Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 May 21;77(Pt 6):643–646. doi: 10.1107/S2056989021005247

Crystal structure and Hirshfeld surface analysis of 2-(2-oxo-3-phenyl-1,2,3,8a-tetra­hydro­quinoxalin-1-yl)ethyl acetate

Nadeem Abad a,b, Lhoussaine El Ghayati c, Camille Kalonji Mubengayi d,*, El Mokhtar Essassi c, Savaş Kaya e, Joel T Mague f, Youssef Ramli a,*
PMCID: PMC8183448  PMID: 34164144

The di­hydro­quinoxaline moiety, with the exception of the N atom, is essentially planar with the attached phenyl ring inclined to it by 11.64 (6)° and the inner part of the methyl­propano­ate group nearly perpendicular to it. In the crystal, inversion dimers formed by C—H⋯O hydrogen bonds are connected into oblique stacks by π-stacking and C—H⋯π(ring) inter­actions.

Keywords: crystal structure, di­hydro­quinoxaline, hydrogen bond, π-stacking, C—H⋯π(ring)

Abstract

In the title mol­ecule, C18H16N2O3, the di­hydro­quinoxaline moiety, with the exception of the N atom is essentially planar with the inner part of the methyl­propano­ate group (CH2—CH2—O) nearly perpendicular to it. In the crystal, inversion dimers formed by C—H⋯O hydrogen bonds are connected into oblique stacks by π-stacking and C—H⋯π(ring) inter­actions.

Chemical context  

Quinoxaline are a class of nitro­gen containing heterocyclic compounds, found in many biologically active drugs (Ramli & Essassi, 2015; Ramli et al., 2014). In addition, this heterocyclic scaffold possess anti­corrosion characteristics (El Ouali et al., 2010; Zarrok et al., 2012; Tazouti et al., 2016; El Aoufir et al., 2016; Laabaissi et al., 2019). In a continuation of our recent work focused on the synthesis and biological evaluation of novel heterocyclic compounds (Guerrab et al. 2019, 2020, 2021; Abad et al., 2021a ,b ; Missioui et al. 2021) we report here the crystal structure of the title compound (Fig. 1). As with many biologically active mol­ecules, the mol­ecular conformation adopted may have a significant effect on its activity.graphic file with name e-77-00643-scheme1.jpg

Figure 1.

Figure 1

The title mol­ecule with labelling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bonds are shown by dashed lines.

Structural commentary  

The di­hydro­quinoxaline moiety, with the exception of N1, is planar to within 0.0186 (9) Å (r.m.s. deviation of the nine fitted atoms = 0.0116 Å). N1 lies 0.0526 (12) Å below the mean plane. The C9–C14 phenyl ring is inclined to the above plane by 11.64 (6)° while the inner part (CH2—CH2—O) of the methyl propano­ate substituent is nearly perpendicular to the di­hydro­quinoxaline unit, as indicated by the angle of 87.34 (6)° between the N1/C15/C16/O2 and N2/C1–C8 planes. The overall conformation is determined in part by the intra­molecular C5—H5⋯O3 and C14—H14⋯O1 hydrogen bonds (Table 1 and Fig. 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O3i 0.974 (16) 2.526 (16) 3.4713 (17) 163.6 (11)
C5—H5⋯O3 0.992 (15) 2.592 (16) 3.5435 (15) 160.7 (12)
C14—H14⋯O1 0.963 (15) 2.232 (16) 2.8387 (16) 120.0 (12)
C16—H16B⋯O3ii 0.993 (14) 2.553 (14) 3.3632 (16) 138.7 (10)
C18—H18ACg2iii 0.97 (2) 2.93 (2) 3.7585 (17) 144.2 (17)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1.

Supra­molecular features  

In the crystal, inversion dimers are formed by C4—H4⋯O3i hydrogen bonds [Table 1; symmetry code: (i) −x + 2, −y + 1, −z + 1] and are connected into oblique stacks by a combination of π-stacking inter­actions between the C1/C6/N1/C7/C8/N2 and C9–C14 rings [centroid–centroid distance = 3.7786 (9) Å, dihedral angle = 12.20 (6)°] and in addition C16—H16B⋯O3ii and C18—H18ACg2iii inter­actions [Table 1 and Fig. 2; Cg2 is the centroid of the C1–C6 ring; symmetry codes: (ii) x − 1, y, z, (iii) −x + 1, −y + 1, −z + 1]. The crystal packing also shows a C17=O3⋯Cg2 inter­action [O3⋯Cg2 = 3.9578 (12) Å, C17⋯Cg2 = 3.7440 (16) Å, C17=O3⋯Cg2 = 71.04 (8)°].

Figure 2.

Figure 2

Perspective view of the packing. Inter­molecular C—H⋯O hydrogen bonds are shown by black dashed lines while π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines.

Database survey  

A survey of the Cambridge Structural Database (Version 5.42, last update February 2021; Groom et al., 2016) using the search fragment II yielded 30 hits of which those most similar to the title mol­ecule have the formula III with R = Me and R′ = CH2CO2H (DEZJAW; Missioui et al., 2018), CH2C≡CH (DUCYUW; Benzeid et al., 2009a ), benzyl [DUSHUV (Ramli et al., 2010b ) and DUSHUV01 (Ramli et al., 2018)], Et (IGANOU; Benzeid et al., 2008), CH2CH=CH2 (YUPXAJ; Ramli et al., 2010a ), with R = CF3 and R′ = i-Bu (DUBPUO; Wei et al., 2019), with R = Ph and R′ = CH2(cyclo-CHCH2O) (NIBXEE; Abad et al., 2018a ), benzyl (PUGGII; Benzeid et al., 2009b ), CH2CH2CH2OH (RIRBOM; Abad et al., 2018b ), CH2CO2Et (XEXWIJ; Abad et al., 2018c ), CH2CH=CH2 (YAJGEX; Benzeid et al., 2011) and with R = 3-NO2-C6H4 and R′ = benzyl (XIKHAD; Das et al., 2018).graphic file with name e-77-00643-scheme2.jpg

In the majority of the hits, the di­hydro­quinoxaline ring is essentially planar with the dihedral angle between the constituent rings being less than 1° or having the nitro­gen bearing the exocyclic substituent less than 0.03 Å from the mean plane of the remaining nine atoms. Two notable exceptions are DEZJAW, where the dihedral angle between the two rings is 3.32°, and RIRBOM, where the nitro­gen bearing the exocyclic substituent deviates by 0.062 Å from the plane defined by the other nine atoms.

Hirshfeld surface analysis  

An effective means of probing inter­molecular inter­actions is Hirshfeld surface analysis (McKinnon et al., 2007; Spackman & Jayatilaka, 2009), which can be conveniently carried out with Crystal Explorer 17 (Turner et al., 2017). A detailed description of the use of Crystal Explorer 17 and the plots obtained has been published (Tan et al., 2019) and will not be given here. Fig. 3 a presents front (top) and side (bottom) views of the Hirshfeld surface plotted over d norm in the range −0.1367 to 1.2965 a.u. One of the intra­molecular C—H⋯O hydrogen bonds is indicated by the arrow at the left in the front view while those leading to the formation of the inversion dimers are shown by the arrows on the right of the front view. The C—H⋯π(ring) inter­action and the π-stacking inter­actions are represented by the red spots designated by arrows in the side view. Fig. 3 b presents the same two views of the surface plotted over the shape-index. In the front view, the π-stacking inter­action is evident at the center as an orange triangle surrounded by blue triangles. Fig. 3 c has the same two views of the surface plotted over the curvature index, with the flat area in the center indicating the locus of the π-stacking inter­action. Fig. 4 presents fingerprint plots for all inter­molecular inter­actions (a) and those delineated into H⋯H contacts (b, 49.4%), H⋯O/O⋯H contacts (c, 18.2%), H⋯C/C⋯H contacts (d, 17.8%) and C⋯C contacts (e, 7.2%).

Figure 3.

Figure 3

Front (top) and side (bottom) views of the Hirshfeld surface plotted over (a) d norm, (b) shape-index and (c) curvature.

Figure 4.

Figure 4

Two dimensional fingerprint plots showing (a) all inter­molecular inter­actions and those delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H and (e) C⋯C inter­actions.

Synthesis and crystallization  

To a solution of 2-oxo-3-phenyl-1,2-di­hydro­quinoxaline (0.5 g, 2.25 mmol) in N,N-di­methyl­formamide (15 ml) were added 2-bromo­ethyl acetate (0.4 ml, 2.25 mmol), potassium carbonate (0.31 g, 2.25 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 24 h. The solution was filtered and the solvent removed under reduced pressure. The residue thus obtained was chromatographed on a silica gel column using a hexa­ne/ethyl acetate 9.5: 0.5 mixture as eluent. The solid obtained was recrystallized from ethanol solution to afford colorless column-like specimen of the title compound. Yield: 0.50 g, 67%; m.p. 471–473 K.

1H NMR (Bruker Avance 300 MHz, CDCl3) δ (ppm): 8.24 (d, 2H, Ar—H); 7.91 (d, 1H, Ar—H); 7.82 (m, 3H, Ar—H); 7.53 (m, 1H, Ar—H); 7.25 (m, 2H, Ar—H); 4.73 (t, 2H, O—CH2); 3.92 (t, 2H, N—CH2); 2.23 (s, 3H, OCOCH3).

13C NMR (Bruker Avance 75 MHz, CDCl3) δ (ppm):46.15 (N—CH2); 61.15 (O—CH2); 114.38, 123.82, 127.01, 127.72, 128.13, 128.96, 129.68, 130.33, 130.45,130.62 (CH—Ar); 132.78, 133.36, 135.40, 136.05, 154.24(Cq); 156.92 (C=O); 177.82 (O—C=O).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located from a difference electron-density map and freely refined.

Table 2. Experimental details.

Crystal data
Chemical formula C18H16N2O3
M r 308.33
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 120
a, b, c (Å) 5.3518 (6), 11.6989 (14), 13.3527 (16)
α, β, γ (°) 64.019 (2), 80.323 (2), 76.952 (2)
V3) 729.83 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.42 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.87, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 14193, 3909, 2929
R int 0.028
(sin θ/λ)max−1) 0.688
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.142, 1.00
No. of reflections 3909
No. of parameters 272
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.47, −0.23

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018/1 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021005247/vm2249sup1.cif

e-77-00643-sup1.cif (428.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005247/vm2249Isup2.hkl

e-77-00643-Isup2.hkl (311.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005247/vm2249Isup3.cml

CCDC reference: 2062956

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR and EME; synthesis, NA and LEG; writing (review and editing of the manuscript) CKM, JTM and YR; formal analysis, SK and JTM; crystal-structure determination, JTM; validation, JTM and YR, project administration, YR

supplementary crystallographic information

Crystal data

C18H16N2O3 Z = 2
Mr = 308.33 F(000) = 324
Triclinic, P1 Dx = 1.403 Mg m3
a = 5.3518 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.6989 (14) Å Cell parameters from 5207 reflections
c = 13.3527 (16) Å θ = 3.1–29.3°
α = 64.019 (2)° µ = 0.10 mm1
β = 80.323 (2)° T = 120 K
γ = 76.952 (2)° Column, colourless
V = 729.83 (15) Å3 0.42 × 0.18 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer 3909 independent reflections
Radiation source: fine-focus sealed tube 2929 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 8.3333 pixels mm-1 θmax = 29.3°, θmin = 1.7°
φ and ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −16→16
Tmin = 0.87, Tmax = 0.99 l = −18→18
14193 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: difference Fourier map
wR(F2) = 0.142 All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0999P)2] where P = (Fo2 + 2Fc2)/3
3909 reflections (Δ/σ)max < 0.001
272 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 30 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.24048 (17) 0.11347 (8) 0.45539 (7) 0.0287 (2)
O2 0.42582 (17) 0.24290 (8) 0.68691 (6) 0.0264 (2)
O3 0.74296 (17) 0.36037 (9) 0.62940 (7) 0.0308 (2)
N1 0.52749 (18) 0.24890 (9) 0.40271 (7) 0.0209 (2)
N2 0.46952 (18) 0.31557 (9) 0.18053 (7) 0.0205 (2)
C1 0.6193 (2) 0.37704 (11) 0.20843 (9) 0.0198 (2)
C2 0.7488 (2) 0.47088 (11) 0.12307 (9) 0.0229 (3)
H2 0.731 (3) 0.4919 (13) 0.0454 (12) 0.033 (4)*
C3 0.9057 (2) 0.53135 (11) 0.14791 (10) 0.0253 (3)
H3 0.999 (3) 0.5940 (13) 0.0898 (11) 0.025 (3)*
C4 0.9332 (2) 0.50106 (12) 0.25984 (10) 0.0240 (3)
H4 1.043 (3) 0.5462 (13) 0.2757 (11) 0.023 (3)*
C5 0.8070 (2) 0.40967 (11) 0.34551 (10) 0.0229 (3)
H5 0.835 (3) 0.3898 (15) 0.4234 (13) 0.035 (4)*
C6 0.6527 (2) 0.34508 (11) 0.32082 (9) 0.0197 (2)
C7 0.3624 (2) 0.19025 (11) 0.37929 (9) 0.0209 (2)
C8 0.3496 (2) 0.22703 (11) 0.25807 (9) 0.0193 (2)
C9 0.2018 (2) 0.16113 (11) 0.22093 (9) 0.0210 (2)
C10 0.2376 (3) 0.18294 (12) 0.10782 (10) 0.0268 (3)
H10 0.365 (3) 0.2385 (15) 0.0602 (13) 0.040 (4)*
C11 0.1007 (3) 0.12852 (13) 0.06609 (10) 0.0307 (3)
H11 0.131 (3) 0.1475 (15) −0.0164 (14) 0.045 (4)*
C12 −0.0746 (3) 0.05042 (12) 0.13563 (11) 0.0299 (3)
H12 −0.174 (3) 0.0113 (13) 0.1067 (11) 0.026 (3)*
C13 −0.1069 (2) 0.02574 (12) 0.24773 (11) 0.0282 (3)
H13 −0.229 (3) −0.0255 (14) 0.2925 (12) 0.030 (4)*
C14 0.0284 (2) 0.08023 (11) 0.29077 (10) 0.0239 (3)
H14 −0.004 (3) 0.0579 (14) 0.3697 (12) 0.030 (4)*
C15 0.5682 (2) 0.20405 (12) 0.52109 (9) 0.0224 (3)
H15A 0.751 (3) 0.2084 (12) 0.5233 (10) 0.019 (3)*
H15B 0.546 (2) 0.1157 (14) 0.5606 (11) 0.023 (3)*
C16 0.3790 (2) 0.28659 (12) 0.57099 (9) 0.0246 (3)
H16A 0.388 (3) 0.3773 (14) 0.5287 (11) 0.027 (3)*
H16B 0.200 (3) 0.2750 (12) 0.5718 (10) 0.024 (3)*
C17 0.6177 (2) 0.28800 (12) 0.70394 (10) 0.0246 (3)
C18 0.6508 (3) 0.23944 (15) 0.82550 (11) 0.0319 (3)
H18A 0.545 (4) 0.305 (2) 0.8477 (19) 0.085 (7)*
H18B 0.600 (4) 0.1579 (19) 0.8692 (16) 0.063 (5)*
H18C 0.829 (4) 0.2289 (18) 0.8386 (15) 0.060 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0367 (5) 0.0329 (5) 0.0186 (4) −0.0178 (4) 0.0010 (3) −0.0080 (4)
O2 0.0315 (5) 0.0335 (5) 0.0192 (4) −0.0123 (4) 0.0016 (3) −0.0136 (4)
O3 0.0309 (5) 0.0397 (5) 0.0282 (4) −0.0145 (4) 0.0022 (4) −0.0175 (4)
N1 0.0248 (5) 0.0241 (5) 0.0160 (4) −0.0082 (4) 0.0008 (4) −0.0094 (4)
N2 0.0230 (5) 0.0203 (5) 0.0195 (4) −0.0044 (4) −0.0001 (4) −0.0097 (4)
C1 0.0212 (5) 0.0209 (5) 0.0188 (5) −0.0040 (4) 0.0007 (4) −0.0102 (4)
C2 0.0267 (6) 0.0224 (6) 0.0191 (5) −0.0050 (5) 0.0012 (4) −0.0089 (4)
C3 0.0282 (6) 0.0221 (6) 0.0236 (6) −0.0081 (5) 0.0039 (5) −0.0080 (5)
C4 0.0239 (6) 0.0247 (6) 0.0280 (6) −0.0063 (5) −0.0005 (4) −0.0147 (5)
C5 0.0241 (6) 0.0256 (6) 0.0220 (5) −0.0051 (4) −0.0004 (4) −0.0127 (5)
C6 0.0203 (5) 0.0205 (5) 0.0185 (5) −0.0043 (4) 0.0017 (4) −0.0091 (4)
C7 0.0237 (6) 0.0216 (5) 0.0191 (5) −0.0063 (4) 0.0002 (4) −0.0097 (4)
C8 0.0209 (5) 0.0201 (5) 0.0178 (5) −0.0029 (4) −0.0013 (4) −0.0092 (4)
C9 0.0225 (6) 0.0200 (5) 0.0217 (5) −0.0020 (4) −0.0038 (4) −0.0097 (4)
C10 0.0338 (7) 0.0276 (6) 0.0223 (5) −0.0105 (5) −0.0018 (5) −0.0110 (5)
C11 0.0415 (7) 0.0316 (7) 0.0246 (6) −0.0096 (5) −0.0061 (5) −0.0141 (5)
C12 0.0322 (7) 0.0285 (6) 0.0373 (7) −0.0059 (5) −0.0088 (5) −0.0188 (6)
C13 0.0266 (6) 0.0269 (6) 0.0337 (6) −0.0085 (5) −0.0009 (5) −0.0137 (5)
C14 0.0235 (6) 0.0243 (6) 0.0246 (6) −0.0049 (4) −0.0009 (4) −0.0109 (5)
C15 0.0265 (6) 0.0247 (6) 0.0170 (5) −0.0068 (5) −0.0007 (4) −0.0089 (4)
C16 0.0254 (6) 0.0309 (6) 0.0202 (5) −0.0069 (5) −0.0011 (4) −0.0122 (5)
C17 0.0245 (6) 0.0294 (6) 0.0241 (5) −0.0037 (5) −0.0003 (4) −0.0161 (5)
C18 0.0388 (8) 0.0373 (8) 0.0229 (6) −0.0034 (6) −0.0053 (5) −0.0159 (6)

Geometric parameters (Å, º)

O1—C7 1.2275 (13) C9—C14 1.3995 (16)
O2—C17 1.3467 (14) C9—C10 1.4036 (15)
O2—C16 1.4489 (13) C10—C11 1.3828 (17)
O3—C17 1.2043 (14) C10—H10 0.990 (16)
N1—C7 1.3800 (14) C11—C12 1.3884 (19)
N1—C6 1.3882 (14) C11—H11 1.016 (16)
N1—C15 1.4692 (13) C12—C13 1.3822 (18)
N2—C8 1.3016 (14) C12—H12 0.988 (14)
N2—C1 1.3763 (14) C13—C14 1.3894 (17)
C1—C2 1.4022 (15) C13—H13 0.934 (15)
C1—C6 1.4114 (14) C14—H14 0.962 (14)
C2—C3 1.3721 (17) C15—C16 1.5155 (17)
C2—H2 0.972 (15) C15—H15A 0.996 (13)
C3—C4 1.4027 (16) C15—H15B 0.958 (14)
C3—H3 0.962 (13) C16—H16A 0.967 (14)
C4—C5 1.3795 (16) C16—H16B 0.993 (14)
C4—H4 0.973 (14) C17—C18 1.4940 (16)
C5—C6 1.3975 (16) C18—H18A 0.97 (2)
C5—H5 0.992 (15) C18—H18B 0.95 (2)
C7—C8 1.4911 (14) C18—H18C 0.97 (2)
C8—C9 1.4861 (15)
C17—O2—C16 115.33 (9) C9—C10—H10 117.0 (9)
C7—N1—C6 123.19 (9) C10—C11—C12 120.53 (12)
C7—N1—C15 116.52 (9) C10—C11—H11 118.3 (9)
C6—N1—C15 120.28 (9) C12—C11—H11 121.2 (9)
C8—N2—C1 120.49 (9) C13—C12—C11 119.10 (11)
N2—C1—C2 119.20 (9) C13—C12—H12 119.6 (8)
N2—C1—C6 121.67 (10) C11—C12—H12 121.3 (8)
C2—C1—C6 119.10 (10) C12—C13—C14 121.02 (12)
C3—C2—C1 120.73 (10) C12—C13—H13 117.5 (9)
C3—C2—H2 119.6 (8) C14—C13—H13 121.4 (9)
C1—C2—H2 119.7 (8) C13—C14—C9 120.32 (11)
C2—C3—C4 119.78 (11) C13—C14—H14 116.0 (9)
C2—C3—H3 121.2 (8) C9—C14—H14 123.7 (9)
C4—C3—H3 119.0 (8) N1—C15—C16 110.08 (9)
C5—C4—C3 120.72 (11) N1—C15—H15A 106.2 (7)
C5—C4—H4 120.7 (8) C16—C15—H15A 112.9 (7)
C3—C4—H4 118.5 (8) N1—C15—H15B 109.3 (8)
C4—C5—C6 119.78 (10) C16—C15—H15B 110.1 (8)
C4—C5—H5 118.0 (9) H15A—C15—H15B 108.2 (11)
C6—C5—H5 122.2 (9) O2—C16—C15 109.30 (10)
N1—C6—C5 122.87 (9) O2—C16—H16A 111.5 (8)
N1—C6—C1 117.29 (10) C15—C16—H16A 111.6 (8)
C5—C6—C1 119.84 (10) O2—C16—H16B 105.9 (7)
O1—C7—N1 120.36 (10) C15—C16—H16B 110.3 (7)
O1—C7—C8 124.70 (10) H16A—C16—H16B 108.0 (11)
N1—C7—C8 114.94 (9) O3—C17—O2 123.41 (10)
N2—C8—C9 117.09 (9) O3—C17—C18 124.81 (11)
N2—C8—C7 122.12 (10) O2—C17—C18 111.77 (10)
C9—C8—C7 120.78 (9) C17—C18—H18A 104.9 (13)
C14—C9—C10 118.14 (10) C17—C18—H18B 113.1 (11)
C14—C9—C8 124.43 (10) H18A—C18—H18B 110.9 (18)
C10—C9—C8 117.43 (10) C17—C18—H18C 111.5 (11)
C11—C10—C9 120.87 (11) H18A—C18—H18C 110.2 (17)
C11—C10—H10 122.2 (9) H18B—C18—H18C 106.3 (16)
C8—N2—C1—C2 179.20 (10) O1—C7—C8—N2 175.20 (11)
C8—N2—C1—C6 1.29 (17) N1—C7—C8—N2 −5.32 (16)
N2—C1—C2—C3 −178.09 (10) O1—C7—C8—C9 −6.07 (18)
C6—C1—C2—C3 −0.13 (17) N1—C7—C8—C9 173.42 (9)
C1—C2—C3—C4 −1.29 (18) N2—C8—C9—C14 −168.77 (10)
C2—C3—C4—C5 0.91 (18) C7—C8—C9—C14 12.44 (17)
C3—C4—C5—C6 0.92 (18) N2—C8—C9—C10 10.61 (16)
C7—N1—C6—C5 175.87 (10) C7—C8—C9—C10 −168.19 (10)
C15—N1—C6—C5 −4.42 (16) C14—C9—C10—C11 1.58 (18)
C7—N1—C6—C1 −4.13 (16) C8—C9—C10—C11 −177.84 (11)
C15—N1—C6—C1 175.58 (10) C9—C10—C11—C12 −0.4 (2)
C4—C5—C6—N1 177.66 (10) C10—C11—C12—C13 −1.2 (2)
C4—C5—C6—C1 −2.34 (17) C11—C12—C13—C14 1.52 (19)
N2—C1—C6—N1 −0.14 (16) C12—C13—C14—C9 −0.28 (19)
C2—C1—C6—N1 −178.05 (10) C10—C9—C14—C13 −1.26 (17)
N2—C1—C6—C5 179.86 (10) C8—C9—C14—C13 178.11 (10)
C2—C1—C6—C5 1.95 (16) C7—N1—C15—C16 −92.28 (12)
C6—N1—C7—O1 −173.92 (10) C6—N1—C15—C16 88.00 (12)
C15—N1—C7—O1 6.36 (16) C17—O2—C16—C15 82.16 (12)
C6—N1—C7—C8 6.57 (15) N1—C15—C16—O2 −178.70 (9)
C15—N1—C7—C8 −173.15 (9) C16—O2—C17—O3 0.52 (16)
C1—N2—C8—C9 −177.24 (9) C16—O2—C17—C18 179.37 (10)
C1—N2—C8—C7 1.54 (17)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···O3i 0.974 (16) 2.526 (16) 3.4713 (17) 163.6 (11)
C5—H5···O3 0.992 (15) 2.592 (16) 3.5435 (15) 160.7 (12)
C14—H14···O1 0.963 (15) 2.232 (16) 2.8387 (16) 120.0 (12)
C16—H16B···O3ii 0.993 (14) 2.553 (14) 3.3632 (16) 138.7 (10)
C18—H18A···Cg2iii 0.97 (2) 2.93 (2) 3.7585 (17) 144.2 (17)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1.

References

  1. Abad, N., Ferfra, S., Essassi, E. M., Mague, J. T. & Ramli, Y. (2021b). Z. Kristallogr. New Cryst. Struct. 236, 173–175.
  2. Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018a). IUCrData, 3, x180610.
  3. Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519.
  4. Abad, N., Ramli, Y., Lahmidi, S., El Hafi, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x181633.
  5. Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-horaibi, S. A., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M. & Ramli, Y. (2021a). J. Mol. Struct. 1232, 130004.
  6. Benzeid, H., Bouhfid, R., Massip, S., Leger, J. M. & Essassi, E. M. (2011). Acta Cryst. E67, o2990. [DOI] [PMC free article] [PubMed]
  7. Benzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009a). Acta Cryst. E65, o2196. [DOI] [PMC free article] [PubMed]
  8. Benzeid, H., Saffon, N., Garrigues, B., Essassi, E. M. & Ng, S. W. (2009b). Acta Cryst. E65, o2685. [DOI] [PMC free article] [PubMed]
  9. Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234. [DOI] [PMC free article] [PubMed]
  10. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  11. Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  12. Das, D. K., Pampana, V. K. K. & Hwang, K. C. (2018). Chem. Sci. 9, 7318–7326. [DOI] [PMC free article] [PubMed]
  13. El Aoufir, Y., Lgaz, H., Bourazmi, H., Kerroum, Y., Ramli, Y., Guenbour, A., Salghi, R., El-Hajjaji, F., Hammouti, B. & Oudda, H. (2016). J. Mater. Environ. Sci. 7, 4330–4347.
  14. El Ouali, I., Hammouti, B., Aouniti, A., Ramli, Y., Azougagh, M., Essassi, E. M. & Bouachrine, M. (2010). J. Mater. Envir. Sci. 1, 1–8.
  15. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  16. Guerrab, W., Chung, I.-M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Chung, I. M., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 127630.
  17. Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. M. & Ramli, Y. (2020). J. Mol. Struct. 1205, 127630.
  18. Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.
  19. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  20. Laabaissi, T., Benhiba, F., Rouifi, Z., Allali, M., Missioui, M., Ourrak, K., Oudda, H., Ramli, Y., Warad, I. & Zarrouk, A. (2019). Int. J. Corros. Scale Inhib. 8, 241–256.
  21. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  22. Missioui, M., El Fal, M., Taoufik, J., Essassi, E. M., Mague, J. T. & Ramli, Y. (2018). IUCRData 3, x180882.
  23. Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. In the press.
  24. Ramli, Y., El Bakri, Y., El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCrData 3, x180390.
  25. Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160.
  26. Ramli, Y., Moussaif, A., Karrouchi, K. & Essassi, E. M. (2014). J. Chem. Article ID 563406, 1–21.
  27. Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1922. [DOI] [PMC free article] [PubMed]
  28. Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1767. [DOI] [PMC free article] [PubMed]
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  33. Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. [DOI] [PMC free article] [PubMed]
  34. Tazouti, A., Galai, M., Touir, R., Touhami, M. E., Zarrouk, A., Ramli, Y., Saraçoğlu, M., Kaya, S., Kandemirli, F. & Kaya, C. (2016). J. Mol. Liq. 221, 815–832.
  35. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.
  36. Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C. & Duan, G. (2019). Adv. Synth. Catal. 361, 5490–5498.
  37. Zarrok, H., Zarrouk, A., Salghi, R., Oudda, H., Hammouti, B., Ebn Touhami, M., Bouachrine, M. & Pucci, O. H. (2012). Electrochim. Acta, 30, 405–417.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021005247/vm2249sup1.cif

e-77-00643-sup1.cif (428.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005247/vm2249Isup2.hkl

e-77-00643-Isup2.hkl (311.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005247/vm2249Isup3.cml

CCDC reference: 2062956

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES