The conformation of the title compound is partially determined by a strong, intramolecular O—H⋯O hydrogen bond. In the crystal, C—H⋯O hydrogen bonds link the molecules, forming chains along the a-axis direction, which are linked into strongly corrugated sheets parallel to the ac plane by C—H⋯O hydrogen bonds and C—H⋯π(ring) interactions. The sheets are associated through additional C—H⋯π(ring) interactions.
Keywords: crystal structure, hydrogen bond, N-oxide, C—H⋯π(ring), nitrones, Hirshfeld surface analysis
Abstract
The conformation of the title compound, C13H11NO2, is partially determined by a strong, intramolecular O—H⋯O hydrogen bond. The crystal packing consists of strongly corrugated layers parallel to the ac plane and associated through C—H⋯π(ring) interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most significant contributions to the crystal packing are from H⋯H (44.1%), C⋯H/H⋯C (29.4%) and O⋯H/H⋯O (17.3%) contacts.
Chemical context
Nitrones are a very important class of organic compounds as a result of their medicinal and pharmaceutical applications. They show antifungal (Salman et al., 2013 ▸), antibacterial (Chakraborty et al., 2010 ▸), neuroprotective (Chioua et al., 2012 ▸) and anticancer (Floyd et al., 2011 ▸) activities. In addition, nitrone compounds are widely used as antioxidant agents (Al-Mowali et al., 2014 ▸) because of their ability to scavenge free radicals. Based on these findings and following our interest in this area, we report herein the crystal structure of the title compound.
Structural commentary
The molecular structure of the title compound (Fig. 1 ▸) is almost planar, with maximum deviations of 0.398 (2) Å for O1 and −0.756 (2) Å for O2. The N1—O2 distance of 1.331 (2) Å is normal for a single bond and agrees well with those observed in other amine N-oxides. The dihedral angle between the aromatic rings (C1–C6 and C8–C13) is 1.94 (12) °. The torsion angles C2—C1—C7—N1, C1—C7—N1—C8, C1—C7—N1—O2, C7—N1—C8—C9 and O2—N1—C8–C-9 are −30.2 (3), −179.7 (2), −0.4 (3), 27.3 (3) and −152.0 (2)°, respectively. The conformation of the title compound is partially determined by a strong, intramolecular O1—H1⋯O2 hydrogen bond (Table 1 ▸).
Figure 1.
The title molecule with labelling scheme and 50% probability ellipsoids. The intramolecular hydrogen bond is shown by a dashed line.
Table 1. Hydrogen-bond geometry (Å, °).
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1⋯O2 | 0.97 | 1.53 | 2.479 (2) | 167 |
| C7—H7⋯O2i | 0.95 | 2.43 | 3.368 (3) | 167 |
| C10—H10⋯O1ii | 0.95 | 2.53 | 3.227 (3) | 131 |
| C11—H11⋯Cg1iii | 0.95 | 2.94 | 3.662 (3) | 136 |
| C4—H4⋯Cg2iv | 0.95 | 2.77 | 3.545 (3) | 140 |
Symmetry codes: (i) x-1, y, z; (ii) x-1, -y, z-{\script{1\over 2}}; (iii) x, -y, z-{\script{1\over 2}}; (iv) x, -y+1, z+{\script{1\over 2}}.
Supramolecular features
In the crystal, C7—H7⋯O2i hydrogen bonds (Table 1 ▸) link the molecules, forming chains along the a-axis direction. The chains are linked into strongly corrugated sheets parallel to the ac plane by C10—H10⋯O2ii hydrogen bonds and C11—H11⋯Cg1iii interactions (Cg1 is the centroid of the C1–C6 hydroxyphenyl ring; Table 1 ▸ and Fig. 2 ▸). The sheets are stacked along the b-axis direction by C4—H4⋯Cg2iv interactions (Cg2 is the centroid of the C8–C13 phenyl ring; Table 1 ▸ and Figs. 2 ▸ and 3 ▸).
Figure 2.
Detail of the intermolecular C—H⋯O hydrogen bonds and the C—H⋯π(ring) interactions (black and green dashed lines, respectively) viewed along the b-axis direction.
Figure 3.
Packing viewed along the (120) direction with intermolecular interactions shown as in Fig. 2 ▸.
Hirshfeld surface analysis
A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009 ▸) was carried out using CrystalExplorer17.5 (Turner et al., 2017 ▸) to visualize the intermolecular interactions in the title compound. The Hirshfeld surface mapped over d norm (Fig. 4 ▸) shows the expected bright-red spots near atoms O1, O2, H7 and H10, which are involved in the C—H⋯O hydrogen-bonding interactions. The bright-red spot near O1 indicates its role as a hydrogen-bond acceptor to (C10)H10 (Fig. 4 ▸) and another red region near O2 correlates with the C7—H7⋯O2 interaction.
Figure 4.

A view of the three-dimensional Hirshfeld surface with the C—H⋯O interactions for the title compound, plotted over d norm in the range −0.2242 to 1.2146 a.u. (a) front view, (b) back view.
The two-dimensional fingerprint plots show the relative contributions of the various types of contacts to the Hirshfeld surface for the title compound (McKinnon et al., 2007 ▸). The plots (Fig. 5 ▸) reveal that H⋯H and C⋯H/H⋯C interactions make the greatest contributions to the surface contacts, while O⋯H/H⋯O, C⋯C, N⋯H/H⋯N, N⋯C/C⋯N and O⋯C/C⋯O contacts are less significant (Tables 2 ▸ and 3 ▸).
Figure 5.
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O interactions. The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| O2⋯H7 | 2.43 | 1 + x, y, z |
| O1⋯H10 | 2.53 | 1 + x, −y, {1\over 2} + z |
| O2⋯H12 | 2.87 | x, 1 + y, z |
| C3⋯H12 | 3.02 | x, −y, {1\over 2} + z |
| H4⋯C11 | 2.86 | x, 1 − y, {1\over 2} + z |
| H6⋯H13 | 2.46 | −1 + x, 1 + y, z |
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.
| Contact | Percentage contribution |
|---|---|
| H⋯H | 44.1 |
| C⋯H/H⋯C | 29.4 |
| O⋯H/H⋯O | 17.3 |
| C⋯C | 5.3 |
| N⋯C/C⋯N | 1.7 |
| N⋯H/H⋯N | 1.5 |
| O⋯C/C⋯O | 0.7 |
Database survey
The four most closely related structures are (Z)-N-[(1,3-diphenyl-1H-pyrazol-4-yl)methanimine]-N-oxido (DEPVOM; Mohamed et al., 2018 ▸), (Z)-1,2-bis(3-bromophenyl)diazene 1-oxide (SIYHAK01; Goswami et al., 2018 ▸), (Z)-N-benzylidene-1-phenylmethanamine oxide hydrogen peroxide solvate (JELQOJ; Churakov et al., 2017 ▸) and (Z)-N-(2-chlorobenzylidene)aniline N-oxide (ERIXEJ; Fu et al., 2011 ▸).
In the crystal of DEPVOM, (101) layers are generated by C—H⋯O hydrogen bonds coupled with C—H⋯π(ring) and offset π–π stacking interactions. In the crystal of SIYHAK01, C—H⋯O and C—H⋯Br hydrogen bonds together with offset π–π interactions stack the molecules along the a-axis direction. In the crystal of JELQOJ, the organic and peroxide molecules are linked through both peroxide O—H donor groups to oxide O-atom acceptors, giving one-dimensional chains extending along the b-axis direction. Weak intermolecular C—H⋯O hydrogen-bonding interactions are also present. In the crystal of ERIXEJ, the molecule is stabilized by an intramolecular C—H⋯O hydrogen bond. The geometry about the C=N bond is Z [C—C—N—O torsion angle = −4.2 (3)°] and the phenyl and benzene rings are trans-oriented around the C=N bond. The phenyl and benzene rings make a dihedral angle of 56.99 (2)°.
Synthesis and crystallization
(Z)-(2-Hydroxyphenyl)methylidene]benzenimine N-oxide (nitrone) was prepared according to the reported procedures (Mobinikhaledi et al., 2005 ▸). 0.7 ml (6 mmol) of salicyaldehyde were added to a warmed solution of 0.8 g (6 mmol) N-phenylhydroxyamine in ethanol followed by stirring for 5 minutes, then standing at room temperature in the dark overnight gave the nitrone, which was recrystallized from ethanol in 53% yield; m.p. 387–388 K.
Refinement
Crystal and refinement details are presented in Table 4 ▸. The H atom of the OH group was found in difference-Fourier maps, and its positional parameters were fixed using the AFIX 3 instruction in SHELXL and were refined with the isotropic displacement parameter U iso(H) = 1.5U eq(O). The C-bound H atoms were positioned geometrically, with C—H = 0.95 Å, and constrained to ride on their parent atoms, withU iso(H) = 1.2U eq(C). Attempts to determine the absolute structure did not produce a definitive result, viz.: Flack x = 0.2 (3) by classical fit to all intensities 0.30 (14) from 611 selected quotients (Parsons’ method). A round of TWIN/BASF refinement gave BASF = 0.2 (4) with no improvement in the model.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C13H11NO2 |
| M r | 213.23 |
| Crystal system, space group | Monoclinic, P c |
| Temperature (K) | 150 |
| a, b, c (Å) | 5.5391 (1), 5.7873 (2), 16.0859 (4) |
| β (°) | 99.067 (1) |
| V (Å3) | 509.21 (2) |
| Z | 2 |
| Radiation type | Cu Kα |
| μ (mm−1) | 0.77 |
| Crystal size (mm) | 0.19 × 0.17 × 0.15 |
| Data collection | |
| Diffractometer | Bruker D8 VENTURE PHOTON 100 CMOS |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
| T min, T max | 0.77, 0.89 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 3578, 1654, 1607 |
| R int | 0.023 |
| (sin θ/λ)max (Å−1) | 0.618 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.033, 0.084, 1.06 |
| No. of reflections | 1654 |
| No. of parameters | 145 |
| No. of restraints | 2 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.18, −0.18 |
| Absolute structure | Flack x determined using 611 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸). |
| Absolute structure parameter | 0.30 (13) |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021004813/ey2006sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004813/ey2006Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021004813/ey2006Isup3.cml
CCDC reference: 2082055
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
| C13H11NO2 | F(000) = 224 |
| Mr = 213.23 | Dx = 1.391 Mg m−3 |
| Monoclinic, Pc | Cu Kα radiation, λ = 1.54178 Å |
| a = 5.5391 (1) Å | Cell parameters from 3430 reflections |
| b = 5.7873 (2) Å | θ = 5.6–72.4° |
| c = 16.0859 (4) Å | µ = 0.77 mm−1 |
| β = 99.067 (1)° | T = 150 K |
| V = 509.21 (2) Å3 | Block, yellow |
| Z = 2 | 0.19 × 0.17 × 0.15 mm |
Data collection
| Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1654 independent reflections |
| Radiation source: INCOATEC IµS micro–focus source | 1607 reflections with I > 2σ(I) |
| Mirror monochromator | Rint = 0.023 |
| Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 5.6° |
| ω scans | h = −6→6 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −7→7 |
| Tmin = 0.77, Tmax = 0.89 | l = −19→19 |
| 3578 measured reflections |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0441P)2 + 0.084P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.084 | (Δ/σ)max < 0.001 |
| S = 1.06 | Δρmax = 0.18 e Å−3 |
| 1654 reflections | Δρmin = −0.18 e Å−3 |
| 145 parameters | Absolute structure: Flack x determined using 611 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
| 2 restraints | Absolute structure parameter: 0.30 (13) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.8449 (3) | 0.3532 (3) | 0.64513 (12) | 0.0342 (4) | |
| H1 | 0.841875 | 0.289527 | 0.589214 | 0.051* | |
| O2 | 0.7828 (3) | 0.2215 (3) | 0.49662 (12) | 0.0338 (4) | |
| N1 | 0.5424 (3) | 0.1864 (3) | 0.48272 (13) | 0.0267 (4) | |
| C1 | 0.4520 (4) | 0.4953 (4) | 0.57874 (14) | 0.0260 (5) | |
| C2 | 0.6705 (4) | 0.5169 (4) | 0.63617 (15) | 0.0280 (5) | |
| C3 | 0.7030 (4) | 0.7093 (4) | 0.68930 (16) | 0.0328 (5) | |
| H3 | 0.852651 | 0.728354 | 0.726592 | 0.039* | |
| C4 | 0.5207 (5) | 0.8717 (4) | 0.68821 (18) | 0.0348 (5) | |
| H4 | 0.545906 | 1.001606 | 0.724635 | 0.042* | |
| C5 | 0.3009 (4) | 0.8470 (4) | 0.63443 (17) | 0.0349 (6) | |
| H5 | 0.174797 | 0.958261 | 0.634589 | 0.042* | |
| C6 | 0.2662 (4) | 0.6611 (4) | 0.58092 (16) | 0.0304 (5) | |
| H6 | 0.114410 | 0.643651 | 0.544695 | 0.036* | |
| C7 | 0.3908 (4) | 0.3082 (4) | 0.51888 (15) | 0.0270 (5) | |
| H7 | 0.222390 | 0.270734 | 0.504648 | 0.032* | |
| C8 | 0.4586 (4) | 0.0034 (4) | 0.42327 (14) | 0.0263 (5) | |
| C9 | 0.2257 (4) | 0.0070 (4) | 0.37527 (15) | 0.0304 (5) | |
| H9 | 0.116018 | 0.130115 | 0.380872 | 0.036* | |
| C10 | 0.1571 (4) | −0.1720 (4) | 0.31930 (17) | 0.0340 (5) | |
| H10 | −0.001169 | −0.171673 | 0.286384 | 0.041* | |
| C11 | 0.3176 (5) | −0.3521 (4) | 0.31083 (16) | 0.0327 (5) | |
| H11 | 0.269918 | −0.473587 | 0.271973 | 0.039* | |
| C12 | 0.5480 (5) | −0.3533 (4) | 0.35956 (18) | 0.0324 (5) | |
| H12 | 0.657396 | −0.477040 | 0.354374 | 0.039* | |
| C13 | 0.6199 (4) | −0.1748 (4) | 0.41587 (16) | 0.0301 (5) | |
| H13 | 0.778043 | −0.175337 | 0.448865 | 0.036* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0260 (9) | 0.0382 (9) | 0.0363 (9) | 0.0038 (6) | −0.0010 (7) | 0.0001 (7) |
| O2 | 0.0137 (7) | 0.0461 (9) | 0.0418 (9) | −0.0015 (7) | 0.0047 (7) | −0.0028 (8) |
| N1 | 0.0170 (9) | 0.0340 (9) | 0.0290 (10) | −0.0013 (7) | 0.0031 (7) | 0.0025 (8) |
| C1 | 0.0253 (12) | 0.0287 (11) | 0.0250 (12) | −0.0010 (8) | 0.0073 (10) | 0.0032 (8) |
| C2 | 0.0232 (12) | 0.0314 (11) | 0.0301 (12) | 0.0004 (8) | 0.0057 (10) | 0.0066 (9) |
| C3 | 0.0308 (13) | 0.0359 (12) | 0.0320 (12) | −0.0082 (10) | 0.0059 (10) | −0.0024 (10) |
| C4 | 0.0380 (14) | 0.0300 (11) | 0.0397 (13) | −0.0066 (9) | 0.0166 (11) | −0.0022 (10) |
| C5 | 0.0346 (14) | 0.0328 (12) | 0.0403 (15) | 0.0032 (9) | 0.0150 (11) | 0.0065 (10) |
| C6 | 0.0232 (11) | 0.0362 (12) | 0.0321 (12) | 0.0026 (9) | 0.0054 (9) | 0.0071 (10) |
| C7 | 0.0185 (10) | 0.0327 (11) | 0.0293 (11) | 0.0009 (8) | 0.0028 (9) | 0.0049 (9) |
| C8 | 0.0241 (11) | 0.0292 (11) | 0.0258 (13) | −0.0022 (8) | 0.0044 (10) | 0.0029 (8) |
| C9 | 0.0218 (11) | 0.0379 (12) | 0.0316 (13) | 0.0017 (9) | 0.0053 (10) | −0.0012 (9) |
| C10 | 0.0246 (11) | 0.0448 (13) | 0.0329 (12) | −0.0037 (9) | 0.0052 (10) | −0.0013 (11) |
| C11 | 0.0328 (12) | 0.0340 (12) | 0.0328 (13) | −0.0066 (9) | 0.0096 (10) | −0.0021 (10) |
| C12 | 0.0336 (12) | 0.0307 (11) | 0.0341 (12) | 0.0044 (9) | 0.0096 (10) | 0.0023 (10) |
| C13 | 0.0249 (11) | 0.0350 (12) | 0.0307 (13) | 0.0025 (8) | 0.0056 (9) | 0.0053 (9) |
Geometric parameters (Å, º)
| O1—C2 | 1.345 (3) | C5—H5 | 0.9500 |
| O1—H1 | 0.9697 | C6—H6 | 0.9500 |
| O2—N1 | 1.331 (2) | C7—H7 | 0.9500 |
| N1—C7 | 1.302 (3) | C8—C13 | 1.382 (3) |
| N1—C8 | 1.454 (3) | C8—C9 | 1.395 (3) |
| C1—C2 | 1.407 (3) | C9—C10 | 1.386 (4) |
| C1—C6 | 1.411 (3) | C9—H9 | 0.9500 |
| C1—C7 | 1.453 (3) | C10—C11 | 1.391 (4) |
| C2—C3 | 1.398 (4) | C10—H10 | 0.9500 |
| C3—C4 | 1.377 (4) | C11—C12 | 1.389 (4) |
| C3—H3 | 0.9500 | C11—H11 | 0.9500 |
| C4—C5 | 1.385 (4) | C12—C13 | 1.390 (4) |
| C4—H4 | 0.9500 | C12—H12 | 0.9500 |
| C5—C6 | 1.372 (4) | C13—H13 | 0.9500 |
| C2—O1—H1 | 105.1 | N1—C7—C1 | 126.9 (2) |
| C7—N1—O2 | 122.78 (18) | N1—C7—H7 | 116.6 |
| C7—N1—C8 | 121.79 (18) | C1—C7—H7 | 116.6 |
| O2—N1—C8 | 115.43 (17) | C13—C8—C9 | 121.2 (2) |
| C2—C1—C6 | 118.6 (2) | C13—C8—N1 | 117.2 (2) |
| C2—C1—C7 | 125.97 (19) | C9—C8—N1 | 121.66 (19) |
| C6—C1—C7 | 115.4 (2) | C10—C9—C8 | 118.9 (2) |
| O1—C2—C3 | 118.3 (2) | C10—C9—H9 | 120.5 |
| O1—C2—C1 | 122.5 (2) | C8—C9—H9 | 120.5 |
| C3—C2—C1 | 119.1 (2) | C9—C10—C11 | 120.6 (2) |
| C4—C3—C2 | 120.8 (2) | C9—C10—H10 | 119.7 |
| C4—C3—H3 | 119.6 | C11—C10—H10 | 119.7 |
| C2—C3—H3 | 119.6 | C12—C11—C10 | 119.6 (2) |
| C3—C4—C5 | 120.5 (2) | C12—C11—H11 | 120.2 |
| C3—C4—H4 | 119.7 | C10—C11—H11 | 120.2 |
| C5—C4—H4 | 119.7 | C11—C12—C13 | 120.5 (2) |
| C6—C5—C4 | 119.6 (2) | C11—C12—H12 | 119.8 |
| C6—C5—H5 | 120.2 | C13—C12—H12 | 119.8 |
| C4—C5—H5 | 120.2 | C8—C13—C12 | 119.2 (2) |
| C5—C6—C1 | 121.2 (2) | C8—C13—H13 | 120.4 |
| C5—C6—H6 | 119.4 | C12—C13—H13 | 120.4 |
| C1—C6—H6 | 119.4 | ||
| C6—C1—C2—O1 | 172.1 (2) | C6—C1—C7—N1 | 153.4 (2) |
| C7—C1—C2—O1 | −4.2 (3) | C7—N1—C8—C13 | −153.0 (2) |
| C6—C1—C2—C3 | −4.4 (3) | O2—N1—C8—C13 | 27.7 (3) |
| C7—C1—C2—C3 | 179.3 (2) | C7—N1—C8—C9 | 27.3 (3) |
| O1—C2—C3—C4 | −174.0 (2) | O2—N1—C8—C9 | −152.0 (2) |
| C1—C2—C3—C4 | 2.6 (3) | C13—C8—C9—C10 | −0.1 (3) |
| C2—C3—C4—C5 | 0.1 (4) | N1—C8—C9—C10 | 179.6 (2) |
| C3—C4—C5—C6 | −1.0 (4) | C8—C9—C10—C11 | −0.2 (4) |
| C4—C5—C6—C1 | −0.9 (4) | C9—C10—C11—C12 | 0.6 (4) |
| C2—C1—C6—C5 | 3.6 (3) | C10—C11—C12—C13 | −0.7 (4) |
| C7—C1—C6—C5 | −179.7 (2) | C9—C8—C13—C12 | 0.0 (3) |
| O2—N1—C7—C1 | −0.4 (3) | N1—C8—C13—C12 | −179.8 (2) |
| C8—N1—C7—C1 | −179.7 (2) | C11—C12—C13—C8 | 0.4 (4) |
| C2—C1—C7—N1 | −30.2 (3) |
Hydrogen-bond geometry (Å, º)
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1···O2 | 0.97 | 1.53 | 2.479 (2) | 167 |
| C7—H7···O2i | 0.95 | 2.43 | 3.368 (3) | 167 |
| C10—H10···O1ii | 0.95 | 2.53 | 3.227 (3) | 131 |
| C11—H11···Cg1iii | 0.95 | 2.94 | 3.662 (3) | 136 |
| C4—H4···Cg2iv | 0.95 | 2.77 | 3.545 (3) | 140 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y, z−1/2; (iii) x, −y, z−1/2; (iv) x, −y+1, z+1/2.
Funding Statement
This work was funded by National Science Foundation grant 1228232. Tulane University grant .
References
- Al-Mowali, A. H., Majeed, N. N. & Abbas, A. F. (2014). Res. J. Pharm. Biol. Chem. Sci. 5, 2119–2123.
- Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
- Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Chakraborty, B., Schhetric, M., Kafly, S. & Samanta, A. (2010). Indian J. Chem. Sect. B, 49, 209–215.
- Chioua, M., Sucunza, D., Soriano, E., Hadjipavlou-Litina, D., Alcázar, A., Ayuso, I., Oset-Gasque, M. J., González, M. P., Monjas, L., Rodríguez-Franco, M. I., Marco-Contelles, J. & Samadi, A. (2012). J. Med. Chem. 55, 153–168. [DOI] [PubMed]
- Churakov, A. V., Prikhodchenko, P. V., Medvedev, A. G. & Mikhaylov, A. A. (2017). Acta Cryst. E73, 1666–1669. [DOI] [PMC free article] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Floyd, R. A, Chandru, H. K., He, T. & Towner, R. (2011). Anticancer Agents Med. Chem. 11, 373–379. [DOI] [PMC free article] [PubMed]
- Fu, Y., Liu, Y., Yang, Y. & Chen, Y. (2011). Acta Cryst. E67, o1320. [DOI] [PMC free article] [PubMed]
- Goswami, S. K., Hanton, L. R., McAdam, C. J., Moratti, S. C. & Simpson, J. (2018). IUCrData, 3, x181486.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
- Mobinikhaledi, A., Foroughifar, N. & Kalate, Z. (2005). Turk. J. Chem. 29, 147–152.
- Mohamed, S. K., Mague, J. T., Akkurt, M., Said, A. I., Hawaiz, F. E. & Elgarhy, S. M. I. (2018). IUCrData, 3, x180208.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Salman, H. H. & Majeed, N. N. (2013). J. Basrah Res. 39, 99–111.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021004813/ey2006sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021004813/ey2006Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021004813/ey2006Isup3.cml
CCDC reference: 2082055
Additional supporting information: crystallographic information; 3D view; checkCIF report




