Abstract
目的
对纳米材料在骨髓炎治疗中的相关应用研究进展进行综述,为骨髓炎的研究及临床治疗提供新思路。
方法
查阅近年国内外应用纳米材料治疗骨髓炎的相关文献,并进行分析和总结。
结果
目前,手术治疗和抗生素应用是骨髓炎的主要治疗方案,但存在抗生素耐药、骨缺损残留、局部药物有效浓度较低等诸多缺陷。应用纳米材料则能针对性地弥补上述缺陷。近年来,在骨髓炎治疗中纳米材料主要通过填充骨缺损、建立局部载药缓释系统以及自身抗菌等特性发挥作用。
结论
充分研究纳米材料相关特性,并选择有益材料制作载药系统或替代药物,为骨髓炎的治疗提供了全新思路及重要研究方向。
Keywords: 骨髓炎, 纳米材料, 骨缺损, 局部载药缓释系统, 成骨分化, 破骨分化, 抗菌
Abstract
Objective
To review the related studies on the application of nanomaterials in the treatment of osteomyelitis, and to provide new ideas for the research and clinical treatment of osteomyelitis.
Methods
The literature about the treatment of osteomyelitis with nanomaterials at home and abroad in recent years was reviewed and analyzed.
Results
At present, surgical treatment and antibiotic application are the main treatment options for osteomyelitis. But there are many defects such as antibiotic resistance, residual bone defect, and low effective concentration of local drugs. The application of nanomaterials can make up for the above defects. In recent years, nanomaterials play an important role in the treatment of osteomyelitis by filling bone defects, establishing local drug delivery system, and self-antibacterial properties.
Conclusion
It will provide a new idea and an important research direction for the treatment of osteomyelitis to fully study the related characteristics of nanomaterials and select beneficial materials to make drug delivery system or substitute drugs.
Keywords: Osteomyelitis, nanomaterials, bone defect, local drug delivery system, osteogenic differentiation, osteoclastic differentiation, antibacterial
骨髓炎是一种由细菌感染引起的骨质破坏伴或不伴有继发性骨质增生的炎症性疾病,包括血源性骨髓炎、创伤后骨髓炎、临近播散性骨髓炎和糖尿病足感染等。目前骨髓炎治疗方法虽多种多样,但仍以手术治疗和抗生素应用为主。传统治疗方案存在诸多缺陷,如大块骨缺损无法有效填充、静脉应用抗生素无法达到局部有效浓度及对抗生素耐药等[1-3]。因此,研发新型材料来实现填补骨缺损、局部释放抗生素以及辅助杀菌等作用,成为近年来组织工程学的重要研究方向[4]。纳米材料是指结构单元尺寸介于 1~100 nm 之间的材料,与普通材料相比具有特殊的理化性质,如较大表面积与质量比、较好力学特性和化学反应性等,能够更好地吸附和释放所载药物[5-6]。与微观结构相比,表面比和近表面原子数的增加是导致纳米材料性质明显不同的原因。因此,基于纳米材料的诸多优点,其可用于设计高特异性材料,并与人体细胞在分子水平上相互作用,以最小副作用实现最大治疗效果[7-8]。目前,纳米材料主要依靠对骨缺损的填充、局部载药缓释系统的建立以及纳米材料的自身作用等方面参与骨髓炎的治疗。本文主要讨论这些因素对骨髓炎治疗的影响,总结纳米材料应用于骨髓炎治疗的最新研究进展。
1. 纳米材料应用于骨缺损填充
骨缺损多指由各种原因如骨折、感染或癌症等造成的骨质缺失,在机体自我修复中,具有足够体积的新生骨是恢复其外观和功能的必要条件,因此骨缺损的修复主要取决于骨缺损大小,当缺损骨组织大于成骨愈合能力时,比成骨细胞迁移速度更快的纤维结缔组织便占据骨缺损区域,引发诸多后遗症[9]。大面积骨缺损和严重细菌感染会损害骨组织的自愈能力,目前常以全身或局部应用抗生素来控制感染,随后植入骨移植物填补骨缺损,如自体骨和同种异体骨[10]。但这些治疗方案耗时长,疗效差。为了解决这些问题,人们研发了具有抗菌和骨诱导性能的新型纳米生物材料,将抗生素与这些新型材料结合可赋予其抗感染能力[11-12]。
在分子生物学层面,许多生长因子如 FGF、IGF 和 VEGF,能够显著促进成骨和血管生成[13]。但只有 BMP 才能在促纤维化微环境中特异性诱导新生骨形成,因此 BMP 可用来研发具有强大骨诱导特性的生物材料[14]。Shen 等[15]以丝素蛋白(silk fibroin,SF)和纳米羟基磷灰石(nano hydroxyapatite,nHA)为支架,将 BMP-2 负载到 SF 微球中,然后将该微球包封于 SF/nHA 支架中,再通过物理吸附将 BMP-2 与基质细胞衍生因子 1(stromal-derived factor 1,SDF-1)功能化,构建了一种无细胞骨组织工程系统,能够以有序和可控的方式植入和释放细胞因子,以促进细胞募集和骨形成。Wang 等[16]在此基础上进一步添加了 VEGF,使其能够以极低剂量缓慢释放,以此构建了无细胞血管化骨组织工程系统,能够分别促进骨和血管生成,并成功修复了大鼠颅骨缺损。最近,Mahon 等[17]研发了一种 nHA 颗粒,其能够使巨噬细胞发生 M2 型极化,激活转录因子 cMaf 以特异性增强抗炎细胞因子 IL-10 的产生;他们以此纳米颗粒构建的功能化支架成功修复了大鼠股骨缺损。
在骨髓炎相关研究中,Min 等[18]制备了可降解的纳米层级生物膜并将其包裹在聚醚醚酮(poly-ether-ether-ketone,PEEK)植入物上,该生物膜涂层结构能够尽早释放涂层顶层中的抗生素,消除已形成的细菌生物膜,并在随后数周内持续释放抗生素至最低抑菌浓度以上,且底层的 BMP-2 涂层能够长期持续释放 BMP-2,从而达到治疗骨髓炎的目的。Li 等[19]利用碱热处理的质子化效应和聚多巴胺的氧化还原性质,在纳米钛表面构建了锶离子(Sr2+)和银离子(Ag+)双重负载纳米颗粒。由于不同负载机制,Sr2+ 和 Ag+ 释放相对独立,能够在纳米颗粒表面形成抑制细菌生长和促进巨噬细胞 M2 型极化的微环境,并于兔股骨骨髓炎模型中成功修复感染性骨缺损。
目前,将纳米材料负载细胞因子后加入复合材料支架中修复骨缺损,成为该领域主要研究方向,这些新型纳米生物材料在治疗感染性骨缺损方面具有非常广阔的应用前景。见表 1。
表 1.
Research on new nano biomaterials for repairing bone defects
新型纳米生物材料修复骨缺损的相关研究
纳米材料
Nanomaterial |
复合材料
Accessory material |
负载因子
Factor |
材料作用
Function |
参考文献
Reference |
nHA | SF,β-磷酸三钙,聚乳酸-
聚乙二醇,氧化石墨烯 |
BMP-2,SDF-1,VEGF | 促进细胞募集,促进血管和骨生成,促进巨噬细胞 M2 型极化,刺激抗炎细胞因子分泌 | [15-17, 20-23] |
纳米钛 | 无 | Sr2+,Ag+ | 抑制细菌生长,促进巨噬细胞 M2 型极化 | [19] |
纳米涂层 | PEEK | BMP-2,铜离子(Cu2+),Ag+ | 抑制细菌生长,促进成骨作用 | [18, 24] |
纳米磷酸钙 | 聚乙烯醇 | BMP-7,VEGF-A,纤维蛋白 | 促进成骨作用,加速新生骨生长,促进细胞黏附 | [25-26] |
2. 局部载药缓释系统的建立
骨髓炎传统治疗的“金标准”是坏死骨和周围感染组织扩大清创术,随后行数周抗生素全身治疗,且抗生素须长期维持较高浓度,不良反应发生率相应会大大增加[27-28]。然而,由于药物渗透性差、局部缺血和“髓-血”屏障存在等原因,导致抗生素在骨髓炎相关部位无法达到抗感染所需最低抑菌浓度[29]。此外,对耐药菌株而言,应用普通抗生素无法达到良好治疗效果,而强效抗生素则会产生更强的毒副作用,因此,给药途径选择成为治疗耐药菌株感染的关键[30]。
载药缓释系统作为局部给药的介质,能够在感染部位缓慢释放抗生素以达到持续最低抑菌浓度,并降低对非目标器官、组织及细胞的伤害,目前广泛应用于慢性骨髓炎的实验和临床治疗[31]。Wang 等[32]合成了一种新型二氧化硅微球/nHA/聚氨酯复合支架并加载左氧氟沙星,该新型纳米载药复合支架能够在骨髓炎局部提供持续有效的抗生素抑菌浓度,并能抑制兔胫骨慢性骨髓炎的发展。Krishnan 等[33]制备了左旋聚乳酸纤维增强的二氧化硅包覆 nHA 明胶复合支架,其具有可生物降解、机械强度高等优势,其涂层中释放的硅粒子能够增强血管与新生骨生成。他们在该支架中加入万古霉素(vancomycin,VCM)并用于治疗大鼠股骨骨髓炎,结果显示其能够有效控制感染并修复骨缺损;除构建载药支架外,他们也尝试将抗菌药物负载到纳米颗粒表面,借由纳米颗粒的独特性质将抗菌药物释放至感染区域。Saidykhan 等[34]以霰石为基础制备纳米颗粒,利用其良好的生物相容性和可降解性质将其作为载体,表面附着 VCM,用于治疗耐甲氧西林金黄色葡萄球菌(methicillin resistant Staphylococcus aureus,MRSA)引发的慢性骨髓炎取得良好效果。在另一项研究中,Tao 等[35]以季铵盐壳聚糖和羧化壳聚糖纳米颗粒为原料,通过正负电荷负载 VCM 形成 VCM 复合纳米颗粒,从而提高 VCM 的包封率和载药量,并在局部持续释放高浓度 VCM,以达到延缓兔胫骨骨髓炎进展的治疗目的。
近年来,在临床治疗骨髓炎过程中,使用何种植入物填充死骨去除后的空腔至关重要。目前广泛应用的植入物包括抗生素骨水泥、人工骨等,其中抗生素骨水泥最为常见。应用抗生素骨水泥除了能提高治疗效果、改善患者关节功能外,还能在很大程度上提高患者生活质量[36]。
为了增强骨水泥抗菌性能,Shen 等[37]以介孔二氧化硅纳米颗粒为药物载体结合聚甲基丙烯酸甲酯骨水泥,不仅能增强骨水泥抗菌性,骨水泥的力学特性也得到很好保留,具有制备强效抗菌骨水泥的巨大潜力。针对目前抗生素骨水泥药物释放效率低的问题,Shen 等[38]在聚甲基丙烯酸甲酯骨水泥中加入中空二氧化硅纳米管,形成抗生素纳米级释放网络,使抗生素释放率大大提高且抗压强度保持良好,为骨髓炎的治疗提供全新思路。
对于耐药菌株引发的骨髓炎,如何将药物有效传递至感染部位成为治疗关键[39-40]。Jiang 等[41]利用 nHA 微丸作为载体负载 VCM,局部注射治疗 MRSA 所致慢性骨髓炎,于兔胫骨骨髓炎模型中成功抑制病情进展并修复感染性骨缺损。Zhang 等[42]则设计了负载庆大霉素的 SF 银纳米粒子(silver nanoparticles,AgNPs)复合支架,该支架的三维结构使其具有良好生物相容性,能够在不影响细胞成骨能力前提下抑制 MRSA 生长,对慢性骨髓炎的治疗具有良好效果。而针对 MRSA 引发的晚期骨髓炎,Zhao 等[43]研发了聚乳酸(polylactic acid,PLA)和 nHA 复合支架并加入 VCM,其能够长期持续释放高浓度抗生素,粗糙的表面能够促进成骨细胞黏附和增殖,对晚期骨髓炎引发的严重感染和骨缺损有显著疗效。
目前,不可生物降解的材料搭载抗生素已用于临床治疗慢性骨髓炎,但这些材料需二次手术取出,增加患者痛苦和风险,而其早期产生的爆发性抗生素释放则会增加患者不良反应发生率[44-45]。因此,通过控制载药方式和释放动力建立局部载药缓释系统,优化纳米生物材料,使其抗菌和骨诱导功能最大化、细胞毒性最小化且能够生物降解,是目前重要研究方向。见表 2。
表 2.
Research on local drug delivery system for the treatment of osteomyelitis
局部载药缓释系统治疗骨髓炎的相关研究
3. 纳米材料的自身作用
纳米科技作为组织工程学极为重要的一部分,近年来发展迅速,创造出的纳米材料应用于各种生物医学领域,如药物输送、组织再生、抗菌抗炎、基因转染以及成像技术等[48-50]。纳米材料根据成分通常分为人工合成或自然形成,其本质上分为有机材料或无机材料,根据形状又可分为粒子、球体、管状和棒状等[51-52]。功能性纳米颗粒是指以一种纳米材料为核心,与抗体、荧光团等各种成分相结合,有助于生物成像、疾病诊断以及肿瘤治疗等[53-55]。近年来,越来越多研究表明纳米材料的自身作用同样重要,包括诱导细胞分化、调节细胞免疫等,而在骨髓炎治疗中,纳米材料的自身作用主要体现在促进 MSCs 成骨分化、抑制破骨细胞分化成熟和抗菌作用[56]。以下主要介绍纳米材料自身作用在骨髓炎治疗中的最新研究进展。
3.1. 纳米材料促进成骨分化作用
成骨细胞是由 MSCs 分化而来具有骨形成能力的细胞,主要负责骨基质的合成、分泌以及矿化。在骨髓炎病理过程中,新生骨形成对于骨缺损修补至关重要,但已有研究表明金黄色葡萄球菌能够感染成骨细胞,减弱细胞活力,抑制成骨分化,延迟骨愈合[57-58]。
纳米材料在骨再生治疗中有着广泛应用,已有研究证实[56]将生物活性分子与纳米材料复合可促进新生骨形成,但目前研究者们更关注纳米材料自身对成骨分化是否具有促进作用。Ko 等[59]研究发现 30 nm 和 50 nm 直径的球形金纳米粒子(gold nanoparticles,AuNPs)能够促进人脂肪干细胞成骨分化,而 15、75 和 100 nm 直径的 AuNPs 则对成骨分化无明显影响。基于此研究,Li 等[60]探讨了不同大小形态 AuNPs 对成骨分化的影响,他们合成了一系列直径分别为 40、70 和 110 nm 的球形、星形和棒状 AuNPs,并用牛血清白蛋白包被以增大其生物相容性。结果显示 40 nm 球形 AuNPs、70 nm 球形 AuNPs 和 70 nm 棒状 AuNPs 能显著提高细胞 ALP 活性和钙沉积,促进人 MSCs 成骨分化,而 40 nm 棒状 AuNPs 对成骨分化显示出抑制作用。同时,Li 等[61]进一步研究发现,直径<10 nm 的 AuNPs 能够抑制人 MSCs 成骨分化且促进成脂分化。另一方面,Zhang 等[62]发现 AgNPs 同样能促进 MSCs 成骨分化,并能通过诱导成纤维细胞迁移、促进 MSCs 增殖和激活 TGF-β/BMP 信号转导来修补骨缺损。
在关于无机非金属纳米粒子的研究中,Xu 等[63]以针状、棒状和片状 nHA 颗粒为材料,研究其促成骨分化效应。结果发现片状 nHA 颗粒独特的层次结构能够显著促进细胞内吞效率,并参与肌动蛋白细胞骨架调节,同时激活丝裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)信号通路,上调 MSCs 的成骨分化。Elkhenany 等[64]制作了低氧功能化石墨烯纳米颗粒,其含氧量(4.5%)较普通石墨烯(2.5%)高,但低于氧化石墨烯(31%);研究发现其与 MSCs 结合后能够促进成骨分化,改善大鼠胫骨骨缺损的修复。因此,越来越多研究者利用纳米材料促进成骨分化作用制作相应载药支架,用于治疗骨髓炎等骨缺损相关疾病。Hassani Besheli 等[65]将 VCM 与 SF 纳米颗粒相结合,并植入大鼠胫骨以治疗骨髓炎,结果显示 SF 纳米颗粒承载 VCM 能够显著抑制大鼠胫骨骨缺损部位感染,并修复骨缺损区域。以上研究表明,能够促成骨分化的纳米颗粒在骨髓炎治疗中具有巨大应用潜力。
3.2. 纳米材料抑制破骨分化作用
破骨细胞又称为骨吸收细胞,起源于单核-巨噬细胞系统,在骨生长发育、修复重建中具有重要作用。骨形成与吸收为动态平衡,受多种因素调节,一旦稳态失衡则会引发多种疾病。已有研究报道,金黄色葡萄球菌能够感染破骨细胞并在细胞内复制,从而逃避感染最初的免疫调节,并加重感染部位骨缺损,促进骨髓炎病情进展[66]。
近年来,虽然许多纳米材料被用来制作局部载药缓释支架用于骨髓炎治疗,但应用抗生素对抗细菌感染的同时,抑制破骨分化延缓局部骨缺损对骨髓炎患者预后同样重要。因此,大量研究致力于开发新一代纳米材料来抑制骨吸收。Sul 等[67]研究表明 AuNPs 能够减弱 NF-κB 的激活,同时降低 NF-κB 受体活化因子配体(receptor activator of nuclear factor kappa B ligand,RANKL)所诱导的活性氧(reactive oxygen species,ROS)产生并上调谷胱甘肽过氧化物酶 1(glutathione peroxidase 1,Gpx-1),从而抑制破骨细胞分化。同样,Zeng 等[68]研究发现,AuNPs 能够抑制 RANKL 诱导的破骨细胞分化,并且能够抑制巨噬细胞集落刺激因子诱导的破骨前体细胞融合。此外,Bai 等[69]的研究也证实,AuNPs 能够通过调节破骨细胞的酸性微环境来抑制破骨细胞活性,修复骨缺损。在非金属纳米材料方面,Geng 等[70]发现富勒烯醇纳米颗粒同样能够抑制 RANKL 的激活,并通过巨噬细胞集落刺激因子和 MAPK 信号通路呈剂量依赖性抑制破骨细胞的迁移与分化。Ha 等[71]在研究中发现,虽然二氧化硅纳米颗粒能够抑制破骨细胞转录调节因子 NFATC1 进而抑制破骨细胞分化,但其表面电荷却是影响破骨细胞生物活性的重要因素,其中表面带有负电荷的二氧化硅纳米颗粒对破骨细胞活性的抑制作用最大。
在对纳米颗粒表面结构的研究中,Chen 等[72]研究发现,nHA 颗粒致密的表面层级结构能够抑制破骨细胞的形成和功能,nHA 颗粒被破骨细胞吸收后能够减少肌动蛋白形成,减弱细胞融合且增加细胞凋亡。Cicuéndez 等[73]制备了包裹茶多酚的多孔二氧化硅纳米微球,并与海藻酸钠凝胶结合,其能够中和细菌感染引起的酸性环境,同时抵抗氧化应激;在负承载抗生素前提下,其能够在细菌感染部位修复骨缺损,在骨髓炎治疗方面极具应用潜力。因此,利用自身能够抑制破骨分化的纳米材料作为局部载药支架并应用于骨髓炎的治疗,将是未来重要研究方向。
3.3. 纳米材料的抗菌作用
细菌感染是骨髓炎的直接病因,也是骨髓炎迁延不愈的最重要因素。因此,部分纳米材料凭借其抗菌特性不仅能够成为药物载体,还能够辅助抗生素加强对耐药菌的杀灭作用,成为近年来研究者们关注的焦点。Penders 等[74]研究表明,直径为 21 nm 的不同形状 AuNPs 均对金黄色葡萄球菌呈剂量依赖性杀灭作用,尤其是星形和花状作用更显著,并对哺乳动物的重要脏器(肝脏和肾脏)无明显毒副作用。而另一些研究则表明,AuNPs 对不同细菌的抗菌机制不同,例如在金黄色葡萄球菌中,AuNPs 通过增加细菌内部 ROS 产生并抑制 DNA 转录来杀灭细菌[75-76];在大肠杆菌中,AuNPs 能够诱导囊泡形成,并与 DNA 结合抑制转录来抵抗细菌感染[76-77];在肺炎链球菌中,AuNPs 在细菌内部形成包涵体破坏生物膜来发挥抗菌作用[78]。此外,AuNPs 能够与抗生素发挥协同作用,Lee 等[79]研究发现 AuNPs 引起细胞内二价阳离子稳态崩溃,抗生素诱导细胞内 ROS 的累积,二者协同作用导致沙门氏菌细胞凋亡样死亡。
与 AuNPs 相似,AgNPs 同样具有抗菌作用,并已作为辅助材料应用于临床。在 Aurore 等[80]的研究中,AgNPs 能够在破骨细胞中诱导 ROS 产生并杀灭细胞内细菌。基于此研究,Nandi 等[81]于 3 mm 不锈钢针表面附着不同剂量 AgNPs,分别植入兔胫骨骨髓炎处观察治疗效果,结果显示镀银不锈钢针尤其是高剂量 AgNPs 组能够明显控制感染蔓延,有效治疗骨髓炎。
在无机非金属和聚合纳米颗粒研究中,Huang 等[82]制备了直径 43~205 nm 的球形硒纳米粒子(selenium nanoparticles,SeNPs),并研究其耐药菌株的抗菌能力,其中 81 nm SeNPs 对 MRSA 生长抑制和杀灭作用最强。研究发现 SeNPs 能够通过降低三磷酸腺苷浓度、提高 ROS 浓度及破坏细菌膜电位抑制细菌生长,发挥抗菌作用。而在另一项研究中,Qadri 等[83]合成了银铜硼复合纳米粒子并用于治疗小鼠骨髓炎,结果显示当剂量为 1 mg/kg 时,无论是静脉推注还是肌肉注射,该复合纳米粒子均表现出良好的抗菌效应且无不良免疫反应。最近,Seo 等[84]研发了一种纳米玻璃凝胶,由 200 nm 大小硅酸盐玻璃(含 Ca2+、Cu2+)颗粒制成,其与水接触后硬化。研究发现该凝胶能够持续释放多种离子(硅酸盐、Ca2+ 和 Cu2+),刺激 MSCs 成骨分化,促进体内血管生成,且对大肠埃希菌和金黄色葡萄球菌有显著杀菌效果;该纳米玻璃凝胶能够增强局部骨愈合和抗骨折能力,有效治疗大鼠胫骨骨髓炎。
综上,纳米材料的自身作用越来越受到研究者们关注,研发新型抗菌纳米材料无论是作为药物载体还是替代抗生素以规避耐药风险,都将为骨髓炎的临床治疗提供全新思路。见表 3。
表 3.
Research on the function of nanomaterials
纳米材料自身作用的相关研究
纳米材料
Nanomaterial |
材料作用
Function |
作用机制
Mechanism of action |
参考文献
Reference |
AuNPs | 促进成骨分化,抑制破骨分化,抗菌 | 提高细胞 ALP 活性和钙沉积,降低 ROS 产生,上调 Gpx-1,
刺激巨噬细胞 M2 型极化,抑制细菌 DNA 转录 |
[60-61, 67-69, 74-78, 85] |
AgNPs | 促进成骨分化,抗菌 | 诱导成纤维细胞迁移,激活 TGF-β/BMP 信号转导,诱导
ROS 产生 |
[62, 80-81, 86] |
nHA | 促进成骨分化,抑制破骨分化,抗菌 | 激活 MAPK 信号通路,减少肌动蛋白形成,诱导细菌
DNA 断裂 |
[63, 72, 87] |
SeNPs | 促进成骨分化,抗菌 | 激活 JNK/FOXO3 途径,降低三磷酸腺苷浓度,提高 ROS 浓度,破坏细菌膜电位 | [81, 88-89] |
4. 总结与展望
目前关于骨髓炎的研究较为广泛,包括病理过程、抗菌机制等,但治疗方法却相对单一,组织工程学的应用为其治疗提供了新思路。无论是传统材料还是新型材料,都可作为药物载体用于骨髓炎的治疗。与传统材料相比,纳米材料具有更高生物相容性、更强药物吸附性以及可降解吸收无需二次手术等优点,成为研究热点。近年来,针对纳米材料应用于骨髓炎的治疗,相较于填充骨缺损和建立载药系统,研究更关注于纳米材料自身特性。虽然利用其自身特性能够更稳妥地应用于骨髓炎治疗,但合成条件、形态大小等诸多因素都会对其自身作用造成影响。另一方面,除上述特性外,具有其他特性的纳米材料仍可用于骨髓炎治疗,如 AuNPs 能够诱导巨噬细胞 M2 型极化调节机体免疫等[90]。由此可见,研究纳米材料的自身特性,并选择有益于治疗的材料作为药物载体或替代抗菌药物治疗骨髓炎,将成为未来重要研究方向。
作者贡献:王珮琳负责文献检索及文章撰写;林浩东负责文章审核。
利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。
References
- 1.Cortés-Penfield NW, Kulkarni PA. The history of antibiotic treatment of osteomyelitis. Open Forum Infect Dis, 2019, 6(5): ofz181. doi: 10.1093/ofid/ofz181.
- 2.Schmitt SK Osteomyelitis. Infect Dis Clin North Am. 2017;31(2):325–338. doi: 10.1016/j.idc.2017.01.010. [DOI] [PubMed] [Google Scholar]
- 3.Kavanagh N, Ryan EJ, Widaa A, et al. Staphylococcal osteomyelitis: Disease progression, treatment challenges, and future directions. Clin Microbiol Rev, 2018, 31(2): e00084-17. doi: 10.1128/CMR.00084-17.
- 4.Li A, Xie J, Li J Recent advances in functional nanostructured materials for bone-related diseases. J Mater Chem B. 2019;7(4):509–527. doi: 10.1039/C8TB02812E. [DOI] [PubMed] [Google Scholar]
- 5.Loh KP, Ho D, Chiu GNC, et al. Clinical applications of carbon nanomaterials in diagnostics and therapy. Adv Mater, 2018, 30(47): e1802368. doi: 10.1002/adma.201802368.
- 6.Pirzada M, Altintas Z. Nanomaterials for healthcare biosensing applications. Sensors (Basel), 2019, 19(23): 5311. doi: 10.3390/s19235311.
- 7.Venugopal J, Prabhakaran MP, Low S, et al Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des. 2008;14(22):2184–2200. doi: 10.2174/138161208785740180. [DOI] [PubMed] [Google Scholar]
- 8.Curtis A, Wilkinson C Nantotechniques and approaches in biotechnology. Trends Biotechnol. 2001;19(3):97–101. doi: 10.1016/S0167-7799(00)01536-5. [DOI] [PubMed] [Google Scholar]
- 9.Nauth A, Schemitsch E, Norris B, et al Critical-size bone defects: Is there a consensus for diagnosis and treatment? J Orthop Trauma. 2018;32 Suppl 1:S7–S11. doi: 10.1097/BOT.0000000000001115. [DOI] [PubMed] [Google Scholar]
- 10.Lu H, Liu Y, Guo J, et al. Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci, 2016, 17(3): 334. doi: 10.3390/ijms17030334.
- 11.Franci G, Falanga A, Galdiero S, et al Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856–8874. doi: 10.3390/molecules20058856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Tan H, Ma R, Lin C, et al Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci. 2013;14(1):1854–1869. doi: 10.3390/ijms14011854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Herath TDK, Larbi A, Teoh SH, et al Neutrophil-mediated enhancement of angiogenesis and osteogenesis in a novel triple cell co-culture model with endothelial cells and osteoblasts. J Tissue Eng Regen Med. 2018;12(2):e1221–e1236. doi: 10.1002/term.2521. [DOI] [PubMed] [Google Scholar]
- 14.Wang J, Guo J, Liu J, et al BMP-functionalised coatings to promote osteogenesis for orthopaedic implants. Int J Mol Sci. 2014;15(6):10150–10168. doi: 10.3390/ijms150610150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Shen X, Zhang Y, Gu Y, et al Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials. 2016;106:205–216. doi: 10.1016/j.biomaterials.2016.08.023. [DOI] [PubMed] [Google Scholar]
- 16.Wang Q, Zhang Y, Li B, et al Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B. 2017;5(33):6963–6972. doi: 10.1039/C7TB00949F. [DOI] [PubMed] [Google Scholar]
- 17.Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239: 119833. doi: 10.1016/j.biomaterials.2020.119833.
- 18.Min J, Choi KY, Dreaden EC, et al Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano. 2016;10(4):4441–4450. doi: 10.1021/acsnano.6b00087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Li D, Li Y, Shrestha A, et al. Effects of programmed local delivery from a micro/nano-hierarchical surface on titanium implant on infection clearance and osteogenic induction in an infected bone defect. Adv Healthc Mater, 2019, 8(11): e1900002. doi: 10.1002/adhm.201900002.
- 20.Kubasiewicz-Ross P, Hadzik J, Seeliger J, et al New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat. 2017;213:83–90. doi: 10.1016/j.aanat.2017.05.010. [DOI] [PubMed] [Google Scholar]
- 21.da Silva Brum I, Frigo L, Lana Devita R, et al. Histomorphometric, immunohistochemical, ultrastructural characterization of a nano-hydroxyapatite/beta-tricalcium phosphate composite and a bone xenograft in sub-critical size bone defect in rat calvaria. Materials (Basel), 2020, 13(20): 4598. doi: 10.3390/ma13204598.
- 22.Bal Z, Korkusuz F, Ishiguro H, et al. A novel nano-hydroxyapatite/synthetic polymer/bone morphogenetic protein-2 composite for efficient bone regeneration. Spine J, 2021. doi: 10.1016/j.spinee.2021.01.019.
- 23.Zhou K, Yu P, Shi X, et al Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano. 2019;13(8):9595–9606. doi: 10.1021/acsnano.9b04723. [DOI] [PubMed] [Google Scholar]
- 24.Yan J, Xia D, Zhou W, et al pH-responsive silk fibroin-based CuO/Ag micro/nano coating endows polyetheretherketone with synergistic antibacterial ability, osteogenesis, and angiogenesis. Acta Biomater. 2020;115:220–234. doi: 10.1016/j.actbio.2020.07.062. [DOI] [PubMed] [Google Scholar]
- 25.Schlickewei C, Klatte TO, Wildermuth Y, et al. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. J Mater Sci Mater Med, 2019, 30(2): 15. doi: 10.1007/s10856-019-6217-y.
- 26.Song Y, Lin K, He S, et al Nano-biphasic calcium phosphate/polyvinyl alcohol composites with enhanced bioactivity for bone repair via low-temperature three-dimensional printing and loading with platelet-rich fibrin. Int J Nanomedicine. 2018;13:505–523. doi: 10.2147/IJN.S152105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Thabit AK, Fatani DF, Bamakhrama MS, et al Antibiotic penetration into bone and joints: An updated review. Int J Infect Dis. 2019;81:128–136. doi: 10.1016/j.ijid.2019.02.005. [DOI] [PubMed] [Google Scholar]
- 28.Masters EA, Trombetta RP, de Mesy Bentley KL, et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy”. Bone Res, 2019, 7: 20. doi: 10.1038/s41413-019-0061-z.
- 29.Bidault P, Chandad F, Grenier D Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J Can Dent Assoc. 2007;73(8):721–725. [PubMed] [Google Scholar]
- 30.Nandi SK, Mukherjee P, Roy S, et al Local antibiotic delivery systems for the treatment of osteomyelitis—A review. Materials Science and Engineering: C. 2009;29(8):2478–2485. doi: 10.1016/j.msec.2009.07.014. [DOI] [Google Scholar]
- 31.Nandi SK, Bandyopadhyay S, Das P, et al Understanding osteomyelitis and its treatment through local drug delivery system. Biotechnol Adv. 2016;34(8):1305–1317. doi: 10.1016/j.biotechadv.2016.09.005. [DOI] [PubMed] [Google Scholar]
- 32.Wang Q, Chen C, Liu W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep, 2017, 7: 41808. doi: 10.1038/srep41808.
- 33.Krishnan AG, Biswas R, Menon D, et al Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci. 2020;8(9):2653–2665. doi: 10.1039/D0BM00140F. [DOI] [PubMed] [Google Scholar]
- 34.Saidykhan L, Abu Bakar MZ, Rukayadi Y, et al Development of nanoantibiotic delivery system using cockle shell-derived aragonite nanoparticles for treatment of osteomyelitis. Int J Nanomedicine. 2016;11:661–673. doi: 10.2147/IJN.S95885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Tao J, Zhang Y, Shen A, et al Injectable chitosan-based thermosensitive hydrogel/nanoparticle-loaded system for local delivery of vancomycin in the treatment of osteomyelitis. Int J Nanomedicine. 2020;15:5855–5871. doi: 10.2147/IJN.S247088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Al Thaher Y, Perni S, Prokopovich P Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv Colloid Interface Sci. 2017;249:234–247. doi: 10.1016/j.cis.2017.04.017. [DOI] [PubMed] [Google Scholar]
- 37.Shen SC, Ng WK, Dong YC, et al Nanostructured material formulated acrylic bone cements with enhanced drug release. Mater Sci Eng C Mater Biol Appl. 2016;58:233–241. doi: 10.1016/j.msec.2015.08.011. [DOI] [PubMed] [Google Scholar]
- 38.Shen SC, Letchmanan K, Chow PS, et al Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements . J Mech Behav Biomed Mater. 2019;91:91–98. doi: 10.1016/j.jmbbm.2018.11.020. [DOI] [PubMed] [Google Scholar]
- 39.David MZ, Daum RS Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic . Clin Microbiol Rev. 2010;23(3):616–687. doi: 10.1128/CMR.00081-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Guo Y, Song G, Sun M, et al. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol, 2020, 10: 107. doi: 10.3389/fcimb.2020.00107.
- 41.Jiang JL, Li YF, Fang TL, et al Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm Res. 2012;61(3):207–215. doi: 10.1007/s00011-011-0402-x. [DOI] [PubMed] [Google Scholar]
- 42.Zhang P, Qin J, Zhang B, et al Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci. 2019;6(5):182102. doi: 10.1098/rsos.182102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Zhao X, Han Y, Zhu T, et al Electrospun polylactide-nano-hydroxyapatite vancomycin composite scaffolds for advanced osteomyelitis therapy. J Biomed Nanotechnol. 2019;15(6):1213–1222. doi: 10.1166/jbn.2019.2773. [DOI] [PubMed] [Google Scholar]
- 44.Meng E, Hoang T Micro- and nano-fabricated implantable drug-delivery systems. Ther Deliv. 2012;3(12):1457–1467. doi: 10.4155/tde.12.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.van Vugt TAG, Walraven JMB, Geurts JAP, et al Antibiotic-loaded collagen sponges in clinical treatment of chronic osteomyelitis: A systematic review. J Bone Joint Surg (Am) 2018;100(24):2153–2161. doi: 10.2106/JBJS.17.01140. [DOI] [PubMed] [Google Scholar]
- 46.Stoian AB, Demetrescu I, Ionita D. Nanotubes and nano pores with chitosan construct on TiZr serving as drug reservoir. Colloids Surf B Biointerfaces, 2020, 185: 110535. doi: 10.1016/j.colsurfb.2019.110535.
- 47.Hasan A, Waibhaw G, Saxena V, et al Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018;111:923–934. doi: 10.1016/j.ijbiomac.2018.01.089. [DOI] [PubMed] [Google Scholar]
- 48.Balasundaram G, Webster TJ Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine (Lond) 2006;1(2):169–176. doi: 10.2217/17435889.1.2.169. [DOI] [PubMed] [Google Scholar]
- 49.Filippi M, Born G, Felder-Flesch D, et al Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol. 2020;35(4):331–350. doi: 10.14670/HH-18-184. [DOI] [PubMed] [Google Scholar]
- 50.Min KH, Lee HJ, Lee SC, et al Biomineralized hybrid nanoparticles for imaging and therapy of cancers. Quant Imaging Med Surg. 2018;8(7):694–708. doi: 10.21037/qims.2018.08.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Veerapandian M, Yun K Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol. 2011;90(5):1655–1667. doi: 10.1007/s00253-011-3291-6. [DOI] [PubMed] [Google Scholar]
- 52.Liu L, Xu K, Wang H, et al Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4(7):457–463. doi: 10.1038/nnano.2009.153. [DOI] [PubMed] [Google Scholar]
- 53.Su YL, Hu SH. Functional nanoparticles for tumor penetration of therapeutics. Pharmaceutics, 2018, 10(4): 193. doi: 10.3390/pharmaceutics10040193.
- 54.Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(1): e1515. doi: 10.1002/wnan.1515.
- 55.Peng J, Yang Q, Shi K, et al Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications on cancer diagnosis and therapy. Adv Drug Deliv Rev. 2019;143:37–67. doi: 10.1016/j.addr.2019.06.007. [DOI] [PubMed] [Google Scholar]
- 56.Tautzenberger A, Kovtun A, Ignatius A Nanoparticles and their potential for application in bone. Int J Nanomedicine. 2012;7:4545–4557. doi: 10.2147/IJN.S34127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Sanchez CJ, Ward CL, Romano DR, et al. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord, 2013, 14: 187. doi: 10.1186/1471-2474-14-187.
- 58.Josse J, Velard F, Gangloff SC. Staphylococcus aureus vs. osteoblast: Relationship and consequences in osteomyelitis. Front Cell Infect Microbiol, 2015, 5: 85. doi: 10.3389/fcimb.2015.00085.
- 59.Ko WK, Heo DN, Moon HJ, et al The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76. doi: 10.1016/j.jcis.2014.08.058. [DOI] [PubMed] [Google Scholar]
- 60.Li J, Li JJ, Zhang J, et al Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016;8(15):7992–8007. doi: 10.1039/C5NR08808A. [DOI] [PubMed] [Google Scholar]
- 61.Li J, Chen Y, Yang Y, et al Sub-10 nm gold nanoparticles promote adipogenesis and inhibit osteogenesis of mesenchymal stem cells. J Mater Chem B. 2017;5(7):1353–1362. doi: 10.1039/C6TB03276A. [DOI] [PubMed] [Google Scholar]
- 62.Zhang R, Lee P, Lui VC, et al Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015;11(8):1949–1959. doi: 10.1016/j.nano.2015.07.016. [DOI] [PubMed] [Google Scholar]
- 63.Xu D, Wan Y, Li Z, et al Tailorable hierarchical structures of biomimetic hydroxyapatite micro/nano particles promoting endocytosis and osteogenic differentiation of stem cells. Biomater Sci. 2020;8(12):3286–3300. doi: 10.1039/D0BM00443J. [DOI] [PubMed] [Google Scholar]
- 64.Elkhenany H, Bourdo S, Hecht S, et al Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine. 2017;13(7):2117–2126. doi: 10.1016/j.nano.2017.05.009. [DOI] [PubMed] [Google Scholar]
- 65.Hassani Besheli N, Mottaghitalab F, Eslami M, et al Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces. 2017;9(6):5128–5138. doi: 10.1021/acsami.6b14912. [DOI] [PubMed] [Google Scholar]
- 66.Krauss JL, Roper PM, Ballard A, et al Staphylococcus aureus infects osteoclasts and replicates intracellularly . mBio. 2019;10(5):e02447–2419. doi: 10.1128/mBio.02447-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Sul OJ, Kim JC, Kyung TW, et al Gold nanoparticles inhibited the receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem. 2010;74(11):2209–2213. doi: 10.1271/bbb.100375. [DOI] [PubMed] [Google Scholar]
- 68.Zeng L, Geng H, Gu W, et al Au Nanoparticles attenuate rankl-induced osteoclastogenesis by suppressing pre-osteoclast fusion. J Nanosci Nanotechnol. 2019;19(4):2166–2173. doi: 10.1166/jnn.2019.15764. [DOI] [PubMed] [Google Scholar]
- 69.Bai X, Gao Y, Zhang M, et al Carboxylated gold nanoparticles inhibit bone erosion by disturbing the acidification of an osteoclast absorption microenvironment. Nanoscale. 2020;12(6):3871–3878. doi: 10.1039/C9NR09698A. [DOI] [PubMed] [Google Scholar]
- 70.Geng H, Chang YN, Bai X, et al Fullerenol nanoparticles suppress RANKL-induced osteoclastogenesis by inhibiting differentiation and maturation. Nanoscale. 2017;9(34):12516–12523. doi: 10.1039/C7NR04365A. [DOI] [PubMed] [Google Scholar]
- 71.Ha SW, Viggeswarapu M, Habib MM, et al Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater. 2018;82:184–196. doi: 10.1016/j.actbio.2018.10.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Chen F, Wang M, Wang J, et al Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J Mater Chem B. 2019;7(47):7574–7587. doi: 10.1039/C9TB01204D. [DOI] [PubMed] [Google Scholar]
- 73.Cicuéndez M, Doadrio JC, Hernández A, et al Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomater. 2018;65:450–461. doi: 10.1016/j.actbio.2017.11.009. [DOI] [PubMed] [Google Scholar]
- 74.Penders J, Stolzoff M, Hickey DJ, et al Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomedicine. 2017;12:2457–2468. doi: 10.2147/IJN.S124442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Zheng K, Setyawati MI, Leong DT, et al Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–6910. doi: 10.1021/acsnano.7b02035. [DOI] [PubMed] [Google Scholar]
- 76.Rai A, Prabhune A, Perry C Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20:6789–6798. doi: 10.1039/c0jm00817f. [DOI] [Google Scholar]
- 77.Badwaik VD, Vangala LM, Pender DS, et al Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Res Lett. 2012;7(1):623. doi: 10.1186/1556-276x-7-623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Ortiz-Benítez EA, Velázquez-Guadarrama N, Durán Figueroa NV, et al Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics. 2019;11(7):1265–1276. doi: 10.1039/C9MT00084D. [DOI] [PubMed] [Google Scholar]
- 79.Lee B, Lee DG Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. J Appl Microbiol. 2019;127(3):701–712. doi: 10.1111/jam.14357. [DOI] [PubMed] [Google Scholar]
- 80.Aurore V, Caldana F, Blanchard M, et al Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine. 2018;14(2):601–607. doi: 10.1016/j.nano.2017.11.006. [DOI] [PubMed] [Google Scholar]
- 81.Nandi SK, Shivaram A, Bose S, et al Silver nanoparticle deposited implants to treat osteomyelitis. J Biomed Mater Res B Appl Biomater. 2018;106(3):1073–1083. doi: 10.1002/jbm.b.33910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Huang T, Holden JA, Heath DE, et al Engineering highly effective antimicrobial selenium nanoparticles through control of particle size. Nanoscale. 2019;11(31):14937–14951. doi: 10.1039/C9NR04424H. [DOI] [PubMed] [Google Scholar]
- 83.Qadri S, Haik Y, Mensah-Brown E, et al Metallic nanoparticles to eradicate bacterial bone infection. Nanomedicine. 2017;13(7):2241–2250. doi: 10.1016/j.nano.2017.05.013. [DOI] [PubMed] [Google Scholar]
- 84.Seo JJ, Mandakhbayar N, Kang MS, et al. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials, 2021, 268: 120593. doi: 10.1016/j.biomaterials.2020.120593.
- 85.Boomi P, Ganesan R, Prabu Poorani G, et al Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions . Int J Nanomedicine. 2020;15:7553–7568. doi: 10.2147/IJN.S257499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Kakar J. Multimodality treatment for nonhealing wound with osteomyelitis in sickle cell disease. Int J Low Extrem Wounds, 2020. doi: 10.1177/1534734620971068.
- 87.Baskar K, Anusuya T, Devanand Venkatasubbu G Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens. Mater Sci Eng C Mater Biol Appl. 2017;73:8–14. doi: 10.1016/j.msec.2016.12.060. [DOI] [PubMed] [Google Scholar]
- 88.Fatima S, Alfrayh R, Alrashed M, et al Selenium nanoparticles by moderating oxidative stress promote differentiation of mesenchymal stem cells to osteoblasts. Int J Nanomedicine. 2021;16:331–343. doi: 10.2147/IJN.S285233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Yazhiniprabha M, Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109763. doi: 10.1016/j.msec.2019.109763.
- 90.Ni C, Zhou J, Kong N, et al Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials. 2019;206:115–132. doi: 10.1016/j.biomaterials.2019.03.039. [DOI] [PubMed] [Google Scholar]