Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2020 Jul;34(7):927–931. [Article in Chinese] doi: 10.7507/1002-1892.201907017

术前 CT 血管造影在腹壁下动脉穿支皮瓣乳房再造的应用现状和展望

Application and prospect of preoperative computed tomographic angiography in deep inferior epigastric artery perforator flap for breast reconstruction

文 彭 1, 春柳 吕 1, 波 周 1, 达疆 宋 1, 赞 李 1,*
PMCID: PMC8180424  PMID: 32666740

Abstract

目的

总结 CT 血管造影(computed tomographic angiography,CTA)在腹壁下动脉穿支(deep inferior epigastric artery perforator,DIEP)皮瓣乳房再造中的应用进展,并简要分析其应用前景。

方法

查阅近年来国内外有关 CTA 在 DIEP 皮瓣乳房再造中应用的相关文献,并进行分析和总结。

结果

术前 CTA 对胸腹壁的血管解剖结构可进行精确评估,在腹部供区可精确定位穿支,识别优势穿支;在胸部受区可指导探查胸廓内动脉肋间隙以及胸廓内动脉穿支分支的选择;参照对侧乳房大小进行腹部皮瓣容积重建,精确预构腹部皮瓣的大小,对手术方案的制定以及手术安全性的提高均有着至关重要的作用。

结论

术前 CTA 在 DIEP 皮瓣乳房再造领域的供区穿支定位、受区血管选择以及乳房容积评估方面具有巨大的应用潜力。

Keywords: CT 血管造影, 乳房再造, 腹壁下动脉穿支皮瓣, 自体组织移植


运用腹部穿支皮瓣进行乳房再造,已成为乳腺重建整形外科的标准术式。Koshima 等[1-2]分别于 1991 年、1992 年首次报道采用不带腹直肌的腹部穿支皮瓣修复头面部和下肢缺损;Allen 等[3]于 1994 年首次报道应用该皮瓣再造乳房,并获得满意效果。腹壁下动脉穿支(deep inferior epigastric artery perforator,DIEP)皮瓣已成为自体乳房再造的金标准[4-5]。从手术角度看,DIEP 皮瓣乳房再造的关键点是在术前定位和选择一个最佳穿支作为皮瓣的血管蒂。选择最佳穿支需考虑穿支血管的大小、位置(靠近中线和肚脐)、腹直肌内走行、分支模式和血管蒂长度等多个因素,使得术前设计难以标准化[6]

穿支动脉有多种解剖分型,在没有术前图像引导情况下,解剖穿支耗时且损伤风险增加[7-8]。对于腹壁下动脉的穿支血管定位,CT 血管造影(computed tomographic angiography,CTA)已被证明是最精确的成像工具。CTA 最初由 Cornelius 提出,Voigt 等[9]于 1975 年进行了改良。Minqiang 等[6]和 Rozen 等[10]研究表明,与超声多普勒相比,CTA 的准确性更高。CTA 可显示直径 0.3 mm 的血管,并可精确定位穿支和再现血管在肌内及软组织内的走行。在 DIEP 皮瓣乳房再造术前使用 CTA,可以详细且较为精确地描绘 DIEP 位置[11],对乳房再造手术有很好的指导作用[12-14]。术前 CTA 的应用可缩短手术时间,进而提高手术效率和降低手术相关并发症的发生。CTA 除了可用于评估皮瓣供区,还可以评估受区血管情况和镜像重建患者乳房形态[15-16]。本文就 CTA 在 DIEP 皮瓣乳房再造中的应用情况综述如下。

1. CTA 用于腹部供区穿支定位

腹壁下动脉起源于髂外动脉,在腹膜外面向近端中线方向走行,到达腹直肌外侧缘喉,于弓状线以远 3~4 cm 平面穿过腹横筋膜,血管在腹直肌后方表面穿过腹直肌。动脉血管蒂有几种分支模式,以不同形式与腹壁上动脉和肋间动脉吻合[17-18]。解剖腹壁穿支是自体腹部组织移植中最耗时和费力的一部分。对于 DIEP 皮瓣,术前确定腹壁穿支的精确解剖结构是一种有效辅助手段[10]。了解患者腹部血管系统的解剖结构,可以帮助确定由于手术史、创伤或结构变异导致的瘢痕形成引起的解剖学差异[19]。术前 CTA 可以精确展示穿支的肌内行程,还可以识别相邻穿支之间的潜在连接,有助于在手术前确定最佳穿支[20-21]。CTA 数据还有助于判断并确定内侧排与外侧排穿支,这对于选择作为皮瓣血供来源的血管蒂是很重要的,因为主干分支之间的肌内走行和腹部组织的灌注压力都存在差异。充分了解穿支血管蒂与周围组织的解剖关系,可以减少手术时间和降低难度,从而降低手术风险和并发症的发生[10, 22]

2. CTA 用于受区血管的选择

在 20 世纪 90 年代,DIEP 皮瓣乳房再造首选胸背动脉及其分支作为受区血管,但随着外科技术的发展,目前胸廓内动脉(internal mammary artery,IMA)已成为自体组织乳房再造的标准受区血管。此外,许多外科医生在寻找 IMA 时,已经从离断部分肋软骨完全暴露 IMA 转变为保留肋骨的方法。在即刻乳房再造中,使用 IMA 穿支分支(IMA perforator,IMAP)作为 DIEP 皮瓣和腹壁浅动脉穿支(superficial inferior epigastric artery,SIEA)皮瓣的受区血管在技术上可行[23-24]。在 DIEP 皮瓣乳房再造的报道中,9%~39% 患者的受区血管使用 IMAP[25-26]。使用 IMAP 作为受区血管,可以尽可能缩短 DIEP 皮瓣或 SIEA 皮瓣的血管蒂,减少供区的解剖进而缩短手术时间。

为了确定 IMAP 能否作为受区血管,手术前可用胸部和腹部 CTA 评估 DIEP 皮瓣穿支和受区 IMAP 的情况。术前 CTA 检查通常重点关注第 2 肋间隙和第 3 肋间隙[11],评估每个肋间隙的宽度和深度,详细显示 IMA 和伴行静脉的管径大小,以及 IMAP 在每个肋间隙的数目、大小和走行信息,有助于术前确定选择哪个肋间隙探查穿支[27]。通常选择具有粗大的 IMAP 和较宽的肋间隙探查受区血管,术前充分评估选定的肋间隙中 IMAP 与血管蒂的匹配程度和吻合难度,以及肋骨是否有离断的必要性。IMAP 直径是血管吻合的一个重要参数,与血管蒂直径匹配的血管吻合更容易且更安全[28],还可使皮瓣设计和切取更简便[29]。如果术前 CTA 显示 IMAP 直径较小甚至无 IMAP,或者其位置限制皮瓣的吻合和摆放,则可放弃术中解剖 IMAP 并直接离断部分肋骨暴露 IMA。胸部 CTA 提高了外科医生对 IMAP 的认识,并促进了将 IMAP 用作自体组织乳房再造受区血管。Fansa 等[30]报道约 45% 的即刻乳房再造和约 10% 的二期乳房再造中,使用 IMAP 作为受区血管。虽然 CTA 用于受区血管的选择可简化手术流程,显著提升手术效率,但其缺陷也需要重点关注。如果 CTA 用于腹部和胸部成像,则患者的辐射剂量增加了 1 倍。同时,还有造影剂的肾毒性、造影剂过敏等问题。更重要的是,由于 IMAP 的直径比 IMA 小,需采用更精细的缝合线进行更高倍率的吻合,吻合术的难度更大。

3. 术前 CTA 辅助乳房再造评估设计

乳房再造的美学效果取决于对侧乳房的基底部大小和凸度[31]。通过准确的术前测量和设计,可以优化乳房的大小、形状和投影的对称性[32]。CTA 用于腹部皮瓣乳房再造可优化术前设计[29],已成为乳房再造常规的辅助方法。

患者在乳房再造术前进行 CTA 扫描,根据腹部血管的大小、位置和肌内走行确定最合适的穿支。然后采用图像后处理技术将腹部二维图像重建成三维立体图像。患者取坐位,术前测量对侧乳房的横径、乳房凸度、下皱襞长度以及乳头至下皱襞的距离,按照 Boorman 的方法来预估乳房体积。以对侧乳房体积为模板[33],在腹部皮瓣上以优势穿支为中心预构皮瓣大小。术中在皮瓣制备完成且未断蒂之前,可根据术前计划的皮瓣大小去除多余组织。基于 CTA 的腹部皮瓣三维建模,实现了精确重建对侧乳房,不仅简化了皮瓣塑形的流程和保证了皮瓣血供,而且重建后的新乳房与对侧对称性更好,具有更好的美学效果。同时,后期也无需对重建的新乳房或对侧乳房进行调整。

近年来,一些作者报道了同时进行乳房再造和淋巴重建,对于乳腺癌术后上肢淋巴水肿的患者,无需进行两次单独的重建手术[34-35]。根据一系列乳房切除术后淋巴水肿患者治疗经验,我们认为预先设计的乳房成形技术可与微血管淋巴结移植同时进行,一次手术不仅重建了与对侧乳房对称的新乳房,还完成了血管化淋巴组织移植,有效改善了上肢淋巴水肿。

4. 了解腹壁下血管蒂的分支类型和走行特点

腹壁下血管分支情况的相关解剖最早由 Boyd 于 1984 年报道,主干分为 2~3 支主要分支[36]。而更多研究报道对 DIEP 血管的分支类型都没有统一标准[37-38]。Moon 等[39]于 1988 年首次提出腹壁下血管分支的规范性分型标准,依据血管大小以及在脐上和腹壁上动脉的吻合情况,分为 3 种分支类型,分别是单一型、两支型和三支型。单纯从平面来看,单一型穿支血管对供区损伤较小,但临床上常见穿支及血管蒂在肌内穿行较长距离,尤其是斜行走向对供区损伤较大,难以避免。在切取单蒂 DIEP 皮瓣再造乳房时,如果可以切取 1 支足够大的、解剖相对简单的穿支血管蒂,可以最大程度缩短缺血时间和静脉并发症的发生概率[40]。以双穿支的单蒂皮瓣再造乳房,可最大程度保证皮瓣的血供,并且无需增加额外的血管吻合,但术中仅凭肉眼难以精确判断多穿支是否共干,术前完善腹部 CTA 可以预先掌握腹壁下血管主干的分支情况及多穿支共干情况,有助于精确设计皮瓣及血管蒂,减少手术损伤,最大程度缩减手术麻醉时间,提高手术安全性[41]。通过术前 CTA 影像,总结 DIEP 皮瓣的血管分支类型和走行特点,掌握腹部浅部血管与深部血管的吻合方式以及腹部上部和下部血管的吻合方式,可达到缩短 DIEP 皮瓣制备学习曲线的目的。

5. 了解乳腺肿瘤及其周围结构的毗邻关系

对于局部晚期乳腺癌和乳腺癌术后复发的情况,术前 CTA 的意义更加重要。由于患者接受过手术和综合治疗,受区血管性状往往不佳,可供选择的血管也明显受限,需要术前 CTA 指导精确评估。而高分辨率的 CTA 不仅可以了解肿瘤是否侵犯胸壁、肋骨、胸骨,还可以精确定位肿瘤的位置及侵犯范围;如果肿瘤已经侵犯腋窝大血管神经,手术难度势必增加,术前需要做好血管置换的准备,并且详细告知患者及家属手术的风险性和难度;如果肿瘤侵犯腋窝血管神经并紧密粘连,无法分离和重建,则需要截肢并行根治扩大肿瘤切除,术前 CTA 可以为截肢手术和具体手术设计提供影像学依据,有助于医患沟通[14, 27, 42]

6. 总结及展望

在过去几十年中,乳房再造的外科技术和设施条件都得到了极大改进,自体皮瓣乳房再造受到越来越多患者和术者的青睐,尤其是影像学技术的不断进步,使自体组织移植乳房再造手术更安全,效果更满意[42-43]。DIEP 皮瓣乳房再造的关键是选择最佳的穿支和血管蒂,CT 扫描后三维重建腹部解剖图像可获得腹部穿支的数量、位置、腹直肌内走行及其在皮下组织内的分布情况[44]。CTA 作为能直观重建腹部血管解剖结构的工具,极大地改变了皮瓣切取方式,优化皮瓣手术设计,从而提高手术效率并减少术后并发症的发生[45]。CTA 还可以显示 SIEA,如果血管直径足够大,SIEA 可用作皮瓣血管蒂,无需解剖腹直肌及其深面的穿支,减少手术时间和降低手术风险[6, 46]。CTA 扫描还可发现其他部位病变,Tong 等[47]报道了 1 例因扫描新发现转移瘤而取消了乳房重建手术。CTA 除了指导受区血管的选择和预先在腹部皮瓣上设计乳房形态,还可显著优化手术流程,并提高自体乳房再造的最终效果。另外,直观的 CTA 图像有助于年轻医生学习该皮瓣的制备技巧[48-50]。虽然 CTA 存在放射性暴露和造影剂肾毒性的缺点,但对于乳房再造的术前评估,仍是最有价值的检查方法[51]

综上述,CTA 在 DIEP 皮瓣乳房再造中发挥着重要作用。但随着 CT 扫描的部位增加,如何在降低造影剂剂量和辐射量基础上,还能获取清晰的血管影像,是后续研究方向之一。此外,还可以通过术前 CTA 与其他术中皮瓣成像技术结合,比如吲哚菁绿荧光造影,最大程度保证塑形后皮瓣的血流灌注。未来还需要进一步研究 CTA 的高分辨率三维图像绘制及测量供受区细节的技术手段,以完善 CTA 在自体组织乳房再造领域的临床应用。

作者贡献:李赞、宋达疆构思和设计文章主题和写作思路;彭文撰写文章初稿;吕春柳、周波对文章进行审阅和修改。

利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。课题经费支持没有影响文章观点。

Funding Statement

湖南省自然科学基金面上项目(2018JJ2242、2018JJ2241);湖南省肿瘤整形外科临床医学研究中心平台建设专项资助(2013TP4087);湖南省科卫联合项目(2018JJ6028);湖南省卫健委课题(B2019092)

References

  • 1.Koshima I, Moriguchi T, Soeda S, et al Free thin paraumbilical perforator-based flaps. Ann Plast Surg. 1992;29(1):12–17. doi: 10.1097/00000637-199207000-00004. [DOI] [PubMed] [Google Scholar]
  • 2.Koshima I, Moriguchi T, Fukuda H, et al Free, thinned, paraumbilical perforator-based flaps. J Reconstr Microsurg. 1991;7(4):313–316. [PubMed] [Google Scholar]
  • 3.Allen RJ, Treece P Deep inferior epigastric perforator flap for breast reconstruction. Ann Plast Surg. 1994;32(1):32–38. doi: 10.1097/00000637-199401000-00007. [DOI] [PubMed] [Google Scholar]
  • 4.Koshima I, Inagawa K, Urushibara K, et al Paraumbilical perforator flap without deep inferior epigastric vessels. Plast Reconstr Surg. 1998;102(4):1052–1057. doi: 10.1097/00006534-199809020-00020. [DOI] [PubMed] [Google Scholar]
  • 5.Koshima I, Inagawa K, Yamamoto M, et al New microsurgical breast reconstruction using free paraumbilical perforator adiposal flaps. Plast Reconstr Surg. 2000;106(1):61–65. doi: 10.1097/00006534-200007000-00011. [DOI] [PubMed] [Google Scholar]
  • 6.Minqiang X, Lanhua M, Jie L, et al The value of multidetector-row CT angiography for pre-operative planning of breast reconstruction with deep inferior epigastric arterial perforator flaps. Br J Radiol. 2010;83(985):40–43. doi: 10.1259/bjr/29140440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Granzow JW, Levine JL, Chiu ES, et al Breast reconstruction with the deep inferior epigastric perforator flap: history and an update on current technique. J Plast Reconstr Aesthet Surg. 2006;59(6):571–579. doi: 10.1016/j.bjps.2006.01.004. [DOI] [PubMed] [Google Scholar]
  • 8.Wu LC, Bajaj A, Chang DW, et al Comparison of donor-site morbidity of SIEA, DIEP, and muscle-sparing TRAM flaps for breast reconstruction. Plast Reconstr Surg. 2008;122(3):702–709. doi: 10.1097/PRS.0b013e3181823c15. [DOI] [PubMed] [Google Scholar]
  • 9.Voigt K, Goerttler U Super-selective cerebral angiography. I. Animal experiments and methods of a simple technique (author's transl) Rofo. 1975;122(3):195–199. doi: 10.1055/s-0029-1230053. [DOI] [PubMed] [Google Scholar]
  • 10.Rozen WM, Anavekar NS, Ashton MW, et al Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery. 2008;28(7):516–523. doi: 10.1002/micr.20526. [DOI] [PubMed] [Google Scholar]
  • 11.Rosson GD, Holton LH, Silverman RP, et al Internal mammary perforators: a cadaver study. J Reconstr Microsurg. 2005;21(4):239–242. doi: 10.1055/s-2005-871750. [DOI] [PubMed] [Google Scholar]
  • 12.Masia J, Clavero JA, Larrañaga J, et al Preoperative planning of the abdominal perforator flap with multidetector row computed tomography: 3 years of experience. Plast Reconstr Surg. 2008;122(2):80e–81e. doi: 10.1097/PRS.0b013e31817d5eea. [DOI] [PubMed] [Google Scholar]
  • 13.Al-Dhamin A, Berry R, Prasad V, et al Coding system for computed tomographic angiography of inferior epigastric artery perforators in DIEP flaps. Plast Reconstr Surg. 2012;129(2):387e–388e. doi: 10.1097/PRS.0b013e31823af0d1. [DOI] [PubMed] [Google Scholar]
  • 14.Aubry S, Pauchot J, Kastler A, et al Preoperative imaging in the planning of deep inferior epigastric artery perforator flap surgery. Skeletal Radiol. 2013;42(3):319–327. doi: 10.1007/s00256-012-1461-y. [DOI] [PubMed] [Google Scholar]
  • 15.Imai R, Matsumura H, Tanaka K, et al Comparison of Doppler sonography and multidetector-row computed tomography in the imaging findings of the deep inferior epigastric perforator artery. Ann Plast Surg. 2008;61(1):94–98. doi: 10.1097/SAP.0b013e3181561500. [DOI] [PubMed] [Google Scholar]
  • 16.Wong C, Saint-Cyr M, Arbique G, et al Three- and four-dimensional computed tomography angiographic studies of commonly used abdominal flaps in breast reconstruction. Plast Reconstr Surg. 2009;124(1):18–27. doi: 10.1097/PRS.0b013e3181aa0db8. [DOI] [PubMed] [Google Scholar]
  • 17.Gravvanis A, Dionyssiou DD, Chandrasekharan L, et al Paramuscular and paraneural perforators in DIEAP flaps: radiographic findings and clinical application. Ann Plast Surg. 2009;63(6):610–615. doi: 10.1097/SAP.0b013e318196cbfc. [DOI] [PubMed] [Google Scholar]
  • 18.Whitaker IS, Rozen WM, Smit JM, et al Peritoneo-cutaneous perforators in deep inferior epigastric perforator flaps: a cadaveric dissection and computed tomographic angiography study. Microsurgery. 2009;29(2):124–127. doi: 10.1002/micr.20600. [DOI] [PubMed] [Google Scholar]
  • 19.Katz RD, Manahan MA, Rad AN, et al Classification schema for anatomic variations of the inferior epigastric vasculature evaluated by abdominal CT angiograms for breast reconstruction. Microsurgery. 2010;30(8):593–602. doi: 10.1002/micr.20794. [DOI] [PubMed] [Google Scholar]
  • 20.Mathes DW, Neligan PC Preoperative imaging techniques for perforator selection in abdomen-based microsurgical breast reconstruction. Clin Plast Surg. 2010;37(4):581–591. doi: 10.1016/j.cps.2010.06.011. [DOI] [PubMed] [Google Scholar]
  • 21.Rozen WM, Whitaker IS, Ashton MW, et al Changes in vascular anatomy following reconstructive surgery: an in vivo angiographic demonstration of the delay phenomenon and venous recanalization . J Reconstr Microsurg. 2012;28(6):363–365. doi: 10.1055/s-0032-1313768. [DOI] [PubMed] [Google Scholar]
  • 22.Gacto-Sánchez P, Sicilia-Castro D, Gómez-Cía T, et al Computed tomographic angiography with VirSSPA three-dimensional software for perforator navigation improves perioperative outcomes in DIEP flap breast reconstruction. Plast Reconstr Surg. 2010;125(1):24–31. doi: 10.1097/PRS.0b013e3181c4948b. [DOI] [PubMed] [Google Scholar]
  • 23.Saint-Cyr M, Chang DW, Robb GL, et al Internal mammary perforator recipient vessels for breast reconstruction using free TRAM, DIEP, and SIEA flaps. Plast Reconstr Surg. 2007;120(7):1769–1773. doi: 10.1097/01.prs.0000287132.35433.d6. [DOI] [PubMed] [Google Scholar]
  • 24.Follmar KE, Prucz RB, Manahan MA, et al Internal mammary intercostal perforators instead of the true internal mammary vessels as the recipient vessels for breast reconstruction. Plast Reconstr Surg. 2011;127(1):34–40. doi: 10.1097/PRS.0b013e3181f95865. [DOI] [PubMed] [Google Scholar]
  • 25.Haywood RM, Raurell A, Perks AG, et al Autologous free tissue breast reconstruction using the internal mammary perforators as recipient vessels. Br J Plast Surg. 2003;56(7):689–691. doi: 10.1016/S0007-1226(03)00206-6. [DOI] [PubMed] [Google Scholar]
  • 26.Hamdi M, Blondeel P, Van Landuyt K, et al Algorithm in choosing recipient vessels for perforator free flap in breast reconstruction: the role of the internal mammary perforators. Br J Plast Surg. 2004;57(3):258–265. doi: 10.1016/j.bjps.2003.12.004. [DOI] [PubMed] [Google Scholar]
  • 27.Masia J, Kosutic D, Clavero JA, et al Preoperative computed tomographic angiogram for deep inferior epigastric artery perforator flap breast reconstruction. J Reconstr Microsurg. 2010;26(1):21–28. doi: 10.1055/s-0029-1223854. [DOI] [PubMed] [Google Scholar]
  • 28.Kim H, Lim SY, Pyon JK, et al Preoperative computed tomographic angiography of both donor and recipient sites for microsurgical breast reconstruction. Plast Reconstr Surg. 2012;130(1):11e–20e. doi: 10.1097/PRS.0b013e3182547d2a. [DOI] [PubMed] [Google Scholar]
  • 29.Fansa H, Schirmer S, Frerichs O, et al Significance of abdominal wall CT-angiography in planning DIEA perforator flaps, TRAM flaps and SIEA flaps. Handchir Mikrochir Plast Chir. 2011;43(2):81–87. doi: 10.1055/s-0030-1262844. [DOI] [PubMed] [Google Scholar]
  • 30.Fansa H, Schirmer S, Cervelli A, et al Computed tomographic angiography imaging and clinical implications of internal mammary artery perforator vessels as recipient vessels in autologous breast reconstruction. Ann Plast Surg. 2013;71(5):533–537. doi: 10.1097/SAP.0b013e31824e29c2. [DOI] [PubMed] [Google Scholar]
  • 31.Blondeel PN, Hijjawi J, Depypere H, et al Shaping the breast in aesthetic and reconstructive breast surgery: an easy three-step principle. Part IV--aesthetic breast surgery. Plast Reconstr Surg. 2009;124(2):372–382. doi: 10.1097/PRS.0b013e3181aeeb21. [DOI] [PubMed] [Google Scholar]
  • 32.Gravvanis A, Smith RW Shaping the breast in secondary microsurgical breast reconstruction: single-vs. two-esthetic unit reconstruction . Microsurgery. 2010;30(7):509–516. doi: 10.1002/micr.20792. [DOI] [PubMed] [Google Scholar]
  • 33.Dionyssiou D, Demiri E, Tsimponis A, et al Predesigned breast shaping assisted by multidetector-row computed tomographic angiography in autologous breast reconstruction. Plast Reconstr Surg. 2014;133(2):100–108. doi: 10.1097/01.prs.0000436848.02033.2e. [DOI] [PubMed] [Google Scholar]
  • 34.Suami H, Chang DW Overview of surgical treatments for breast cancer-related lymphedema. Plast Reconstr Surg. 2010;126(6):1853–1863. doi: 10.1097/PRS.0b013e3181f44658. [DOI] [PubMed] [Google Scholar]
  • 35.Nahabedian MY Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patients. Gland Surg. 2012;1(1):1–2. doi: 10.3978/j.issn.2227-684X.2012.03.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Boyd JB, Taylor GI, Corlett R The vascular territories of the superior epigastric and the deep inferior epigastric systems. Plast Reconstr Surg. 1984;73(1):1–16. doi: 10.1097/00006534-198401000-00001. [DOI] [PubMed] [Google Scholar]
  • 37.Itoh Y, Arai K The deep inferior epigastric artery free skin flap: anatomic study and clinical application. Plast Reconstr Surg. 1993;91(5):853–863. [PubMed] [Google Scholar]
  • 38.El-Mrakby HH, Milner RH The vascular anatomy of the lower anterior abdominal wall: a microdissection study on the deep inferior epigastric vessels and the perforator branches. Plast Reconstr Surg. 2002;109(2):539–543. doi: 10.1097/00006534-200202000-00020. [DOI] [PubMed] [Google Scholar]
  • 39.Moon HK, Taylor GI The vascular anatomy of rectus abdominis musculocutaneous flaps based on the deep superior epigastric system. Plast Reconstr Surg. 1988;82(5):815–832. doi: 10.1097/00006534-198811000-00014. [DOI] [PubMed] [Google Scholar]
  • 40.Garvey PB, Salavati S, Feng L, et al Abdominal donor-site outcomes for medial versus lateral deep inferior epigastric artery branch perforator harvest. Plast Reconstr Surg. 2011;127(6):2198–2205. doi: 10.1097/PRS.0b013e3182131caf. [DOI] [PubMed] [Google Scholar]
  • 41.Garusi C, Lohsiriwat V, de Lorenzi F, et al A subfascial variant of the deep inferior epigastric artery demonstrated by preoperative multidetector computed tomographic angiography: a case report. Microsurgery. 2010;30(2):156–158. doi: 10.1002/micr.20710. [DOI] [PubMed] [Google Scholar]
  • 42.Acosta R, Smit JM, Audolfsson T, et al A clinical review of 9 years of free perforator flap breast reconstructions: an analysis of 675 flaps and the influence of new techniques on clinical practice. J Reconstr Microsurg. 2011;27(2):91–98. doi: 10.1055/s-0030-1267835. [DOI] [PubMed] [Google Scholar]
  • 43.Mathes DW, Neligan PC Current techniques in preoperative imaging for abdomen-based perforator flap microsurgical breast reconstruction. J Reconstr Microsurg. 2010;26(1):3–10. doi: 10.1055/s-0029-1244806. [DOI] [PubMed] [Google Scholar]
  • 44.Masia J, Larrañaga J, Clavero JA, et al The value of the multidetector row computed tomography for the preoperative planning of deep inferior epigastric artery perforator flap: our experience in 162 cases. Ann Plast Surg. 2008;60(1):29–36. doi: 10.1097/SAP.0b013e31805003c2. [DOI] [PubMed] [Google Scholar]
  • 45.Rozen WM, Phillips TJ, Ashton MW, et al Preoperative imaging for DIEA perforator flaps: a comparative study of computed tomographic angiography and Doppler ultrasound. Plast Reconstr Surg. 2008;121(1):9–16. doi: 10.1097/01.prs.0000293874.71269.c9. [DOI] [PubMed] [Google Scholar]
  • 46.Cho MJ, Haddock NT, Teotia SS Clinical decision making using CTA in conjoined, bipedicled DIEP and SIEA for unilateral breast reconstruction. J Reconstr Microsurg. 2020;36(4):241–246. doi: 10.1055/s-0039-3400542. [DOI] [PubMed] [Google Scholar]
  • 47.Tong WM, Dixon R, Ekis H, et al The impact of preoperative CT angiography on breast reconstruction with abdominal perforator flaps. Ann Plast Surg. 2012;68(5):525–530. doi: 10.1097/SAP.0b013e31823b69a4. [DOI] [PubMed] [Google Scholar]
  • 48.Masia J, Clavero JA, Larrañaga JR, et al Multidetector-row computed tomography in the planning of abdominal perforator flaps. J Plast Reconstr Aesthet Surg. 2006;59(6):594–599. doi: 10.1016/j.bjps.2005.10.024. [DOI] [PubMed] [Google Scholar]
  • 49.Rozen WM, Ashton MW Modifying techniques in deep inferior epigastric artery perforator flap harvest with the use of preoperative imaging. ANZ J Surg. 2009;79(9):598–603. doi: 10.1111/j.1445-2197.2009.05013.x. [DOI] [PubMed] [Google Scholar]
  • 50.Midgley SM, Einsiedel PF, Phillips TJ, et al Justifying the use of abdominal wall computed tomographic angiography in deep inferior epigastric artery perforator flap planning. Ann Plast Surg. 2011;67(5):457–459. doi: 10.1097/SAP.0b013e318208589d. [DOI] [PubMed] [Google Scholar]
  • 51.Hijjawi JB, Blondeel PN Advancing deep inferior epigastric artery perforator flap breast reconstruction through multidetector row computed tomography: an evolution in preoperative imaging. J Reconstr Microsurg. 2010;26(1):11–20. doi: 10.1055/s-0029-1244807. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES