Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 May 28;77(Pt 6):663–667. doi: 10.1107/S2056989021005430

Crystal structure and Hirshfeld surface analysis of 2-{[7-acetyl-4-cyano-6-hy­droxy-8-(4-meth­oxy­phen­yl)-1,6-dimethyl-5,6,7,8-tetra­hydro­iso­quino­lin-3-yl]sulfan­yl}-N-phenyl­acetamide

Eman M Sayed a, Reda Hassanien a, Shaaban K Mohamed b,c, Joel T Mague d, Mehmet Akkurt e, Nasser Farhan a, Etify A Bakhite f, Safiyyah A H Al-Waleedy g,*
PMCID: PMC8183441  PMID: 34164148

The title mol­ecule adopts a conformation with the two phenyl substituents disposed on opposite sides of the mean plane of the iso­quinoline unit. In the crystal, corrugated layers of mol­ecules are formed by N—H⋯O, C—H⋯N and C—H⋯S hydrogen bonds together with C—H⋯π(ring) inter­actions. These layers are connected by C—H⋯O contacts.

Keywords: crystal structure, tetra­hydro­iso­quinoline, hydrogen bond, C—H⋯π(ring) inter­action, amide

Abstract

The title mol­ecule, C29H29N3O4S, adopts a conformation with the two phenyl substituents disposed on opposite sides of the mean plane of the iso­quinoline unit. In the crystal, corrugated layers of mol­ecules are formed by N—H⋯O, C—H⋯N and C—H⋯S hydrogen bonds together with C—H⋯π(ring) inter­actions. These layers are connected by C—H⋯O contacts. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (45.2%), C⋯H/H⋯C (20.2%), O⋯H/H⋯O (15.8%) and N⋯H/H⋯N (11.0%) inter­actions.

Chemical context  

Many tetra­hydro­iso­quinolines have medicinal importance as potent selective and orally active aldosterone synthase (CYP11B2) inhibitors (Martin et al., 2016). There are many natural and modified natural products that contain annulated pyridine rings such as the fatty acid bending protein inhibitor, (−)-oxerine, (−)-actinidine, indicaine, and other compounds that are derived from flavouring agents, namely (s)-(−)-perillaldehyde and (1R)-myrtenal (Uredi et al., 2019). In C—H activation reactions, the pyridine ring acts as the directing group (Zhang et al., 2014).

Tieno­pyridine derivatives show diverse pharmacological activities including anti­bacterial activity against a drug-resistant S. epidermidis clinical strain (Leal et al., 2008) and cytotoxic activity against human hepatocellular liver carcinoma (HepG2) (Hassan et al., 2013) and are used as anti­platelet drugs for the treatment of acute coronary syndromes (Peters et al., 2003).graphic file with name e-77-00663-scheme1.jpg

Structural commentary  

The title mol­ecule adopts a conformation in which the C24–C29 phenyl group is on the same side of the mean plane of tetra­hydro­iso­quinoline core as the O2–H2A hy­droxy group, while the 4-meth­oxy­phenyl group is situated on the opposite side (Fig. 1). There is an intra­molecular O2—H2A⋯O1 hydrogen bond, which controls the orientation of the acetyl group. Puckering analysis (Cremer & Pople, 1975) shows that the conformation of the C1–C5/C9 ring is close to half-chair with the C2 atom as the flap. The mean planes of the C10–C15 and C24–C29 rings are inclined to that of the pyridine N1/C5–C9 ring by 77.17 (3) and 67.93 (5)°, respectively. All bond lengths and angles appear normal for the given formulation.

Figure 1.

Figure 1

The title mol­ecule with the atom-labelling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is depicted by a dashed line.

Supra­molecular features  

In the crystal, N3—H3A⋯O2 hydrogen bonds and C25—H25⋯Cg1 inter­actions form chains of mol­ecules extending along the a-axis direction, which are linked into corrugated layers parallel to (010) by C18—H18A⋯N2 and C2—H2⋯S1 hydrogen bonds (Table 1 and Fig. 2). The layers are connected by inversion-related C21—H21C⋯O1 contacts into the three-dimensional structure (Table 1 and Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.87 2.13 2.8343 (14) 138
N3—H3A⋯O2i 0.91 2.03 2.9335 (14) 174
C2—H2⋯S1ii 1.00 2.86 3.8269 (12) 163
C18—H18A⋯N2ii 0.98 2.52 3.493 (2) 170
C21—H21C⋯O1iii 0.98 2.39 3.3593 (16) 169
C25—H25⋯Cg1i 0.95 2.79 3.6141 (18) 146

Symmetry codes: (i) x-1, y, z; (ii) x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}; (iii) -x+2, -y+1, -z+1.

Figure 2.

Figure 2

View of a portion of one layer seen along the b-axis direction. N—H⋯O, C—H⋯N and C—H⋯S hydrogen bonds are depicted, respectively, by dark-blue, light-blue and yellow dashed lines. C—H⋯π(ring) inter­actions are depicted by green dashed lines.

Figure 3.

Figure 3

View of portions of two layers showing their connection by C—H⋯O hydrogen bonds (black dashed lines). Other inter­molecular inter­actions are depicted as in Fig. 2.

Hirshfeld surface analysis  

Hirshfeld surface calculations (Spackman & Jayatilaka, 2009) were performed in order to further characterize the supra­molecular association in the title compound. The Hirshfeld surface plotted over d norm in the range −0.5236 to +1.6751 a.u. and two-dimensional fingerprint plots (McKinnon et al., 2007) prepared using CrystalExplorer 17.5 (Turner et al., 2017) are shown in Figs. 4 and 5, respectively. The red spots on the Hirshfeld surface represent strong inter­molecular inter­actions (Table 2), whereas the blue colour represents a lack of inter­actions. The fingerprint plots (Fig. 5) reveal that H⋯H (45.2%), C⋯H/H⋯C (20.2%), O⋯H/H⋯O (15.8%) and N⋯H/H⋯N (11.0%) inter­actions make the greatest contributions to the surface contacts. The lowest contributions are from S⋯H/H⋯S (6.2%), O⋯C/C⋯O (1.2%), N⋯C/C⋯N (0.3%) and C⋯C (0.1%) contacts.

Figure 4.

Figure 4

A view of the three-dimensional Hirshfeld surface of the title mol­ecule plotted over d norm in the range −0.5236 to +1.6751 a.u.

Figure 5.

Figure 5

A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Table 2. Summary of short inter­molecular contacts (Å) in the title structure.

Contact Distance Symmetry operation
N2⋯H18A 2.52 −{1\over 2} + x, {1\over 2} − y, − {1\over 2} + z
H21C⋯O1 2.39 2 − x, 1 − y, 1 − z
O2⋯H3A 2.03 1 + x, y, z
O3⋯H27 2.70 1 + x, y, 1 + z
N2⋯H16B 2.69 {3\over 2} − x, − {1\over 2} + y, {3\over 2} − z
N2⋯H12 2.61 {1\over 2} + x, {1\over 2} − y, −{1\over 2} + z
H26⋯H18C 2.49 1 − x, 1 − y, 1 − z
H27⋯H16B 2.47 x, 1 − y, 1 − z

Database survey  

Nine comparable tetra­hydro­iso­quinoline derivatives are: NAQRIJ (Mague et al., 2017), KUGLIK (Langenohl et al., 2020), DUSVIZ (Selvaraj et al., 2020), AKIVUO (Al-Taifi et al., 2021), ULUTAZ (Naghiyev et al., 2021), CARCOQ (Lehmann et al., 2017), POPYEB (Ben Ali & Retailleau, 2019), ENOCIU (Naicker et al., 2011) and NIWPAL (Bouasla et al., 2008).

In the crystal of NAQRIJ, dimers are formed through complementary sets of inversion-related O—H⋯O and C—H⋯O hydrogen bonds, which are further connected into zigzag chains by pairwise C—H⋯N inter­actions that also form inversion dimers. In KUGLIK, the heterocyclic amines are alternately connected by hydrogen bonds thus forming syndiotactic polymeric chains. The hydrogen-bonding network of water mol­ecules forms planes parallel to (100). In the crystal of DUSVIZ, mol­ecules are linked via C—H⋯O hydrogen bonds. For the major disorder component, they form C(11) chains that propagate parallel to the a axis. In AKIVUO, a layer structure with the layers parallel to (10Inline graphic) is generated by O—H⋯O and C—H⋯O hydrogen bonds. In ULUTAZ, the mol­ecules are linked via N—H⋯O and C—H⋯N hydrogen bonds into a three-dimensional network. Furthermore, the crystal packing is dominated by C—H⋯π contacts involving the phenyl H atoms. In CARCOQ, mol­ecules are linked by an O—H⋯O hydrogen bond, forming chains propagating along the a-axis direction. The chains are linked by C—H⋯F hydrogen bonds, forming layers lying parallel to (001). In POPYEB, mol­ecules are packed in a herringbone manner parallel to (103) and (10Inline graphic) via weak C—H⋯O and C—H⋯π(ring) inter­actions. In ENOCIU, various C—H⋯π and C—H⋯O bonds link the mol­ecules together. In NIWPAL, the mol­ecules are linked by N—H⋯O inter­molecular hydrogen bonds involving the sulfonamide function to form an infinite two-dimensional network parallel to (001).

Synthesis and crystallization  

A mixture of 7-acetyl-4-cyano-1,6-dimethyl-6-hy­droxy-8-(4-meth­oxy­phen­yl)-5,6,7,8-tetra­hydro­iso­quinoline-3(2H)-thione (10 mmol), N-(phen­yl)-2-chloro­acetamide (10 mmol) and sodium acetate trihydrate (1.77 g, 13 mmol) in ethanol (100 ml) was heated under reflux for 1 h. The reaction mixture was allowed to stand at room temperature overnight. The precipitate that formed was collected and recrystallized from ethanol giving colourless crystals of the title compound, m.p.: 508–510 K, yield 84%. Its IR spectrum showed characteristic absorption bands at 3474 cm−1 (OH); 3311 cm−1 (NH); 3023 cm−1 (C-H aromatic); 2910, 2956 cm−1 (C—H aliphatic); 1800, 1900 cm−1 (overtones of phenyl group); 2220 cm−1 (C≡N) and 1694 cm−1 (C=O). Its 1H NMR (500 MHz, DMSO-d6) spectrum exhibited the following signals: δ 10.21 (s, 1H, NH), 7.48–7.49 (d, 2H, J = 5 Hz, Ar-H); 7.22–7.25 (t, 2H, Ar-H); 6.97–7.00 (t, 1H, Ar-H); 6.89–6.91 (d, J = 10 Hz, 2H, Ar-H); 6.75–6.77 (d, J =10 Hz, 2H, Ar-H); 4.84 (s, 1H, OH); 4.41–4.43 (d, J = 10 Hz, 1H, CH at C-8); 4.04–4.11 (dd, 2H, SCH2); 3.66 (s, 3H, OCH3); 3.20–3.24 (d, J = 20 Hz, 1H, CH of cyclo­hexene ring); 2.83–2.85 (d, J = 10 Hz, 1H, CH at C-7); 2.81–2.84 (d, J = 15 Hz, 1H, CH of cyclo­hexene ring); 2.08 (s, 3H, COCH3); 1.86 (s, 3H, CH3 attached to pyridine ring) and 1.21 (s, 3H, CH3 at C-6).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) while those attached to O and N atoms were positioned from a difference map, refined for a few cycles to ensure that reasonable displacement parameters could be achieved, and then their coordinates were adjusted to give O—H = 0.87 and N—H = 0.91 Å. All H atoms were refined using a riding model with isotropic displacement parameters 1.2–1.5 times those of the parent atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C29H29N3O4S
M r 515.61
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.4506 (16), 23.112 (5), 13.601 (3)
β (°) 99.021 (3)
V3) 2623.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.39 × 0.25 × 0.14
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 50421, 7039, 5632
R int 0.034
(sin θ/λ)max−1) 0.684
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.126, 1.10
No. of reflections 7039
No. of parameters 338
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.20

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005430/yk2151sup1.cif

e-77-00663-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005430/yk2151Isup2.hkl

e-77-00663-Isup2.hkl (559.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005430/yk2151Isup3.cml

CCDC reference: 2085564

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Author contributions are as follows. Conceptualization, SKM and EAB; methodology, JTM, EAB and MA; investigation, EMS, RH and EAB; writing (original draft), JTM, MA and SKM; writing (review and editing of the manuscript), SKM, EAB and NF; visualization, SKM, EAB, MA and JTM; funding acquisition, SAHA; resources, SKM, EAB, JTM and RH; supervision, EAB and SKM.

supplementary crystallographic information

Crystal data

C29H29N3O4S F(000) = 1088
Mr = 515.61 Dx = 1.305 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.4506 (16) Å Cell parameters from 9458 reflections
b = 23.112 (5) Å θ = 2.3–29.1°
c = 13.601 (3) Å µ = 0.16 mm1
β = 99.021 (3)° T = 150 K
V = 2623.5 (9) Å3 Block, colourless
Z = 4 0.39 × 0.25 × 0.14 mm

Data collection

Bruker SMART APEX CCD diffractometer 7039 independent reflections
Radiation source: fine-focus sealed tube 5632 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 8.3333 pixels mm-1 θmax = 29.1°, θmin = 1.8°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −31→31
Tmin = 0.89, Tmax = 0.98 l = −18→18
50421 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: mixed
wR(F2) = 0.126 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0798P)2 + 0.1546P] where P = (Fo2 + 2Fc2)/3
7039 reflections (Δ/σ)max = 0.001
338 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.87 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.49743 (4) 0.21951 (2) 0.34201 (2) 0.02816 (10)
O1 1.20833 (12) 0.46549 (4) 0.59462 (8) 0.0424 (3)
O2 1.15692 (10) 0.36411 (4) 0.47667 (6) 0.02629 (19)
H2A 1.193331 0.399275 0.484612 0.039*
O3 0.60807 (11) 0.50037 (4) 0.89281 (7) 0.0355 (2)
O4 0.22412 (14) 0.25356 (5) 0.17522 (7) 0.0472 (3)
N1 0.55129 (11) 0.32668 (4) 0.41455 (7) 0.0221 (2)
N2 0.89889 (15) 0.16351 (5) 0.41504 (9) 0.0376 (3)
N3 0.11079 (13) 0.31512 (5) 0.27523 (7) 0.0283 (2)
H3A 0.123005 0.327808 0.339295 0.034*
C1 0.89205 (13) 0.40578 (4) 0.57616 (8) 0.0193 (2)
H1 0.912963 0.436858 0.528669 0.023*
C2 1.05704 (13) 0.38474 (5) 0.63229 (8) 0.0205 (2)
H2 1.037934 0.365533 0.695266 0.025*
C3 1.14103 (13) 0.34073 (5) 0.57288 (8) 0.0216 (2)
C4 1.03246 (13) 0.28858 (5) 0.55317 (9) 0.0225 (2)
H4A 1.079572 0.261207 0.509824 0.027*
H4B 1.026798 0.268725 0.617023 0.027*
C5 0.86588 (13) 0.30393 (5) 0.50451 (8) 0.0193 (2)
C6 0.77354 (13) 0.26220 (5) 0.44664 (8) 0.0204 (2)
C7 0.61510 (13) 0.27491 (5) 0.40627 (8) 0.0208 (2)
C8 0.64077 (13) 0.36804 (5) 0.46651 (8) 0.0207 (2)
C9 0.79759 (13) 0.35800 (4) 0.51612 (8) 0.0187 (2)
C10 0.80553 (13) 0.43324 (5) 0.65445 (8) 0.0204 (2)
C11 0.71854 (14) 0.39936 (5) 0.71205 (9) 0.0225 (2)
H11 0.704102 0.359333 0.697472 0.027*
C12 0.65289 (14) 0.42303 (5) 0.79006 (9) 0.0251 (2)
H12 0.592213 0.399454 0.827603 0.030*
C13 0.67580 (14) 0.48133 (5) 0.81346 (9) 0.0263 (2)
C14 0.76132 (15) 0.51598 (5) 0.75698 (9) 0.0284 (3)
H14 0.776837 0.555878 0.772287 0.034*
C15 0.82427 (14) 0.49165 (5) 0.67751 (9) 0.0249 (2)
H15 0.881237 0.515577 0.638293 0.030*
C16 0.6676 (2) 0.55312 (7) 0.93842 (12) 0.0465 (4)
H16A 0.784465 0.550913 0.955575 0.070*
H16B 0.620648 0.559492 0.999005 0.070*
H16C 0.638604 0.585256 0.892094 0.070*
C17 1.16474 (14) 0.43673 (5) 0.66046 (10) 0.0286 (3)
C18 1.21626 (19) 0.44933 (7) 0.76823 (11) 0.0431 (4)
H18A 1.267619 0.414967 0.801321 0.065*
H18B 1.122528 0.459723 0.798737 0.065*
H18C 1.292503 0.481576 0.775466 0.065*
C19 1.30468 (14) 0.32302 (6) 0.62869 (9) 0.0290 (3)
H19A 1.293501 0.310103 0.695891 0.044*
H19B 1.377685 0.356189 0.633079 0.044*
H19C 1.347991 0.291385 0.592961 0.044*
C20 0.84162 (14) 0.20690 (5) 0.43026 (9) 0.0247 (2)
C21 0.56021 (15) 0.42595 (5) 0.46529 (10) 0.0265 (2)
H21A 0.519924 0.431841 0.528302 0.040*
H21B 0.470632 0.427392 0.410039 0.040*
H21C 0.637465 0.456448 0.456723 0.040*
C22 0.29909 (14) 0.24507 (5) 0.35184 (9) 0.0257 (2)
H22A 0.234973 0.212181 0.370639 0.031*
H22B 0.307145 0.274003 0.406068 0.031*
C23 0.21135 (15) 0.27208 (5) 0.25746 (9) 0.0273 (3)
C24 −0.00831 (16) 0.34254 (5) 0.20589 (9) 0.0285 (3)
C25 −0.13620 (19) 0.36782 (6) 0.24298 (11) 0.0396 (3)
H25 −0.141122 0.365874 0.312204 0.047*
C26 −0.2556 (2) 0.39563 (8) 0.18009 (13) 0.0514 (4)
H26 −0.343050 0.412373 0.206057 0.062*
C27 −0.2491 (2) 0.39938 (7) 0.07906 (12) 0.0492 (4)
H27 −0.331596 0.418599 0.035625 0.059*
C28 −0.1216 (2) 0.37489 (7) 0.04246 (11) 0.0437 (4)
H28 −0.115917 0.377920 −0.026552 0.052*
C29 −0.00134 (18) 0.34587 (6) 0.10445 (10) 0.0351 (3)
H29 0.084748 0.328480 0.077982 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02272 (16) 0.03016 (17) 0.03103 (18) 0.00082 (11) 0.00246 (12) −0.01154 (12)
O1 0.0374 (5) 0.0381 (5) 0.0533 (6) −0.0143 (4) 0.0119 (5) 0.0018 (5)
O2 0.0251 (4) 0.0342 (4) 0.0211 (4) −0.0026 (3) 0.0085 (3) 0.0007 (3)
O3 0.0362 (5) 0.0424 (5) 0.0303 (5) −0.0006 (4) 0.0130 (4) −0.0128 (4)
O4 0.0612 (7) 0.0552 (6) 0.0236 (5) 0.0261 (5) 0.0014 (5) −0.0100 (4)
N1 0.0203 (5) 0.0248 (4) 0.0216 (5) 0.0017 (4) 0.0043 (4) −0.0006 (4)
N2 0.0387 (6) 0.0308 (5) 0.0423 (7) 0.0087 (5) 0.0035 (5) −0.0053 (5)
N3 0.0318 (6) 0.0322 (5) 0.0209 (5) 0.0055 (4) 0.0039 (4) −0.0030 (4)
C1 0.0191 (5) 0.0201 (5) 0.0194 (5) −0.0001 (4) 0.0051 (4) 0.0011 (4)
C2 0.0203 (5) 0.0231 (5) 0.0186 (5) −0.0001 (4) 0.0044 (4) 0.0003 (4)
C3 0.0193 (5) 0.0275 (5) 0.0186 (5) 0.0013 (4) 0.0048 (4) 0.0005 (4)
C4 0.0193 (5) 0.0238 (5) 0.0244 (6) 0.0038 (4) 0.0034 (4) −0.0004 (4)
C5 0.0186 (5) 0.0222 (5) 0.0181 (5) 0.0013 (4) 0.0061 (4) 0.0019 (4)
C6 0.0209 (5) 0.0215 (5) 0.0196 (5) 0.0024 (4) 0.0054 (4) −0.0002 (4)
C7 0.0199 (5) 0.0244 (5) 0.0188 (5) −0.0002 (4) 0.0052 (4) −0.0015 (4)
C8 0.0202 (5) 0.0222 (5) 0.0206 (5) 0.0016 (4) 0.0058 (4) 0.0015 (4)
C9 0.0183 (5) 0.0206 (5) 0.0180 (5) 0.0006 (4) 0.0054 (4) 0.0014 (4)
C10 0.0194 (5) 0.0209 (5) 0.0210 (5) 0.0015 (4) 0.0034 (4) −0.0004 (4)
C11 0.0222 (5) 0.0216 (5) 0.0238 (5) 0.0002 (4) 0.0046 (4) 0.0005 (4)
C12 0.0224 (6) 0.0291 (6) 0.0247 (6) −0.0012 (4) 0.0065 (5) 0.0006 (4)
C13 0.0222 (6) 0.0334 (6) 0.0237 (6) 0.0037 (5) 0.0045 (4) −0.0058 (5)
C14 0.0297 (6) 0.0234 (5) 0.0319 (6) 0.0006 (5) 0.0049 (5) −0.0058 (5)
C15 0.0250 (6) 0.0219 (5) 0.0287 (6) −0.0007 (4) 0.0074 (5) 0.0010 (4)
C16 0.0458 (9) 0.0524 (9) 0.0426 (8) −0.0003 (7) 0.0107 (7) −0.0253 (7)
C17 0.0217 (6) 0.0272 (6) 0.0359 (7) 0.0009 (4) 0.0016 (5) −0.0037 (5)
C18 0.0401 (8) 0.0420 (8) 0.0420 (8) 0.0037 (6) −0.0101 (6) −0.0156 (6)
C19 0.0202 (6) 0.0375 (7) 0.0285 (6) 0.0038 (5) 0.0011 (5) −0.0028 (5)
C20 0.0243 (6) 0.0260 (5) 0.0236 (6) 0.0017 (4) 0.0030 (5) −0.0023 (4)
C21 0.0230 (6) 0.0220 (5) 0.0335 (6) 0.0044 (4) 0.0017 (5) 0.0026 (5)
C22 0.0217 (5) 0.0305 (6) 0.0248 (6) −0.0004 (5) 0.0035 (4) −0.0037 (5)
C23 0.0275 (6) 0.0301 (6) 0.0236 (6) 0.0000 (5) 0.0026 (5) −0.0054 (5)
C24 0.0332 (7) 0.0260 (6) 0.0261 (6) 0.0022 (5) 0.0037 (5) −0.0003 (5)
C25 0.0448 (8) 0.0434 (7) 0.0323 (7) 0.0137 (6) 0.0118 (6) 0.0066 (6)
C26 0.0488 (9) 0.0588 (10) 0.0482 (9) 0.0255 (8) 0.0126 (8) 0.0086 (7)
C27 0.0509 (10) 0.0524 (9) 0.0413 (8) 0.0168 (7) −0.0023 (7) 0.0072 (7)
C28 0.0532 (9) 0.0480 (8) 0.0277 (7) 0.0080 (7) −0.0006 (6) 0.0016 (6)
C29 0.0394 (7) 0.0394 (7) 0.0264 (6) 0.0052 (6) 0.0052 (6) −0.0020 (5)

Geometric parameters (Å, º)

S1—C7 1.7661 (12) C11—H11 0.9500
S1—C22 1.8018 (12) C12—C13 1.3911 (17)
O1—C17 1.2176 (16) C12—H12 0.9500
O2—C3 1.4414 (13) C13—C14 1.3884 (18)
O2—H2A 0.8696 C14—C15 1.3955 (16)
O3—C13 1.3711 (14) C14—H14 0.9500
O3—C16 1.4233 (17) C15—H15 0.9500
O4—C23 1.2182 (15) C16—H16A 0.9800
N1—C7 1.3245 (14) C16—H16B 0.9800
N1—C8 1.3482 (15) C16—H16C 0.9800
N2—C20 1.1463 (15) C17—C18 1.4908 (19)
N3—C23 1.3545 (16) C18—H18A 0.9800
N3—C24 1.4164 (16) C18—H18B 0.9800
N3—H3A 0.9097 C18—H18C 0.9800
C1—C10 1.5216 (15) C19—H19A 0.9800
C1—C9 1.5229 (15) C19—H19B 0.9800
C1—C2 1.5587 (15) C19—H19C 0.9800
C1—H1 1.0000 C21—H21A 0.9800
C2—C17 1.5198 (16) C21—H21B 0.9800
C2—C3 1.5399 (15) C21—H21C 0.9800
C2—H2 1.0000 C22—C23 1.5128 (17)
C3—C4 1.5129 (16) C22—H22A 0.9900
C3—C19 1.5255 (16) C22—H22B 0.9900
C4—C5 1.5011 (15) C24—C25 1.3911 (19)
C4—H4A 0.9900 C24—C29 1.3923 (18)
C4—H4B 0.9900 C25—C26 1.375 (2)
C5—C9 1.3958 (15) C25—H25 0.9500
C5—C6 1.4021 (16) C26—C27 1.386 (2)
C6—C7 1.3964 (16) C26—H26 0.9500
C6—C20 1.4334 (15) C27—C28 1.378 (2)
C8—C9 1.4088 (15) C27—H27 0.9500
C8—C21 1.5006 (15) C28—C29 1.387 (2)
C10—C15 1.3894 (16) C28—H28 0.9500
C10—C11 1.3957 (15) C29—H29 0.9500
C11—C12 1.3847 (16)
C7—S1—C22 100.59 (6) C15—C14—H14 120.3
C3—O2—H2A 108.6 C10—C15—C14 121.50 (11)
C13—O3—C16 117.10 (11) C10—C15—H15 119.3
C7—N1—C8 118.87 (10) C14—C15—H15 119.3
C23—N3—C24 127.59 (10) O3—C16—H16A 109.5
C23—N3—H3A 115.3 O3—C16—H16B 109.5
C24—N3—H3A 117.1 H16A—C16—H16B 109.5
C10—C1—C9 114.12 (9) O3—C16—H16C 109.5
C10—C1—C2 106.17 (9) H16A—C16—H16C 109.5
C9—C1—C2 112.94 (8) H16B—C16—H16C 109.5
C10—C1—H1 107.8 O1—C17—C18 122.75 (13)
C9—C1—H1 107.8 O1—C17—C2 118.98 (12)
C2—C1—H1 107.8 C18—C17—C2 118.24 (12)
C17—C2—C3 110.33 (9) C17—C18—H18A 109.5
C17—C2—C1 109.33 (9) C17—C18—H18B 109.5
C3—C2—C1 113.55 (9) H18A—C18—H18B 109.5
C17—C2—H2 107.8 C17—C18—H18C 109.5
C3—C2—H2 107.8 H18A—C18—H18C 109.5
C1—C2—H2 107.8 H18B—C18—H18C 109.5
O2—C3—C4 106.15 (9) C3—C19—H19A 109.5
O2—C3—C19 110.25 (9) C3—C19—H19B 109.5
C4—C3—C19 110.59 (10) H19A—C19—H19B 109.5
O2—C3—C2 110.17 (9) C3—C19—H19C 109.5
C4—C3—C2 107.61 (9) H19A—C19—H19C 109.5
C19—C3—C2 111.88 (9) H19B—C19—H19C 109.5
C5—C4—C3 112.99 (9) N2—C20—C6 177.76 (14)
C5—C4—H4A 109.0 C8—C21—H21A 109.5
C3—C4—H4A 109.0 C8—C21—H21B 109.5
C5—C4—H4B 109.0 H21A—C21—H21B 109.5
C3—C4—H4B 109.0 C8—C21—H21C 109.5
H4A—C4—H4B 107.8 H21A—C21—H21C 109.5
C9—C5—C6 118.41 (10) H21B—C21—H21C 109.5
C9—C5—C4 122.51 (10) C23—C22—S1 114.22 (9)
C6—C5—C4 119.07 (9) C23—C22—H22A 108.7
C7—C6—C5 119.41 (10) S1—C22—H22A 108.7
C7—C6—C20 120.66 (10) C23—C22—H22B 108.7
C5—C6—C20 119.93 (10) S1—C22—H22B 108.7
N1—C7—C6 122.32 (10) H22A—C22—H22B 107.6
N1—C7—S1 119.46 (9) O4—C23—N3 124.77 (12)
C6—C7—S1 118.22 (8) O4—C23—C22 122.14 (11)
N1—C8—C9 122.85 (10) N3—C23—C22 112.92 (10)
N1—C8—C21 114.24 (10) C25—C24—C29 119.47 (12)
C9—C8—C21 122.90 (10) C25—C24—N3 117.25 (11)
C5—C9—C8 117.89 (10) C29—C24—N3 123.27 (12)
C5—C9—C1 121.24 (10) C26—C25—C24 120.45 (14)
C8—C9—C1 120.80 (9) C26—C25—H25 119.8
C15—C10—C11 118.02 (10) C24—C25—H25 119.8
C15—C10—C1 120.86 (10) C25—C26—C27 120.43 (14)
C11—C10—C1 120.80 (10) C25—C26—H26 119.8
C12—C11—C10 121.20 (11) C27—C26—H26 119.8
C12—C11—H11 119.4 C28—C27—C26 119.13 (14)
C10—C11—H11 119.4 C28—C27—H27 120.4
C11—C12—C13 119.99 (11) C26—C27—H27 120.4
C11—C12—H12 120.0 C27—C28—C29 121.28 (14)
C13—C12—H12 120.0 C27—C28—H28 119.4
O3—C13—C14 124.61 (11) C29—C28—H28 119.4
O3—C13—C12 115.51 (11) C28—C29—C24 119.22 (13)
C14—C13—C12 119.87 (11) C28—C29—H29 120.4
C13—C14—C15 119.40 (11) C24—C29—H29 120.4
C13—C14—H14 120.3
C10—C1—C2—C17 −73.07 (11) C2—C1—C9—C5 −7.81 (14)
C9—C1—C2—C17 161.14 (9) C10—C1—C9—C8 53.90 (13)
C10—C1—C2—C3 163.24 (9) C2—C1—C9—C8 175.28 (9)
C9—C1—C2—C3 37.45 (12) C9—C1—C10—C15 −145.75 (11)
C17—C2—C3—O2 −68.34 (12) C2—C1—C10—C15 89.18 (12)
C1—C2—C3—O2 54.80 (12) C9—C1—C10—C11 40.85 (14)
C17—C2—C3—C4 176.35 (9) C2—C1—C10—C11 −84.22 (12)
C1—C2—C3—C4 −60.51 (11) C15—C10—C11—C12 −0.12 (17)
C17—C2—C3—C19 54.68 (13) C1—C10—C11—C12 173.46 (10)
C1—C2—C3—C19 177.82 (9) C10—C11—C12—C13 −1.27 (18)
O2—C3—C4—C5 −64.32 (11) C16—O3—C13—C14 −19.52 (18)
C19—C3—C4—C5 176.09 (9) C16—O3—C13—C12 161.09 (12)
C2—C3—C4—C5 53.62 (12) C11—C12—C13—O3 −179.06 (10)
C3—C4—C5—C9 −26.75 (15) C11—C12—C13—C14 1.52 (18)
C3—C4—C5—C6 154.50 (10) O3—C13—C14—C15 −179.75 (11)
C9—C5—C6—C7 −2.77 (16) C12—C13—C14—C15 −0.39 (18)
C4—C5—C6—C7 176.02 (10) C11—C10—C15—C14 1.28 (17)
C9—C5—C6—C20 177.84 (10) C1—C10—C15—C14 −172.30 (11)
C4—C5—C6—C20 −3.36 (16) C13—C14—C15—C10 −1.03 (18)
C8—N1—C7—C6 −2.18 (16) C3—C2—C17—O1 59.92 (14)
C8—N1—C7—S1 177.89 (8) C1—C2—C17—O1 −65.65 (14)
C5—C6—C7—N1 4.95 (17) C3—C2—C17—C18 −118.40 (12)
C20—C6—C7—N1 −175.67 (11) C1—C2—C17—C18 116.04 (12)
C5—C6—C7—S1 −175.12 (8) C7—S1—C22—C23 103.44 (9)
C20—C6—C7—S1 4.25 (15) C24—N3—C23—O4 7.0 (2)
C22—S1—C7—N1 −22.84 (10) C24—N3—C23—C22 −168.25 (11)
C22—S1—C7—C6 157.23 (9) S1—C22—C23—O4 36.74 (17)
C7—N1—C8—C9 −2.71 (16) S1—C22—C23—N3 −147.86 (9)
C7—N1—C8—C21 176.15 (10) C23—N3—C24—C25 155.07 (13)
C6—C5—C9—C8 −1.73 (15) C23—N3—C24—C29 −25.9 (2)
C4—C5—C9—C8 179.52 (10) C29—C24—C25—C26 0.4 (2)
C6—C5—C9—C1 −178.72 (9) N3—C24—C25—C26 179.45 (14)
C4—C5—C9—C1 2.53 (16) C24—C25—C26—C27 −0.7 (3)
N1—C8—C9—C5 4.65 (16) C25—C26—C27—C28 0.0 (3)
C21—C8—C9—C5 −174.11 (10) C26—C27—C28—C29 1.0 (3)
N1—C8—C9—C1 −178.34 (10) C27—C28—C29—C24 −1.3 (2)
C21—C8—C9—C1 2.90 (16) C25—C24—C29—C28 0.6 (2)
C10—C1—C9—C5 −129.19 (11) N3—C24—C29—C28 −178.39 (13)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1/C–C9 ring.

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1 0.87 2.13 2.8343 (14) 138
N3—H3A···O2i 0.91 2.03 2.9335 (14) 174
C2—H2···S1ii 1.00 2.86 3.8269 (12) 163
C18—H18A···N2ii 0.98 2.52 3.493 (2) 170
C21—H21C···O1iii 0.98 2.39 3.3593 (16) 169
C25—H25···Cg1i 0.95 2.79 3.6141 (18) 146

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+2, −y+1, −z+1.

Funding Statement

This work was funded by Tulane University grant .

References

  1. Al-Taifi, E. A., Maraei, I. S., Bakhite, E. A., Demirtas, G., Mague, J. T., Mohamed, S. K. & Ramli, Y. (2021). Acta Cryst. E77, 121–125. [DOI] [PMC free article] [PubMed]
  2. Ben Ali, K. & Retailleau, P. (2019). Acta Cryst. E75, 1399–1402. [DOI] [PMC free article] [PubMed]
  3. Bouasla, R., Berredjem, M., Aouf, N.-E. & Barbey, C. (2008). Acta Cryst. E64, o432. [DOI] [PMC free article] [PubMed]
  4. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  5. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  7. Hassan, A. Y., Sarg, M. T., Said, M. M. & El-Sebaey, S. A. (2013). Univ. Org. Chem. 1, 2.
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Langenohl, F., Otte, F. & Strohmann, C. (2020). Acta Cryst. E76, 298–302. [DOI] [PMC free article] [PubMed]
  10. Leal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196–8204. [DOI] [PubMed]
  11. Lehmann, A., Lechner, L., Radacki, K., Braunschweig, H. & Holzgrabe, U. (2017). Acta Cryst. E73, 867–870. [DOI] [PMC free article] [PubMed]
  12. Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017). IUCrData, 2, x170390.
  13. Martin, R. E., Lehmann, J., Alzieu, T., Lenz, M., Corrales, M. A. C., Aebi, J. D., Märki, H. P., Kuhn, B., Amrein, K., Mayweg, A. V. & Britton, R. (2016). Org. Biomol. Chem. 14, 5922–5927. [DOI] [PubMed]
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199. [DOI] [PMC free article] [PubMed]
  16. Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. C67, o100–o103. [DOI] [PubMed]
  17. Peters, R. J. G., Mehta, S. R., Fox, K. A. A., Zhao, F., Lewis, B. S., Kopecky, S. L., Diaz, R., Commerford, P. J., Valentin, V. & Yusuf, S. (2003). Circulation, 108, 1682–1687. [DOI] [PubMed]
  18. Selvaraj, J. P., Mary, S., Dhruba, J. B., Huidrom, B. S., Panneerselvam, Y. & Piskala Subburaman, K. (2020). Acta Cryst. E76, 1548–1550. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  23. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, M. A., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western Australia.
  24. Uredi, D., Motati, D. R. & Watkins, E. B. (2019). Chem. Commun. 55, 3270–3273. [DOI] [PubMed]
  25. Zhang, M., Zhang, Y., Jie, X., Zhao, H., Li, G. & Su, W. (2014). Org. Chem. Front. 1, 843–895.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021005430/yk2151sup1.cif

e-77-00663-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005430/yk2151Isup2.hkl

e-77-00663-Isup2.hkl (559.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005430/yk2151Isup3.cml

CCDC reference: 2085564

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES