd KW. Development and evaluation of the National Cancer Institute’s Dietary Screener Questionnaire scoring algorithms. J Nutr. 2017;147: 1226–1233. doi: 10.3945/jn.116.246058 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J Clin Epidemiol. 2010;63: 1179–1194. doi: 10.1016/j.jclinepi.2010.04.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Arroll B, Goodyear-Smith F, Crengle S, Gunn J, Kerse N, Fishman T, et al. Validation of PHQ-2 and PHQ-9 to screen for major depression in the primary care population. Ann Fam Med. 2010;8: 348–353. doi: 10.1370/afm.1139 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Beard C, Hsu KJ, Rifkin LS, Busch AB, Björgvinsson T. Validation of the PHQ-9 in a psychiatric sample. J Affect Disord. 2016;193: 267–273. doi: 10.1016/j.jad.2015.12.075 [DOI] [PubMed] [Google Scholar]
  • 52.Keum BT, Miller MJ, Inkelas KK. Testing the factor structure and measurement invariance of the PHQ-9 across racially diverse U.S. college students. Psychol Assess. 2018;30: 1096–1106. doi: 10.1037/pas0000550 [DOI] [PubMed] [Google Scholar]
  • 53.Kroenke K, Spitzer RL, Williams JBW. The PHQ-9. J Gen Intern Med. 2001;16: 606–613. doi: 10.1046/j.1525-1497.2001.016009606.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Kroenke K, Spitzer RL, Williams JBW, Monahan PO, Löwe B. Anxiety disorders in primary care: prevalence, impairment, comorbidity, and detection. Ann Intern Med. 2007;146: 317. doi: 10.7326/0003-4819-146-5-200703060-00004 [DOI] [PubMed] [Google Scholar]
  • 55.Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166: 1092–1097. doi: 10.1001/archinte.166.10.1092 [DOI] [PubMed] [Google Scholar]
  • 56.Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338: b2393. doi: 10.1136/bmj.b2393 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Enders CK. Applied Missing Data Analysis. Methodology in the Social Sciences Series. Guilford Press; 2010. [Google Scholar]
  • 58.Field A. Discovering Statistics Using IBM SPSS Statistics. London, England: Sage; 2013. [Google Scholar]
  • 59.Bailey RL, Mitchell DC, Miller CK, Still CD, Jensen GL, Tucker KL, et al. A dietary screening questionnaire identifies dietary patterns in older adults. J Nutr. 2007;137: 421–426. doi: 10.1093/jn/137.2.421 [DOI] [PubMed] [Google Scholar]
  • 60.Subar AF, Freedman LS, Tooze JA, Kirkpatrick SI, Boushey C, Neuhouser ML, et al. Addressing current criticism regarding the value of self-report dietary data. J Nutr. 2015;145: 2639–2645. doi: 10.3945/jn.115.219634 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Jacka FN, Pasco JA, Mykletun A, Williams LJ, Hodge AM, O’Reilly SL, et al. Association of Western and traditional diets with depression and anxiety in women. Am J Psychiatry. 2010;167: 305–311. doi: 10.1176/appi.ajp.2009.09060881 [DOI] [PubMed] [Google Scholar]
  • 62.Jacka FN, Mykletun A, Berk M, Bjelland I, Tell GS. The association between habitual diet quality and the common mental disorders in community-dwelling adults: the Hordaland Health Study. Psychosom Med. 2011;73: 483–490. doi: 10.1097/PSY.0b013e318222831a [DOI] [PubMed] [Google Scholar]
  • 63.Moubarac J-C, Batal M, Martins APB, Claro R, Levy RB, Cannon G, et al. Processed and ultra-processed food products: consumption trends in Canada from 1938 to 2011. Can J Diet Pract Res. 2014;75: 15–21. doi: 10.3148/75.1.2014.15 [DOI] [PubMed] [Google Scholar]
  • 64.Kaplan BJ, Rucklidge JJ, Romijn A, McLeod K. The emerging field of nutritional mental health: inflammation, the microbiome, oxidative stress, and mitochondrial function. Clin Psychol Sci. 2015;3: 964–980. doi: 10.1177/2167702614555413 [DOI] [Google Scholar]
  • 65.Nettleton JA, Steffen LM, Mayer-Davis EJ, Jenny NS, Jiang R, Herrington DM, et al. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2006;83: 1369–1379. doi: 10.1093/ajcn/83.6.1369 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Statistics Canada. Mental Health and Well-being profile, Canadian Community Health Survey (CCHS), by age group and sex, Canada and provinces. 2018 [cited 16 Apr 2019]. https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310009201
  • 67.Beiter R, Nash R, McCrady M, Rhoades D, Linscomb M, Clarahan M, et al. The prevalence and correlates of depression, anxiety, and stress in a sample of college students. J Affect Disord. 2015;173: 90–96. doi: 10.1016/j.jad.2014.10.054 [DOI] [PubMed] [Google Scholar]
  • 68.Kuehner C, Buerger C. Determinants of subjective quality of life in depressed patients: the role of self-esteem, response styles, and social support. J Affect Disord. 2005;86: 205–213. doi: 10.1016/j.jad.2005.01.014 [DOI] [PubMed] [Google Scholar]
  • 69.Fahy T, Kent A, Tattan T, Horn EV, White I. Predictors of quality of life in people with severe mental illness: study methodology with baseline analysis in the UK 700 trial. Br J Psychiatry. 1999;175: 426–432. doi: 10.1192/bjp.175.5.426 [DOI] [PubMed] [Google Scholar]
  • 70.Le Port A, Gueguen A, Kesse-Guyot E, Melchior M, Lemogne C, Nabi H, et al. Association between dietary patterns and depressive symptoms over time: a 10-year follow-up study of the GAZEL cohort. PLOS ONE. 2012;7: e51593. doi: 10.1371/journal.pone.0051593 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Jantaratnotai N, Mosikanon K, Lee Y, McIntyre RS. The interface of depression and obesity. Obes Res Clin Pract. 2017;11: 1–10. doi: 10.1016/j.orcp.2016.07.003 [DOI] [PubMed] [Google Scholar]
  • 72.Bailey MJ, Dynarski SM. Gains and Gaps: Changing Inequality in U.S. College Entry and Completion. National Bureau of Economic Research; 2011 Dec. Report No.: 17633.
  • 73.O’Malley PM, Johnston LD. Epidemiology of alcohol and other drug use among American college students. J Stud Alcohol Suppl. 2002; 23–39. doi: 10.15288/jsas.2002.s14.23 [DOI] [PubMed] [Google Scholar]
  • 74.Bowling A. Just one question: If one question works, why ask several? J Epidemiol Community Health. 2005;59: 342–345. doi: 10.1136/jech.2004.021204 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Leitzmann C. Vegetarian nutrition: past, present, future. Am J Clin Nutr. 2014;100: 496S–502S. doi: 10.3945/ajcn.113.071365 [DOI] [PubMed] [Google Scholar]
  • 76.Sabaté J. The contribution of vegetarian diets to health and disease: a paradigm shift? Am J Clin Nutr. 2003;78: 502S–507S. doi: 10.1093/ajcn/78.3.502S [DOI] [PubMed] [Google Scholar]
  • 77.Beydoun MA, Wang Y. Pathways linking socioeconomic status to obesity through depression and lifestyle factors among young US adults. J Affect Disord. 2010;123: 52–63. doi: 10.1016/j.jad.2009.09.021 [DOI] [PMC free article] [PubMed] [Google Scholar]

Decision Letter 0

Sıdıka Bulduk

18 Feb 2021

PONE-D-20-39899

The association between diet and mental health and wellbeing in young adults within a biopsychosocial framework

PLOS ONE

Dear Dr. Rossa-Roccor,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

I am very much thankful to the reviewers for their deep and thorough review. The article requires a major revision by referring to the reviewer's comments. Statistical analysis should be done appropriately and meticulously.

Please submit your revised manuscript by Mar 25 2021 11:59PM. If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: http://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols

We look forward to receiving your revised manuscript.

Kind regards,

Sıdıka Bulduk, Prof. Dr.

Academic Editor

PLOS ONE

Journal Requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2.Thank you for submitting the above manuscript to PLOS ONE. During our internal evaluation of the manuscript, we found significant text overlap between your submission and your master's thesis (https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0379616).

Please note that there are copyright implications to reusing this text, as the thesis is licensed under the CC-BY-NC-ND 4.0 license (https://creativecommons.org/licenses/by-nc-nd/4.0/), which does not allow for commercial reuse without permission from the copyright holder. In order to publish any previously copyrighted material, PLOS ONE requires permission from the original copyright holder of the content to publish it under the CC BY 4.0 license.

Please clarify whether the authors have received written permission from University of British Columbia to publish this content specifically under the CC BY 4.0 license and upload the granted permission to the manuscript as a supporting information file.

In your revision, please either revise the duplicated text or provide specific permission from the copyright holder to republish the content of your master's thesis under a CC BY 4.0 license. Please note that further consideration is dependent on the submission of a manuscript that addresses these concerns about the overlap in text with published work.

We will carefully review your manuscript upon resubmission, so please ensure that your revision is thorough.

3.We note that the grant information you provided in the ‘Funding Information’ and ‘Financial Disclosure’ sections do not match.

When you resubmit, please ensure that you provide the correct grant numbers for the awards you received for your study in the ‘Funding Information’ section.

4.Thank you for stating the following in the Competing Interests section:

"I have read the journal's policy and the authors of this manuscript have the following competing interests:The authors declare that they have no conflict of interest. RAM has received funds as a consultant from Pharmavite and research funds from the International Life Sciences Institute, North America. Neither relationship is relevant to the work presented in this manuscript."

Please confirm that this does not alter your adherence to all PLOS ONE policies on sharing data and materials, by including the following statement: "This does not alter our adherence to  PLOS ONE policies on sharing data and materials.” (as detailed online in our guide for authors http://journals.plos.org/plosone/s/competing-interests).  If there are restrictions on sharing of data and/or materials, please state these. Please note that we cannot proceed with consideration of your article until this information has been declared.

Please include your updated Competing Interests statement in your cover letter; we will change the online submission form on your behalf.

Please know it is PLOS ONE policy for corresponding authors to declare, on behalf of all authors, all potential competing interests for the purposes of transparency. PLOS defines a competing interest as anything that interferes with, or could reasonably be perceived as interfering with, the full and objective presentation, peer review, editorial decision-making, or publication of research or non-research articles submitted to one of the journals. Competing interests can be financial or non-financial, professional, or personal. Competing interests can arise in relationship to an organization or another person. Please follow this link to our website for more details on competing interests: http://journals.plos.org/plosone/s/competing-interests

5. We noted in your submission details that a portion of your manuscript may have been presented or published elsewhere.

"This manuscript is based on the Master’s thesis of the corresponding author, Verena Rossa-Roccor. The thesis has been published at the UBC Theses and Dissertation Collection. A shortened version of the thesis has been published in the form of a report for stakeholders and knowledge users with the UBC food system and wellbeing operations in the UBC Sustainability Library."

Please clarify whether this [conference proceeding or publication] was peer-reviewed and formally published. If this work was previously peer-reviewed and published, in the cover letter please provide the reason that this work does not constitute dual publication and should be included in the current manuscript.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: No

Reviewer #3: Partly

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: No

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

Reviewer #3: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: The manuscript has got an interesting topic and an appropriate methodology. It was written intelligibly in general. Also, the authors highlighted its limitations fairly. I believe that will contribute to the literature on this topic.

Reviewer #2: This manuscript is an intelligible. And it is wriitten standart English.After correcting, the article is suitable for publication.

Please see attached annotated PDF from Reviewer #2

Reviewer #3: The manuscript entitled ‘The association between diet and mental health and wellbeing in young adults within a biopsychosocial framework’ with the aim to study the relationship between plant-based diet and mental health among young adults.

The manuscript can be further improved based on the comments below.

Methods

Since few amendments were done on DSQ, the information on whether the questionnaire was tested/piloted prior to the study to be stated.

Statistical analyses and missing data

Line 210, information on percentage/pattern of missing data to be stated and discussed.

Results

Line 226, some measurements require proper tool/inventory to measure such as perceived stress, stressful life events, sleep. Using one or two questions may not enough to capture the real condition.

The type of data for the explanatory variables and how it was treated in the regression analysis to be clearly stated. A statement on statistical test assumptions fulfillment would be useful.

Table 1, the number of missing data for individual variable to be displayed.

Table 2, for component 2, the reason(s) for the two negative values to be explained.

Table 3, total N to be stated. Title too short.

Table 4, for item categories, the categories name to begin with capital letter.

Table 5, B to be written as Unstandardized B.

Line 281, for anxiety 65.1% but in Table 4 it showed 65.2%.

Line 297 – 303, results to be presented in table form.

Decimal point for percentages in the text in the results section to be standardized i.e. at least 1 decimal point.

Discussion

Line 401, for the sentence ‘relatively small sample size and the associated lack of power’ figures to be provided to support the statement.

Not all references are conformed to the journal format.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

Reviewer #3: No

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

Attachment

Submitted filename: PONE-D-20-39899_reviewer #2 de-identified.pdf

PLoS One. 2021 Jun 3;16(6):e0252358. doi: 10.1371/journal.pone.0252358.r002

Author response to Decision Letter 0


23 Apr 2021

The line numbers refer to the revised manuscript with TRACKED changes.

Responses to Reviewer #1:

n/a

Responses to Reviewer #2:

Reviewer submitted comments in manuscript PDF as follows:

Line 57: The reviewer suggests to write ‘here’ instead of ‘herein’. We believe that ‘herein’ is the grammatically correct term to use in this case as we mean to say ‘in this text’ (see definition of ‘herein’: https://www.oxfordlearnersdictionaries.com/definition/english/herein)

Line 145: The reviewer suggests to add ‘overall quality of life’ in addition to the abbreviation QoL. We would like to highlight that the definition for the abbreviation was already given in Line 80 (Introduction section) when the abbreviation is first mentioned in the text. This in accordance with the formatting guideline of the journal, see here: https://journals.plos.org/plosone/s/submission-guidelines

Line 243: The reviewer suggests to write (n=339) after sentence. We are unclear about this suggestion since the number of participants is already clearly stated in said sentence: “The total sample consists of n=339 participants.” Do you mean for us to state the total number of participants again in that same sentence or elsewhere?

Table 1 (Line 256): The reviewer notes that total count of observations for item ‘sexual orientation’ does not add up to n=339 and suggests we “correct all the tables”. Please note that, originally, we state in the footnote of the table, “n may vary due to missing data”. We did not impute missing data for these items. Therefore, for some variables, we have less than 339 observations. However, to respond appropriately to the reviewer’s concern and to make the tables more intuitive for the reader, we have added rows depicting the n of missing observations for each of the non-imputed items in Table 1.

Table 4 (Line 289): The reviewer notes that percentages do not add up to 100%. This discrepancy happened due to rounding to one decimal. However, we have revised the tables and have rounded the decimals so that categories in tables now add up to 100%. We did find one typo which was corrected (see Table 4 QoL ordinal, Very good 4.7 instead of 4.1.).

Responses to Reviewer #3:

Methods

Since few amendments were done on DSQ, the information on whether the questionnaire was tested/piloted prior to the study to be stated.

We changed the following sentence in the Method section in Line 163: “The final version used in this study was not pilot-tested and had 28 items (see supplementary materials for questionnaire)”. We further added the following to the Discussion section in Line 430: “We further used a slightly amended version of the DSQ to make it more applicable to the local context. These amendments were minor and consisted of replacement of foods with limited relevance with those that were more relevant to the research question. We did not conduct a pilot study with this altered measure. However, the wording and structure of the questions were not altered, we therefore assume the potential bias due to issues of interpretability to be negligible.”

Statistical analyses and missing data

Line 211, information on percentage/pattern of missing data to be stated and discussed.

We added the following to the revised manuscript (Line 204): “Overall, missingness was fairly low in this sample. More specifically, missingness was as follows for the variables included in the logistic regression models: Age: 4.4%; Gender: 2.1%; Ethnicity: 3.2%; Sleep: 2.1%; Physical activity: 2.9%; Stressful life events: 3.5%; Weight satisfaction: 0.9%; Social support: 0.1%. Due to the sensitivity of some of these items as well as a high prevalence of ‘prefer not to say’ responses among the missing observations, we could not assume a missing completely at random pattern. Therefore, complete case analysis would not have been appropriate. Instead, multiple imputation is suggested as best practice” [Sterne, J. A. C., White, I. R., Carlin, J. B., Spratt, M., Royston, P., Kenward, M. G., Wood, A. M., & Carpenter, J. R. (2009). Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ, 338(7713), 157-160. https://doi.org/10.1136/bmj.b2393].

Results

Some measurements require proper tool/inventory to measure such as perceived stress, stressful life events, sleep. Using one or two questions may not enough to capture the real condition.

We agree with the reviewer that some of the concepts used as covariables are complex and would indeed benefit from more extensive measurements. We decided to use single-item measures or more simple measures, respectively, for some of these concepts to keep respondent burden low. The questionnaire used in this study was already fairly long (since the measures for the outcome variable and the main explanatory variables were extensive) but we did not want to omit these important variables as their inclusion presents a significant advancement over previous studies in this area. To keep this trade-off as insignificant as possible, we exclusively used single-item measures that have been widely used and validated. Furthermore, it has been shown that single-item measures often suffice to measure concepts such as quality of life and others (Bowling, A. (2005). Just one question: If one question works, why ask several? Journal of Epidemiology and Community Health (1979), 59(5), 342-345. https://doi.org/10.1136/jech.2004.021204).

The items on overall quality of life and on social support were taken from the Patient-Reported Outcomes Measurement Information System Scale version 1.2 (PROMIS®). The PROMIS® is a measure to assess patient-reported health outcomes and previous research has shown evidence for its reliability and precision in measuring health-related symptoms and functioning (Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., … Hays, R. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194. https://doi.org/10.1016/j.jclinepi.2010.04.011).

Stressful life events were measured with the College Student’s Stressful Event Checklist. This checklist contains 32 items which had been modified from its original version for adults, the Social Readjustment Rating Scale to reflect appropriate events in the population of college students. Each item is assigned a specific value that corresponds to the potential stress magnitude of the event (Holmes, T. H., & Rahe, R. H. (1967). The social readjustment rating scale. Journal of Psychosomatic Research, 11(2), 213–218. https://doi.org/10.1016/0022-3999(67)90010-4). Values are summed up to calculate an overall score which reflects mild (total score <150), moderate (total score between 150 and 300) or severe stress (total score >300) due to these events. Despite its dated origin, this measure and its adapted versions continue to be among the most widely used and cited instruments to measure stressful life events and have been found to be a robust measure to identify events that may lead to stress-related outcomes (Scully, J. A., Tosi, H., & Banning, K. (2000). Life Event Checklists: revisiting the Social Readjustment Rating Scale after 30 years. Educational and Psychological Measurement, 60(6), 864–876. https://doi.org/10.1177/00131640021970952).

Items on overall stress, physical activity, sleep, satisfaction with one’s weight (as a proxy for body image), and sociodemographic variables were adapted from the National College Health Assessment II (NCHA-II) of the American College Health Association. The NCHA-II is a survey that collects data on student health status and behaviours as well as factors influencing academic performance in order to provide universities with information on students’ health needs and previous research has shown evidence for adequate reliability and validity of the measure (American College Health Association. (2013). American College Health Association-National College Health Assessment II: reliability and validity analyses 2011. Hanover, MD: American College Health Association.).

We added the following to the Discussion section (see Line 437): “Single-item measures for capturing covariates were chosen to reduce respondent burden. While these measures may not be as detailed as multi-dimensional measures, they have been shown to be useful when measuring aspects of respondents’ health.”; and we added this reference to the list: Bowling, A. (2005). Just one question: If one question works, why ask several? Journal of Epidemiology and Community Health (1979), 59(5), 342-345. https://doi.org/10.1136/jech.2004.021204

The type of data for the explanatory variables and how it was treated in the regression analysis to be clearly stated.

We assume the reviewer refers to whether data was categorical or continuous? We added the following sentence in the Results section (see Line 295 -> beginning of results on models): “Explanatory variables age, sleep, physical activity, stress, stressful life events, weight satisfaction, social support, and PCA scores were entered in the model as continuous variables. Gender and ethnicity were entered as categorical variables.”

If your comment refers to something else, please let us know and kindly clarify.

A statement on statistical test assumptions fulfillment would be useful.

The sentence “Assumptions for linear models were met” is already included in the manuscript, please see Line 231.

We added the following details (see Line 232): “Assumptions were checked as follows: Independence of cases was given due to the study design (each observation exists only once, is not paired with an observation in another group nor is it influenced by another observation). Collinearity was assessed through VIF values (largest VIF should be <10; average VIF should not be substantially >1) and tolerance statistics (which should be >0.2; Field, 2013). Normality was assessed through the normal probability plots of the residuals. Homoscedasticity and linearity were checked through residuals vs. fitted plots.”

Table 1, the number of missing data for individual variable to be displayed.

Done, please see revised manuscript.

Table 2, for component 2, the reason(s) for the two negative values to be explained.

Principal Component Analysis (PCA) is based on correlations among variables. If variables in a component are positively correlated with each other, the loadings will be positive. If there are negative correlations, some of the loadings will be negative. In this example, you would expect that plant-based meat and dairy alternatives are inversely correlated with animal-based foods.

We added the following sentences to the manuscript in Line 267: “Two items with cross-loadings were observed. The items on plant-based alternatives to meat and dairy milk had positive loadings on the first component (plant foods) and negative cross-loadings on the second component, which are the animal-based foods.”

Table 3, total N to be stated. Title too short.

Done, please see revised manuscript.

Table 4, for item categories, the categories name to begin with capital letter.

Done, please see revised manuscript. To make sure all tables are consistent, we made the same changes in Table 1.

Table 5, B to be written as Unstandardized B.

Done, please see revised manuscript.

Line 281, for anxiety 65.1% but in Table 4 it showed 65.2%.

Done, please see revised manuscript.

Line 297 – 303, results to be presented in table form.

The results described in this section refer to the unadjusted associations between the main explanatory variable and the outcomes of interest. These unadjusted correlations do not remain significant once confounding variables are taken into consideration. In this study, we particularly aimed to highlight the importance of consideration of confounding variables as unadjusted effects have been overrepresented in past studies. This is why we originally omitted presentation of the unadjusted correlations in table form. However, we now added this table, please see what is now Table 5.

Decimal point for percentages in the text in the results section to be standardized, i.e. at least 1 decimal point.

Done, please see revised manuscript. As is customary, we kept the 2 and 3 decimal points for the results of Beta and p-values, respectively.

Discussion

Line 401, for the sentence ‘relatively small sample size and associated lack of power’ figures to be provided to support the statement.

We realize that this sentence was misleading. We rephrased to the following in Line 406: “The relatively small sample size and the potential lack of power…” and added this sentence in Line 408: “This could be mitigated in future studies with larger sample sizes.”

Not all references are conformed to the journal format.

We double-checked this before resubmission and hope to not have missed any errors.

Attachment

Submitted filename: PONE-D-20-39899_Response to Reviewers.docx

Decision Letter 1

Sıdıka Bulduk

14 May 2021

The association between diet and mental health and wellbeing in young adults within a biopsychosocial framework

PONE-D-20-39899R1

Dear Dr. Rossa-Roccor,

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Sıdıka Bulduk, Prof. Dr.

Academic Editor

PLOS ONE

Additional Editor Comments (optional):

Reviewers' comments:

Acceptance letter

Sıdıka Bulduk

24 May 2021

PONE-D-20-39899R1

The association between diet and mental health and wellbeing in young adults within a biopsychosocial framework

Dear Dr. Rossa-Roccor:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Sıdıka Bulduk

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 File. Questionnaire.

    (PDF)

    Attachment

    Submitted filename: PONE-D-20-39899_reviewer #2 de-identified.pdf

    Attachment

    Submitted filename: PONE-D-20-39899_Response to Reviewers.docx

    Data Availability Statement

    All relevant data are within the paper and its Supporting information files.


    Articles from PLoS ONE are provided here courtesy of PLOS

    RESOURCES