Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2021 May;35(5):636–641. [Article in Chinese] doi: 10.7507/1002-1892.202012070

椎间盘内源性修复策略的研究进展

Research progress of endogenous repair strategy in intervertebral disc

洋 刘 1, 浩 刘 1,*, 阳 孟 1, 亮 张 2
PMCID: PMC8175207  PMID: 33998219

Abstract

目的

综述椎间盘内源性修复策略的研究进展。

方法

查阅国内外近年有关椎间盘内源性修复策略相关研究文献,总结其特点、现状及应用前景。

结果

椎间盘内源性修复的关键是提高椎间盘组织中干/祖细胞活力或促进其从干细胞 Niche 向需修复的组织迁移。这些干/祖细胞可来源于髓核、纤维环及软骨终板,具有 MSCs 生物学特点,特异性表达干/祖细胞表面标志物及基因,同时拥有多系分化潜能。但是,椎间盘的发育、衰老及退变消耗了这些干/祖细胞,另外退变椎间盘内极端微环境也会进一步损害干/祖细胞的生物学性能,从而导致椎间盘内源性修复失败。因此,目前相关研究主要从提高内源性干/祖细胞的生物学性能、直接补充内源性干/祖细胞、生物材料及小分子化合物刺激椎间盘内源性修复,以提高修复效果。

结论

目前,椎间盘内源性修复策略用于椎间盘退变治疗的研究已取得一定进展,但仍处于临床前阶段,下一步应着重于体内实验及临床转化研究。

Keywords: 椎间盘退变, 内源性修复策略, 椎间盘, 干/祖细胞


颈腰痛目前已成为全球范围内骨科中老年患者就诊和致残的主要原因[1-2]。尽管病因尚不明确,但其发生和发展均与椎间盘退变密切相关。目前临床常用的保守治疗方法多以缓解疼痛为目的,手术治疗存在邻近节段退变加速的可能,且二者均不能从根本上解决椎间盘退变问题[3-4]。近年,以移植 MSCs 为主要方式的细胞治疗虽能减缓甚至逆转椎间盘退变[5-6],但是存在治疗时效短、异位骨化、免疫反应及肿瘤发生等缺陷[7-8]。因此,寻求一种新的椎间盘退变治疗策略具有重要意义。

“干细胞 Niche”概念由 Schofield 首次提出,即由细胞外基质和其他能够调控干细胞功能的非细胞物质组成的一个特殊解剖结构[9-10]。随后,研究发现在皮肤、骨髓、神经和消化系统等各种组织和器官中均存在干细胞 Niche[11-14],椎间盘的干细胞 Niche 位于邻近骨板和外层纤维环的软骨膜区[15],这为内源性修复策略用于治疗退变椎间盘奠定了理论依据,该修复策略旨在促进源自椎间盘干细胞 Niche 的干/祖细胞增殖分化。现回顾涉及椎间盘内源性修复概念的相关文献,就该修复策略特点、现状及应用前景综述如下。

1. 椎间盘内源性修复策略的细胞来源

髓核(nucleus pulposus,NP)细胞由脊索细胞(notochordal cells,NTC)和髓核样细胞(nucleopulpocytes,NPCy)组成。其中,NTC 主要负责维持椎间盘稳态并促进其生长和发育,NPCy 在细胞外基质合成和分泌中扮演着重要角色[16]。但是,NTC 通常只存在于年轻和健康椎间盘中,并随着椎间盘的衰老逐渐减少。因此,其他内源性干/祖细胞可能有助于在退变椎间盘中激活内源性修复程序。Risbud 等[17]首先在人退变 NP 和纤维环(annulus fibrosus,AF)中获得具有 BMSCs 特点以及成骨、成脂和成软骨分化能力的 MSCs。后续研究发现来自 NP 的 MSCs 能够更好地耐受退变椎间盘微环境,并且和其他来源 MSCs 相比,具有更好的增殖能力和细胞活力[18-20]。同时,我们前期实验发现这种细胞的活力和特性会因椎间盘退变加重而受损[21]。除此之外,在 AF 和软骨终板(cartilaginous endplates,CEP)中也发现了干/祖细胞[22-24]

综上,这些研究结果显示干/祖细胞可能从椎间盘的干细胞 Niche 中迁移至 NP、AF 和 CEP。因此,内源性修复的关键是提高组织中干/祖细胞的活力,或者促进其从干细胞 Niche 向需修复的组织迁移。

2. 椎间盘干/祖细胞的特点

2.1. 干/祖细胞表面标志物

椎间盘干/祖细胞包括 NP、AF 和 CEP 来源的 MSCs(NP-MSCs、AF-MSCs、CEP-MSCs),传代后呈梭形贴壁生长[21]。根据国际细胞治疗协会(ISCT)制定标准,多数 NP-MSCs、AF-MSCs 和 CEP-MSCs 阳性表达包括 CD73、CD90 及 CD105 在内的 MSCs 样表面标志物,不表达 CD34、CD45 和 HLA-DR[25]。此外,许多研究发现可以从人[26]、大鼠[27-29]、兔[30]和犬的椎间盘中分离得到 NP-MSCs,除了犬 NP-MSCs 外,其余 NP-MSCs 均阳性表达 CD29 和 CD44。

同样,在退变和正常椎间盘 NP-MSCs 中均可检测到 CD13 及 CD24,其中 CD13 于粒细胞中频繁表达,CD24 与 B 细胞增殖及分化密切相关[31-32]。此外,Jia 等[30]的研究指出兔 NP-MSCs 不仅 CD14 表达呈阴性,CD4 和 CD8 表达也呈阴性,既往研究中均未报道类似结果。

2.2. 干/祖性基因

除了细胞表面标志物,干/祖性基因被视为定义椎间盘来源 MSCs 的另一个标准,特别是在 NP 细胞中。在多能细胞正常发育和干性维持中,转录因子 Nanog、Oct4 和 Sox2 起着至关重要作用,常被用来评估 NP-MSCs 的干性能力[19, 21, 33]。另外,研究表明 Notch 信号通路及其配体 Jagged 对人 BMSCs 和 NP-MSCs 的细胞功能和分化起关键作用[25, 34-35]。此外,我们前期研究证明了增殖细胞核抗原、CD166 和 C-KIT 也可作为 NP-MSCs 的干性标志,并且其表达随着髓核组织的衰老而下降[21, 36]。值得注意的是,Li 等[37]及 Tekari 等[38]的研究证明,在添加 FGF-2 或低氧条件下,可以维持 Tie2+ 的 NP 来源祖细胞单层培养长达 7 d。因此,结合 Tie 分类方法可能是获取 NP-MSCs 的新方向。

2.3. 多系分化潜能

目前,已有许多研究证实 NP-MSCs、AF-MSCs 和 CEP-MSCs 具有成骨、成脂及成软骨分化的能力[25-27, 37, 39-44]。Liu 等[45]通过比较 NP-MSCs、AF-MSCs 和 CEP-MSCs 的生物学特点,发现它们具有相似的多系分化能力,其中 CEP-MSCs 具有最佳的迁移和侵袭力。此外,Wang 等[41]的研究证实 CEP-MSCs 具有更强的成骨和成软骨分化能力。因此,CEP-MSCs 可能是细胞治疗和内源性修复更理想的细胞来源。

NP-MSCs 是另一种重要的细胞来源。与其他 MSCs 相比,NP-MSCs 在分化能力上表现出不同的优缺点。研究表明,NP-MSCs 在拥有和骨髓来源及脂肪来源 MSCs 相似修复能力的基础上,还具有相同或更好的软骨形成能力[18, 37]。但是在 Blanco 等[18]及 Wang 等[41]的研究中,NP-MSCs 表现出更弱的多系分化能力并且不能分化为脂肪细胞。除了具有成骨、成脂及成软骨分化能力外,NP-MSCs 还被证实无论在体内还是体外均可以向神经系统细胞分化,然而这种分化潜能还需和其他 MSCs 进一步比较[31, 46]。此外,Wu 等[26]发现与脐带来源 MSCs 相比,来源于退变 NP 组织的 MSCs 表现出更低的分化潜能。综上,虽然 NP-MSCs 具有多向分化潜能,但是这种能力会随着椎间盘退变而受到一定损害。

3. 椎间盘内源性修复策略研究现状

椎间盘中虽然存在干细胞 Niche 和干/祖细胞,但椎间盘退变和修复失败仍会发生,分析是以下原因导致内源性修复失败。首先,随着椎间盘的衰老及退变,椎间盘中或干细胞 Niche 内的干/祖细胞可能因发育、衰老及修复而消耗殆尽,导致其数量无法继续支持内源性修复。其次,椎间盘退变的发生可能在一定程度上摧毁了从干细胞 Niche 到需要修复的 NP 和 AF 组织之间潜在的细胞迁移路径,导致内源性修复无法继续完成。最后,低 pH 值[25]、炎症[28, 39]、压力[42]、高糖[32, 47]、氧化应激[48]、低氧[49]及营养供应减少[50]在内的极端微环境,可能进一步损害了椎间盘干/祖细胞的生物学性能,并限制其增殖及分化。因此,寻求解决这些问题的方法可能是避免内源性修复失效的首要任务。

3.1. 提高椎间盘干/祖细胞的生物学性能

一个简单、有效的椎间盘内源性修复策略是减少各种原因导致的椎间盘干/祖细胞凋亡和衰老,或者直接增加这些细胞的活力并促进其分化。生长环境中正常 pH 值是维持细胞功能和稳态的必需条件,过度酸性微环境可能抑制细胞增殖,同时导致细胞凋亡和基质代谢紊乱的发生[51]。Liu 等[25]发现阿米洛利(Amiloride)可以提高 NP-MSCs 的生物学性能,延缓并治疗椎间盘退变。除了酸性微环境,炎症同样可以通过一些细胞因子诱导椎间盘退变的发生[39]。Cheng 等[28]研究发现低浓度(0.1~10.0 ng/mL)TNF-α 可以促进 NP-MSCs 的增殖和迁移能力,但抑制其向 NP 细胞的分化,而高浓度(50~200 ng/mL)TNF-α 会诱导 NP-MSCs 发生凋亡,这表明某些炎症因子在椎间盘退变过程中可能扮演着双重角色。另外,富血小板血浆或含白细胞的富血小板血浆以及富含 NTC 的 NP 外植体,可减轻炎症造成的椎间盘退变以及椎间盘内 NP-MSCs 凋亡和功能障碍[30, 39]

除炎症因子外,某些细胞因子也在椎间盘内源性修复中具有重要作用。Tao 等[52]发现联合应用 TGF 和 IGF-1 可以通过 MAPK/ERK 信号通路增强 NP-MSCs 活力及细胞外基质合成,同时促进其向 NP 细胞分化。此外,Ying 等[53]研究发现基质细胞衍生因子 1α(stromal cell-derived factor 1α,SDF-1α)可能通过 SDF-1/CXCR4 趋化信号,促进 NP-MSCs 的募集和软骨分化,从而促进椎间盘再生。

同样,由线粒体功能障碍引起的氧化应激在椎间盘退变中也起着重要作用[54]。我们前期研究[55]和其他相关研究[48]表明,如环孢素和柚皮苷等药物能够缓解线粒体功能障碍和氧化应激,从而治疗椎间盘退变。此外,Chen 等[56]发现 NP-MSCs 受到氧化应激时,血红素氧合酶 1(heme oxygenase 1,HO-1)的表达呈早期升高、后期降低的趋势,而通过促进 HO-1 的表达可介导 NP-MSCs 发生自噬,并部分逆转 NP-MSCs 的氧化损伤。除了酸性微环境、炎症、细胞因子及氧化应激等因素外,椎间盘压力负荷同样可以抑制椎间盘干/祖细胞的生物学性能,包括细胞活力、分化、集落形成和迁移能力,进而导致椎间盘内源性修复失败[42]。He 等[57]通过体内及体外实验证实了缺氧诱导因子 1α 可以通过提高细胞自噬水平,减少过度机械负荷诱导的 NP-MSCs 凋亡,提示恢复缺氧和调控自噬对维持内源性修复和延缓椎间盘退变至关重要。此外,有研究发现抑制热休克蛋白 90 可减轻因 RIPK1/RIPK3/MLKL 通路介导的压力负荷诱发的 NP-MSCs 死亡,从而挽救 NP 组织的内源性修复能力[58-59]

目前,该策略相关研究多数集中于体外实验,探究不同培养条件、细胞因子及药物等因素对椎间盘干/祖细胞生物学性能的影响,以促进细胞增殖、迁移趋化能力,抑制细胞凋亡,调控功能障碍,促进内源性干/祖细胞募集及对抗不良椎间盘退变微环境为主要目的。虽然该策略目前取得了不错的研究成果,但是仍面临许多问题及挑战,比如如何确保相关因子或药物准确到达作用靶点、能否持续维持最佳有效浓度、能否在体内产生明显表型等,需进一步完成相关体内实验加以验证和解决。

3.2. 补充椎间盘干/祖细胞

另一种椎间盘内源性修复策略是直接补充椎间盘干/祖细胞。多个临床前和临床研究表明注射联合或不联合生物材料的 MSCs 或类 MSCs 可以缓解椎间盘退变[16, 60]。我们近期研究也证实可注射水凝胶负载的 NP-MSCs 显著延缓椎间盘退变[61]。这种直接给予椎间盘干/祖细胞的策略简单有效,能够补充退变椎间盘中消耗的干/祖细胞,为椎间盘内源性修复的启动提供细胞基础。由于这种方法涉及到细胞的体外扩增和保存,因此找到有利于细胞体外扩增和保存的技术尤为关键。Lin 等[29]的研究表明,与中平板密度(100 个/cm2)、高平板密度(10 000 个/cm2)接种的 NP-MSCs 相比,低平板密度(5 个/cm2)接种的 NP-MSCs 具有更好的生物学性能、更强的多系分化能力和更高的干性标志物表达,表明有限稀释法是分离 NP-MSCs 的更好方法。此外,冷冻保存 NP-MSCs 可以有效延长细胞的应用寿命。但目前最常用的冷冻保护剂 DMSO 被证实可能具有细胞毒性[62]。Chen 等[44]研究发现,在常规细胞冷冻剂中添加抗氧化剂淫羊藿苷可以提高冻存的人 NP-MSCs 活力和功能,这为内源性修复提供了保存椎间盘干/祖细胞的新方法。

该策略的另一个关键问题在于椎间盘干/祖细胞的来源。首先,如果使用自体椎间盘干/祖细胞,那么受试者需要经过两次有创操作来获取和移植干/祖细胞。其次,椎间盘干/祖细胞应该取自健康、退变程度较轻的椎间盘,而受试者的椎间盘很难满足上述条件,若细胞来自退变椎间盘,则可能降低治疗效果。最后,年轻志愿者捐献的椎间盘干/祖细胞可能是更优的种子细胞,但存在伦理及同种异体细胞免疫排斥反应等问题。

3.3. 生物材料及小分子化合物刺激椎间盘内源性修复

随着生物工程技术的发展,越来越多生物材料及小分子化合物被不断发掘,并用于人体各部位的组织修复与重建。其中,以水凝胶等聚合物为首的一系列生物材料被直接应用或作为载体参与椎间盘内源性修复[63]。Benz 等[64]研究表明绵羊椎间盘损伤 6 个月后可自行痊愈,而结合内源性细胞的水凝胶可以增强椎间盘内源性修复过程。Xu 等[65]研究采用胶原水解明胶和甲基丙烯酸酯组成的光敏水凝胶材料包裹 NP 细胞,以促进 NP 组织再生,为椎间盘组织工程和内源性修复奠定了新的材料基础和治疗方向。

除生物材料外,一些小分子化合物在激活椎间盘内源性修复过程中同样扮演了重要角色。Frapin 等[66]开发了一种基于支链淀粉磁珠传递系统,该系统可持续释放趋化因子 CCL-5,并招募椎间盘干/祖细胞进入 NP 组织,而后者能够释放 TGF-β1 及生长分化因子 5 诱导富含Ⅱ型胶原和蛋白多糖的细胞外基质合成,从而达到椎间盘内源性修复的目的。随着越来越多生物材料被发掘以及组织工程技术不断进步,结合生物材料或小分子化合物的策略有望成为有效并且安全的椎间盘退变内源性修复手段。

4. 总结及展望

基于干细胞 Niche 概念、以椎间盘干/祖细胞为核心的内源性修复策略为椎间盘退变治疗提供了新思路。这些源于 NP、AF 和 CEP 的干/祖细胞多表达 MSCs 表面标志物以及 Nanog、Oct4 和 Sox2 等干性相关基因,并能向骨、脂肪、软骨及神经系统细胞分化。椎间盘内源性修复策略可延缓甚至逆转椎间盘退变进程,具有保守治疗、外科手术及基因干预等方法不具备的优点,具有更广阔的临床应用前景,特别适用于椎间盘退变早期或椎间盘源性疼痛的患者。

然而,干细胞内源性修复仍然面临一些挑战,比如椎间盘干/祖细胞的消耗、迁移途径的破坏、各种原因导致的退变椎间盘内恶劣的微环境。因此,目前研究首要任务是寻找能克服这些障碍的方法,促进内源性修复进程,包括减少由退变不良微环境造成的细胞凋亡、衰老和死亡,直接供应椎间盘干/祖细胞或是结合新型生物材料及小分子化合物等。虽然这些方法已证实有利于椎间盘退变的内源性修复,但是仍处于临床前阶段,需要进一步研究。这些研究应该注重于体内实验及临床转化,特别是以下几个方面:① 探究如何促进椎间盘干细胞 Niche 中干/祖细胞的动员和迁移;② 寻找可以持续对抗退变不良微环境或能够增强内源性椎间盘干/祖细胞生物学性能的因子或药物;③ 发掘新型生物材料或小分子化合物,使其成为更优的可应用于内源性修复的载体,或能够直接作用于椎间盘,启动或加速椎间盘内源性修复进程。

作者贡献:刘洋负责综述构思及设计、文章撰写;刘浩、张亮负责观点形成;孟阳负责资料收集。

利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。经费支持没有影响文章观点及其报道。

Funding Statement

国家自然科学基金青年基金资助项目(81702156);国家自然科学基金资助项目(81572141)

Youth Project of National Natural Science Foundation of China (81702156); National Natural Science Foundation of China (81572141)

References

  • 1.GBD 2015 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1545–1602. doi: 10.1016/S0140-6736(16)31678-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Wu A, Dong W, Liu S, et al The prevalence and years lived with disability caused by low back pain in China, 1990 to 2016: findings from the global burden of disease study 2016. Pain. 2019;160(1):237–245. doi: 10.1097/j.pain.0000000000001396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Makanji H, Schoenfeld AJ, Bhalla A, et al Critical analysis of trends in lumbar fusion for degenerative disorders revisited: influence of technique on fusion rate and clinical outcomes. Eur Spine J. 2018;27(8):1868–1876. doi: 10.1007/s00586-018-5544-x. [DOI] [PubMed] [Google Scholar]
  • 4.梁秋发, 原林, 王文军, 等 颈椎前路融合术后临近节段退变的MRI分析. 医学临床研究. 2005;22(6):727–729. [Google Scholar]
  • 5.Sakai D, Andersson GB Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol. 2015;11(4):243–256. doi: 10.1038/nrrheum.2015.13. [DOI] [PubMed] [Google Scholar]
  • 6.Liang C, Li H, Tao Y, et al. Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc. J Transl Med, 2012, 10: 49. doi: 10.1186/1479-5876-10-49.
  • 7.Wang Y, Han ZB, Song YP, et al. Safety of mesenchymal stem cells for clinical application. Stem Cells Int, 2012, 2012: 652034. doi: 10.1155/2012/652034.
  • 8.Vadalà G, Sowa G, Hubert M, et al Mesenchymal stem cells injection in degenerated intervertebral disc: Cell leakage may induce osteophyte formation. J Tissue Eng Regen Med. 2012;6(5):348–355. doi: 10.1002/term.433. [DOI] [PubMed] [Google Scholar]
  • 9.Schofield R The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1-2):7–25. [PubMed] [Google Scholar]
  • 10.Scadden DT The stem-cell niche as an entity of action. Nature. 2006;441(7097):1075–1079. doi: 10.1038/nature04957. [DOI] [PubMed] [Google Scholar]
  • 11.Ruddy RM, Morshead CM Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res. 2018;371(1):125–141. doi: 10.1007/s00441-017-2658-0. [DOI] [PubMed] [Google Scholar]
  • 12.Seike M, Omatsu Y, Watanabe H, et al Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32(5-6):359–372. doi: 10.1101/gad.311068.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Gong M, Zhang P, Li C, et al Protective mechanism of adipose-derived stem cells in remodelling of the skin stem cell niche during photoaging. Cell Physiol Biochem. 2018;51(5):2456–2471. doi: 10.1159/000495902. [DOI] [PubMed] [Google Scholar]
  • 14.Bartfeld S, Koo BK. Adult gastric stem cells and their niches. Wiley Interdiscip Rev Dev Biol, 2017, 6(2). doi: 10.1002/wdev.261.
  • 15.Shi R, Wang F, Hong X, et al The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats . Eur Spine J. 2015;24(11):2411–2424. doi: 10.1007/s00586-015-4168-7. [DOI] [PubMed] [Google Scholar]
  • 16.Clouet J, Fusellier M, Camus A, et al Intervertebral disc regeneration: From cell therapy to the development of novel bioinspired endogenous repair strategies. Adv Drug Deliv Reviews. 2019;146:306–324. doi: 10.1016/j.addr.2018.04.017. [DOI] [PubMed] [Google Scholar]
  • 17.Risbud MV, Shapiro IM Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol. 2014;10(1):44–56. doi: 10.1038/nrrheum.2013.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Blanco JF, Graciani IF, Sanchez-Guijo FM, et al Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: Comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine (Phila Pa 1976) 2010;35(26):2259–2265. doi: 10.1097/BRS.0b013e3181cb8828. [DOI] [PubMed] [Google Scholar]
  • 19.Tao YQ, Liang CZ, Li H, et al Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration. Cell Biol Int. 2013;37:826–834. doi: 10.1002/cbin.10110. [DOI] [PubMed] [Google Scholar]
  • 20.Han B, Wang HC, Li H, et al Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs. 2014;199(5-6):342–352. doi: 10.1159/000369452. [DOI] [PubMed] [Google Scholar]
  • 21.Liu Y, Li Y, Huang ZN, et al The effect of intervertebral disc degenerative change on biological characteristics of nucleus pulposus mesenchymal stem cell: an in vitro study in rats . Connect Tissue Res. 2019;60(4):376–388. doi: 10.1080/03008207.2019.1570168. [DOI] [PubMed] [Google Scholar]
  • 22.Yu H, Vu TH, Cho KS, et al Mobilizing endogenous stem cells for retinal repair. Transl Res. 2014;163(4):387–398. doi: 10.1016/j.trsl.2013.11.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Lyu FJ, Cheung KM, Zheng Z, et al IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol. 2019;15(2):102–112. doi: 10.1038/s41584-018-0154-x. [DOI] [PubMed] [Google Scholar]
  • 24.Liu LT, Huang B, Li CQ, et al. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS One, 2011, 6(10): e26285. doi: 10.1371/journal.pone.0026285.
  • 25.Liu J, Tao H, Wang H, et al Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev. 2017;26(12):901–911. doi: 10.1089/scd.2016.0314. [DOI] [PubMed] [Google Scholar]
  • 26.Wu H, Zeng X, Yu J, et al Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells. Exp Cell Res. 2017;361(2):324–332. doi: 10.1016/j.yexcr.2017.10.034. [DOI] [PubMed] [Google Scholar]
  • 27.Li Z, Chen S, Ma K, et al Comparison of different methods for the isolation and purification of rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res. 2020;61(5):426–434. doi: 10.1080/03008207.2019.1611793. [DOI] [PubMed] [Google Scholar]
  • 28.Cheng S, Li X, Jia Z, et al The inflammatory cytokine TNF-α regulates the biological behavior of rat nucleus pulposus mesenchymal stem cells through the NF-κb signaling pathway in vitro . J Cell Biochem. 2019;120:13664–13679. doi: 10.1002/jcb.28640. [DOI] [PubMed] [Google Scholar]
  • 29.Lin L, Jia Z, Zhao Y, et al. Use of limiting dilution method for isolation of nucleus pulposus mesenchymal stem/progenitor cells and effects of plating density on biological characteristics and plasticity. Biomed Res Int, 2017, 2017: 9765843. doi: 10.1155/2017/9765843.
  • 30.Jia J, Wang SZ, Ma LY, et al. The differential effects of leukocyte-containing and pure platelet-rich plasma on nucleus pulposus-derived mesenchymal stem cells: Implications for the clinical treatment of intervertebral disc degeneration. Stem Cells Int, 2018, 2018: 7162084. doi: 10.1155/2018/7162084.
  • 31.Lazzarini R, Guarnieri S, Fulgenzi G, et al Mesenchymal stem cells from nucleus pulposus and neural differentiation potential: A continuous challenge. J Mol Neurosci. 2019;67(1):111–124. doi: 10.1007/s12031-018-1216-x. [DOI] [PubMed] [Google Scholar]
  • 32.Qi L, Wang R, Shi Q, et al Umbilical cord mesenchymal stem cell conditioned medium restored the expression of collagen Ⅱ and aggrecan in nucleus pulposus mesenchymal stem cells exposed to high glucose. J Bone Miner Metab. 2019;37(3):455–466. doi: 10.1007/s00774-018-0953-9. [DOI] [PubMed] [Google Scholar]
  • 33.Wang KH, Kao AP, Chang CC, et al Upregulation of Nanog and Sox-2 genes following ectopic expression of Oct-4 in amniotic fluid mesenchymal stem cells. Biotechnol Appl Biochem. 2015;62(5):591–597. doi: 10.1002/bab.1315. [DOI] [PubMed] [Google Scholar]
  • 34.Zanotti S, Canalis E Notch signaling and the skeleton. Endocr Rev. 2016;37(3):223–253. doi: 10.1210/er.2016-1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Ciria M, García NA, Ontoria-Oviedo I, et al Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1α upstream of notch and sumo pathways. Stem Cells Dev. 2017;26(13):973–985. doi: 10.1089/scd.2016.0331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Yasen M, Fei Q, Hutton WC, et al Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs. Acta Biochim Biophys Sin (Shanghai) 2013;45(5):368–376. doi: 10.1093/abbs/gmt019. [DOI] [PubMed] [Google Scholar]
  • 37.Li XC, Tang Y, Wu JH, et al. Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc. BMC Musculoskelet Disord, 2017, 18(1): 242. doi: 10.1186/s12891-017-1567-4.
  • 38.Tekari A, Chan SCW, Sakai D, et al. Angiopoietin-1 receptor tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther, 2016, 7(1): 75. doi: 10.1186/s13287-016-0337-9.
  • 39.Li XC, Wang MS, Liu W, et al. Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. Stem Cell Res Ther, 2018, 9(1): 171. doi: 10.1186/s13287-018-0919-9.
  • 40.Jia Z, Yang P, Wu Y, et al Comparison of biological characteristics of nucleus pulposus mesenchymal stem cells derived from non-degenerative and degenerative human nucleus pulposus. Exp Ther Med. 2017;13:3574–3580. doi: 10.3892/etm.2017.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Wang H, Zhou Y, Chu TW, et al Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs. Eur Spine J. 2016;25(9):2691–2704. doi: 10.1007/s00586-016-4522-4. [DOI] [PubMed] [Google Scholar]
  • 42.Liang H, Chen S, Huang D, et al. Effect of compression loading on human nucleus pulposus-derived mesenchymal stem cells. Stem Cells Int, 2018, 2018: 1481243. doi: 10.1155/2018/1481243.
  • 43.Sakai D, Nakamura Y, Nakai T, et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun, 2012, 3: 1264. doi: 10.1038/ncomms2226.
  • 44.Chen S, Deng X, Ma K, et al. Icariin improves the viability and function of cryopreserved human nucleus pulposus-derived mesenchymal stem cells. Oxid Med Cell Longev, 2018, 2018: 3459612. doi: 10.1155/2018/3459612.
  • 45.Liu S, Liang H, Lee SM, et al Isolation and identification of stem cells from degenerated human intervertebral discs and their migration characteristics. Acta Biochim Biophys Sin (Shanghai) 2017;49(2):101–109. doi: 10.1093/abbs/gmw121. [DOI] [PubMed] [Google Scholar]
  • 46.Erwin WM, Islam D, Eftekarpour E, et al Intervertebral disc-derived stem cells: Implications for regenerative medicine and neural repair. Spine (Phila Pa 1976) 2013;38(3):211–216. doi: 10.1097/BRS.0b013e318266a80d. [DOI] [PubMed] [Google Scholar]
  • 47.Liu Y, Li Y, Nan L, et al The effect of high glucose on the biological characteristics of nucleus pulposus-derived mesenchymal stem cells. Cell Biochem Funct. 2020;38:130–140. doi: 10.1002/cbf.3441. [DOI] [PubMed] [Google Scholar]
  • 48.Li Z, Chen S, Ma K, et al CsA attenuates compression-induced nucleus pulposus mesenchymal stem cells apoptosis via alleviating mitochondrial dysfunction and oxidative stress. Life Sci. 2018;205:26–37. doi: 10.1016/j.lfs.2018.05.014. [DOI] [PubMed] [Google Scholar]
  • 49.Huang YC, Leung VY, Lu WW, et al The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 2013;13(3):352–362. doi: 10.1016/j.spinee.2012.12.005. [DOI] [PubMed] [Google Scholar]
  • 50.Huang YC, Urban JP, Luk KD Intervertebral disc regeneration: do nutrients lead the way? Nat Rev Rheumatol. 2014;10(9):561–566. doi: 10.1038/nrrheum.2014.91. [DOI] [PubMed] [Google Scholar]
  • 51.Gilbert HTJ, Hodson N, Baird P, et al. Acidic ph promotes intervertebral disc degeneration: Acid-sensing ion channel-3 as a potential therapeutic target. Sci Rep, 2016, 6: 37360. doi: 10.1038/srep37360.
  • 52.Tao Y, Zhou X, Liang C, et al TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through mapk/erk signaling. Growth Factors. 2015;33(5-6):326–336. doi: 10.3109/08977194.2015.1088532. [DOI] [PubMed] [Google Scholar]
  • 53.Ying JW, Wen TY, Pei SS, et al Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells. World J Stem Cells. 2019;11(3):196–211. doi: 10.4252/wjsc.v11.i3.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Feng C, Yang M, Lan M, et al. Ros: Crucial intermediators in the pathogenesis of intervertebral disc degeneration. Oxid Med Cell Longev, 2017, 2017: 5601593. doi: 10.1155/2017/5601593.
  • 55.Nan LP, Wang F, Ran D, et al Naringin alleviates H2O2-induced apoptosis via the PI3K/Akt pathway in rat nucleus pulposus-derived mesenchymal stem cells . Connect Tissue Res. 2020;61(6):554–567. doi: 10.1080/03008207.2019.1631299. [DOI] [PubMed] [Google Scholar]
  • 56.Chen S, Liu S, Zhao L, et al. Heme oxygenase-1-mediated autophagy protects against oxidative damage in rat nucleus pulposus-derived mesenchymal stem cells. Oxid Med Cell Longev, 2020, 2020: 9349762. doi: 10.1155/2020/9349762.
  • 57.He R, Wang Z, Cui M, et al HIF1A alleviates compression-induced apoptosis of nucleus pulposus derived stem cells via upregulating autophagy. Autophagy. 2021;18:1–23. doi: 10.1080/15548627.2021.1872227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Hu B, Zhang S, Liu W, et al. Inhibiting heat shock protein 90 protects nucleus pulposus-derived stem/progenitor cells from compression-induced necroptosis and apoptosis. Front Cell Dev Biol, 2020, 8: 685. doi: 10.3389/fcell.2020.00685.
  • 59.Chen S, Lv X, Hu B, et al RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis. 2017;22(5):626–638. doi: 10.1007/s10495-017-1358-2. [DOI] [PubMed] [Google Scholar]
  • 60.Yang F, Leung VY, Luk KD, et al Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol Ther. 2009;17(11):1959–1966. doi: 10.1038/mt.2009.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Wang F, Nan LP, Zhou SF, et al. Injectable hydrogel combined with nucleus pulposus-derived mesenchymal stem cells for the treatment of degenerative intervertebral disc in rats. Stem Cells Int, 2019, 2019: 8496025. doi: 10.1155/2019/8496025.
  • 62.Morris TJ, Picken A, Sharp DMC, et al The effect of Me2SO overexposure during cryopreservation on HOS TE85 and hMSC viability, growth and quality. Cryobiology. 2016;73(3):367–375. doi: 10.1016/j.cryobiol.2016.09.004. [DOI] [PubMed] [Google Scholar]
  • 63.Henry N, Clouet J, Le Bideau J, et al Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems. Biotechnol Adv. 2018;36(1):281–294. doi: 10.1016/j.biotechadv.2017.11.009. [DOI] [PubMed] [Google Scholar]
  • 64.Benz K, Stippich C, Fischer L, et al Intervertebral disc cell- and hydrogel-supported and spontaneous intervertebral disc repair in nucleotomized sheep. Eur Spine J. 2012;21(9):1758–1768. doi: 10.1007/s00586-012-2443-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Xu P, Guan J, Chen Y, et al Stiffness of photocrosslinkable gelatin hydrogel influences nucleus pulposus cell properties in vitro . J Cell Mol Med. 2021;25(2):880–891. doi: 10.1111/jcmm.16141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Frapin L, Clouet J, Chédeville C, et al. Controlled release of biological factors for endogenous progenitor cell migration and intervertebral disc extracellular matrix remodelling. Biomaterials, 2020, 253: 120107. doi: 10.1016/j.biomaterials.2020.120107.

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES