Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 May 28;77(Pt 6):653–657. doi: 10.1107/S2056989021005387

Crystal structure and photoreactive behaviour of N,N-diisoprop­yl(p-phenyl­phen­yl)glyoxyl­amide

Hisakazu Miyamoto a,*, Hiroki Takahashi b
PMCID: PMC8183449  PMID: 34164146

The photoreactive behaviour of the title compound, C20H23NO2, was investigated. Solid-state photoreaction did not occur in the solid-state but it occurred in aceto­nitrile solution.

Keywords: crystal structure, photoreaction, chiral crystal

Abstract

The title compound [systematic name: 2-([1,1′-biphen­yl]-4-yl)-2-oxo-N,N-bis(propan-2-yl)acetamide], C20H23NO2 was synthesized and its photoreactive properties in the crystalline state and in aceto­nitrile solution were investigated. The compound crystallizes in the chiral space group P212121. The crystal does not react under UV light irradiation, perhaps due to the presence of the biphenyl group. However, the compound is photoreactive in aceto­nitrile solution to give racemic 3-(p-phenyl­phen­yl)-3-hy­droxy-N-isopropyl-4,4-di­methyl­azetidin-2-one.

Chemical context  

The solid-state photochemistry of N,N-dialkyl-α-oxo­amides has been studied in relation to penicillin chemistry (Aoyama et al., 1979). The amides undergo Norrish type II cyclization giving β-lactams (Aoyama et al., 1978). The achiral mol­ecule N,N-diiso­propyl­phenyl­glyoxyl­amide 1a crystallizes in the chiral space group P212121 and is transformed to the optically active β-lactam derivative 2a upon UV light irradiation (Fig. 1; Toda et al., 1987; Sekine et al., 1989). N,N-Diisoprop­yl(m-chloro or m-methyl or o-methyl­phen­yl)glyoxyl­amides 1b and 1c also form chiral crystals, and photoirradiation in the solid state gives optically active β-lactam derivatives 2b and 2c, respectively (Toda & Miyamoto, 1993; Hashizume et al., 1995, 1996, 1998). However, N,N-diisoprop­yl(p-chloro or o-chloro or p-methyl­phen­yl)glyoxyl­amide 1b and 1c do not form chiral crystals, and their photoirradiation in the solid state gives racemic β-lactam derivatives 2b and 2c, respectively. Therefore, we synthesized the novel title compound 1d having a phenyl group and investigated whether optically active β-lactam derivative 2d could be obtained by photoreaction. It was found that 1d formed a chiral crystal in the chiral space group P212121, but photoreaction did not proceed in the solid state. However, photoreaction of 1d in aceto­nitrile solution proceeded to give racemic 3-(p-phenyl­phen­yl)-3-hy­droxy-N-isopropyl-4,4-di­methyl­azetidin-2-one 2d in 26% yield. In this study, although 1d formed a chiral crystal, the reason why the photoreaction product of 1d in the solid state was not obtained was clarified by single-crystal X-ray structural analysis, UV spectroscopy and time-dependent density functional theory (TDDFT) calculations.graphic file with name e-77-00653-scheme1.jpg

Figure 1.

Figure 1

Photoreaction of N,N-diiso­propyl­aryl­glyoxyl­amide derivatives.

Structural commentary  

Table 1 summarizes intra and inter­molecular hydrogen bonds observed in the title compound. The phenyl rings in the biphenyl group are coplanar with the carbonyl group (C7=O1). The torsion angles C2—C1— C7—O1 and C3—C4—C15—C16 are 7.8 (3) and −0.4 (2)°, respectively, and the torsion angles O1—C7—C8—O2 and C7—C8—N1—C9 are 97.1 (2) and −3.9 (2)°, respectively (Fig. 2). The corres­ponding torsion angles in 1a are 88.0 (4) and −5.1 (4)°. In order for the Norrish–Yang reaction to take place, the reacting atoms in the mol­ecular structure must be in close proximity. The Yang cyclization of α-oxo­amides to β-lactams starts with abstraction of the γ-hydrogen (with respect to the benzylic carbon­yl) by the benzylic carbonyl oxygen in the excited state. In the title compound, there are two γ-hydrogen atoms (H5 on C9 and H12 on C12). The distances between the carbonyl oxygen atom O1 and the respective γ-hydrogen atoms H5 and H12 are 2.65 and 5.01 Å. The former inter­atomic distance is within the ideal value of up to about 2.7 Å, at which photoreaction can proceed in the crystal (Konieczny et al., 2018). Moreover, the distance between the reacting C7 and C9 carbon atoms is 2.840 (2) Å, which is in the range of ideal values of up to about 3.2 Å. The corresponding distances are 2.78 (4) and 2.871 (4) Å in 1a. As shown in Fig. 3, the geometries of the oxo­amide moiety of 1d and 1a are almost the same. Despite satisfying the geometry and distance requirements for the photoreaction, the corresponding β-lactam was not detected in the solid-state reaction. From the UV spectrum of 1d, it is considered that the biphenyl group of 1d absorbs ultraviolet light preventing the solid-state reaction (Fig. 4). In other words, the photocyclization reaction does not proceed in the solid state for at least 300 h because the irradiated UV light is absorbed by the π–π* transition of the biphenyl group.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H5⋯O1 1.00 2.65 3.245 (2) 119
C13—H15⋯O2 0.98 2.47 3.033 (3) 117
C14—H16⋯O2 0.98 2.51 3.072 (3) 116
C14—H18⋯O1i 0.98 2.71 3.612 (3) 154
C17—H20⋯O2ii 0.95 2.66 3.608 (2) 179

Symmetry codes: (i) x-1, y, z; (ii) -x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}.

Figure 2.

Figure 2

The mol­ecular structure of 1d. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 3.

Figure 3

Overlay of mol­ecules 1a (in red) and 1d (in blue).

Figure 4.

Figure 4

UV spectra of 1a (in red, 51.3 x 10−6 M MeOH solution) and 1d (in blue, 48.6 x 10−6 M MeOH solution).

DFT calculations  

The GAUSSIAN16 program (Frisch et al., 2016) was used for density functional theory (DFT) calculations. Initial geom­etries of 1a and 1d were obtained from XRD data. Hydrogen atoms were optimized at the B3LYP/6–311G(d,p) level (Becke, 1993). The UV–vis spectra of 1a and 1d were calculated by the time-dependent density functional theory [TDDFT, B3LYP/6–311G(d,p)] method. In the calculated UV–vis spectra, there were two weak peaks at 254 and 362 nm for 1a, and there was an intense and broad peak at 310 nm for 1d. The calculated spectra were similar to the experimental spectra (Fig. 5). For 1a, the peak at 254 nm corresponds to the π–π* transition of the Ph group, while that at the longer wavelength of 362 nm is due to n–π* transitions of the carbonyl groups. For 1d, the adsorption peak at 376 nm was assigned to n–π* transitions of carbonyl groups. A very weak absorption peak was observed around 370 nm in the experimental spectrum. A mercury lamp has an intense emission at 365 nm, such that the photoreaction for 1a proceeds rapidly in the solid state. In contrast, the large and broad absorption prevents the solid-state photoreaction for 1d. Since the mol­ecules can move freely in solution, light irradiation for 60 h was uniformly performed, and it seemed that the reaction proceeded slightly. It has been reported that an oxo­amide derivative having a naphthyl group slows down the photoreaction (Natarajan et al., 2005). The relationship between photoreactivity and irradiation wavelength is under investigation.

Figure 5.

Figure 5

Calculated UV–vis spectra of (a) 1a and (b) 1d.

Supra­molecular features  

In the crystal, the mol­ecules are linked by weak inter­molecular C—H⋯O (C14—H18⋯O1, 2.71 Å) inter­actions forming a 1D chain structure along the a-axis direction (Fig. 6 a), and C—H⋯O (C17—H20⋯O2, 2.66 Å) inter­actions forming a 1D zigzag chain structure along the b-axis direction (Fig. 6 b). Details of these inter­actions are given in Table 1.

Figure 6.

Figure 6

Packing diagrams for 1d viewed (a) along the b axis and (b) along the a axis, showing inter­molecular C—H⋯O inter­actions as dotted blue lines.

Database survey  

A search of the Cambridge Structural Database (Version 5.41, last update August 2020; Groom et al., 2016) yielded 18 hits for compounds based on the N,N-diiso­propyl­phenyl­glyoxyl­amide fragment shown in Fig. 1: no substituent on the phenyl ring (JAGLAE; Sekine et al., 1989), various chiral amido groups on the phenyl ring (KAHWIA, NAHZIG, NAHZUS, NAJBAC, NAJBEG, NAJBIK, NAJBOQ, NAJBUW, NAJCAD, and NAJCEH; Natarajan et al., 2005), methyl or dimethyl group(s) on the phenyl ring (WIQKUC, YOWVUB, YOWVUF, and YOWWAI; Hashizume et al., 1995), and a chlorine atom on the phenyl ring (ZOHNIT, ZOHNOZ, and ZOHNUF; Hashizume et al., 1996).

Synthesis and crystallization  

The title compound was prepared according to a reported method (Toda et al., 1987; Sekine et al., 1989), i.e., chlorination of 2-oxo-2-(4-phenyl­phen­yl)acetic acid with thionyl chloride followed by reaction with N,N-diiso­propyl­amine. Thus, to an ice-cooled solution of N,N-diiso­propyl­amine (16 mL, 0.11 mol) in dry diethyl ether (45 mL) was added a solution of 4-phenyl­benzoyl­formyl chloride (13.8 g, 0.0564 mol) in dry diethyl ether (45 mL), and the reaction mixture was stirred for 10 h at room temperature. After filtration of N,N-diiso­propyl­ammonium chloride, the filtrate was washed with dilute HCl and aqueous NaHCO3 and dried over MgSO4. The crude product was purified by silica gel column chromatography (toluene:ethyl acetate = 9:1) and recrystallized from toluene to give 1d as colorless prisms (1.02 g, 5.8% yield, m.p. 397–398 K); IR (KBr): νmax 1640, 1680 cm−1; 1H NMR (500 MHz, CDCl3): δ 8.01 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.0 Hz, 2H), 7.50–7.39 (m, 3H), 3.75 (sept, J = 6.9 Hz, 1H), 3.61 (sept, J = 6.9 Hz, 1H), 1.60 (d, J = 6.9 Hz, 6H), 1.20 (d, J = 6.6 Hz, 6H); 13C NMR (126 MHz, CDCl3): δ 190.7, 167.0, 147.1, 139.7, 132.1, 130.1, 129.0, 128.5, 127.6, 127.4, 50.2, 46.1, 20.6, 20.4; ESIMS m/z: calculated for C20H23NNaO2 [M + Na]+, 322.1621; found, 322.1586. Single crystals of 1d suitable for X-ray diffraction analysis were grown from a toluene solution.

Photoreaction  

1d (0.100 g, 0.323 mmol) was pulverized in a mortar and irradiated with a 400 W high-pressure mercury lamp for 300 h. No reaction took place, as determined by TLC, IR and NMR spectroscopies. 1d (0.1368 g, 0.442 mmol) in aceto­nitrile (10 mL) was irradiated with a 400 W high-pressure mercury lamp for 60 h. The crude product was purified by silica gel column chromatography (toluene:ethyl acetate = 4:1) to give 3-(p-phenyl­phen­yl)-3-hy­droxy-N-isopropyl-4,4-di­methyl­aze­tidin-2-one 2d as a colorless powder (0.035 g, 26% yield, m.p. 467-469 K); IR (KBr): νmax 3200, 1720 cm−1; 1H NMR (60 MHz, CDCl3): δ 7.60–7.00 (m, 9H), 4.64 (s, 1H), 3.57 (sept, J = 7.0 Hz, 1H), 1.44 (d, J = 7.0 Hz, 6H), 1.27 (s, 3H), 0.87 (s, 3H); ESIMS m/z: calculated for C20H23NNaO2 [M + Na]+, 322.1621; found, 322.1569.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned in geometrically calculated positions (C—H = 0.95–0.98 Å) and refined using a riding model with U iso(H) = 1.2U eq(C) and 1.5Ueq(C-meth­yl). The Flack parameter x is 0.1 (4) as shown in Table 2. The standard uncertainty is large. The Flack and Hooft (Hooft et al., 2008) parameters are strongly indicative of the correct absolute configuration, even when the standard uncertainties are large (Thompson & Watkin, 2011). Hooft [0.19 (16)] and Parsons parameters [0.2 (3)] (Parsons et al., 2013) were calculated using PLATON (Spek, 2020).

Table 2. Experimental details.

Crystal data
Chemical formula C20H23NO2
M r 309.39
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 6.1313 (2), 7.3710 (2), 38.1143 (11)
V3) 1722.53 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.31 × 0.29 × 0.29
 
Data collection
Diffractometer Rigaku Saturn 724+ CCD
Absorption correction Numerical (CrystalClear-SM Expert; Rigaku, 2009)
T min, T max 0.985, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 16094, 3877, 3614
R int 0.021
(sin θ/λ)max−1) 0.660
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.080, 1.05
No. of reflections 3877
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Absolute structure Flack x determined using 1346 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.1 (4)

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXT2014 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005387/dj2024sup1.cif

e-77-00653-sup1.cif (483.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005387/dj2024Isup2.hkl

e-77-00653-Isup2.hkl (309.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005387/dj2024Isup3.cml

CCDC reference: 2085220

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Theoretical calculations were performed at the Super Computer System of Academic Centre for Computing and Media Studies, Kyoto University.

supplementary crystallographic information

Crystal data

C20H23NO2 Dx = 1.193 Mg m3
Mr = 309.39 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 2939 reflections
a = 6.1313 (2) Å θ = 3.4–27.5°
b = 7.3710 (2) Å µ = 0.08 mm1
c = 38.1143 (11) Å T = 173 K
V = 1722.53 (9) Å3 Prism, colorless
Z = 4 0.31 × 0.29 × 0.29 mm
F(000) = 664

Data collection

Rigaku Saturn 724+ CCD diffractometer 3877 independent reflections
Radiation source: sealed tube 3614 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1 Rint = 0.021
profile data from ω–scans θmax = 28.0°, θmin = 3.4°
Absorption correction: numerical (CrystalClear-SM Expert; Rigaku, 2009) h = −8→7
Tmin = 0.985, Tmax = 0.985 k = −9→9
16094 measured reflections l = −48→48

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.3778P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.16 e Å3
3877 reflections Δρmin = −0.15 e Å3
212 parameters Absolute structure: Flack x determined using 1346 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.1 (4)
Primary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5093 (3) 0.5728 (2) 0.66469 (4) 0.0240 (3)
C2 0.6161 (3) 0.6491 (2) 0.69356 (4) 0.0264 (4)
H1 0.757076 0.700514 0.690769 0.032*
C3 0.5171 (3) 0.6499 (2) 0.72609 (4) 0.0256 (3)
H2 0.591743 0.702783 0.745390 0.031*
C4 0.3097 (3) 0.5750 (2) 0.73146 (4) 0.0231 (3)
O1 0.8128 (2) 0.6133 (2) 0.62656 (3) 0.0413 (3)
O2 0.4869 (2) 0.32629 (16) 0.59665 (3) 0.0381 (3)
N1 0.4188 (2) 0.61084 (19) 0.57509 (4) 0.0276 (3)
C5 0.2040 (3) 0.5007 (2) 0.70210 (5) 0.0282 (4)
H3 0.062937 0.449217 0.704797 0.034*
C6 0.3012 (3) 0.5011 (2) 0.66922 (4) 0.0287 (4)
H4 0.225190 0.452194 0.649669 0.034*
C7 0.6227 (3) 0.5697 (2) 0.63028 (4) 0.0284 (4)
C8 0.4985 (3) 0.4927 (2) 0.59863 (4) 0.0281 (4)
C9 0.4364 (3) 0.8099 (2) 0.58034 (5) 0.0318 (4)
H5 0.497384 0.829750 0.604367 0.038*
C10 0.5949 (4) 0.8947 (3) 0.55449 (6) 0.0470 (5)
H6 0.736401 0.833410 0.556225 0.070*
H7 0.612914 1.023717 0.559944 0.070*
H8 0.537864 0.881506 0.530604 0.070*
C11 0.2145 (4) 0.9013 (3) 0.57929 (6) 0.0424 (5)
H9 0.156583 0.896594 0.555338 0.064*
H10 0.229103 1.028114 0.586642 0.064*
H11 0.114502 0.838140 0.595205 0.064*
C12 0.3111 (3) 0.5445 (2) 0.54250 (4) 0.0309 (4)
H12 0.270143 0.654227 0.528562 0.037*
C13 0.4680 (4) 0.4345 (3) 0.51993 (5) 0.0466 (5)
H13 0.601203 0.504937 0.515886 0.070*
H14 0.398812 0.406781 0.497376 0.070*
H15 0.504725 0.321214 0.532000 0.070*
C14 0.1007 (4) 0.4442 (3) 0.55063 (6) 0.0434 (5)
H16 0.134408 0.331101 0.563027 0.065*
H17 0.024513 0.416204 0.528682 0.065*
H18 0.007510 0.520425 0.565414 0.065*
C15 0.2068 (3) 0.5729 (2) 0.76699 (4) 0.0242 (3)
C16 0.3150 (3) 0.6450 (2) 0.79631 (5) 0.0327 (4)
H19 0.454724 0.698538 0.793378 0.039*
C17 0.2219 (4) 0.6397 (3) 0.82944 (5) 0.0385 (5)
H20 0.299212 0.687471 0.848972 0.046*
C18 0.0172 (4) 0.5653 (3) 0.83418 (5) 0.0387 (5)
H21 −0.047408 0.563386 0.856828 0.046*
C19 −0.0930 (3) 0.4937 (3) 0.80572 (5) 0.0360 (4)
H22 −0.233437 0.441822 0.808872 0.043*
C20 0.0005 (3) 0.4972 (2) 0.77263 (5) 0.0295 (4)
H23 −0.077146 0.447082 0.753360 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0285 (8) 0.0234 (7) 0.0201 (8) 0.0024 (7) −0.0035 (6) 0.0011 (6)
C2 0.0249 (8) 0.0275 (8) 0.0267 (9) −0.0027 (7) −0.0031 (7) 0.0002 (7)
C3 0.0275 (8) 0.0278 (8) 0.0216 (8) −0.0033 (7) −0.0061 (7) −0.0022 (6)
C4 0.0267 (8) 0.0202 (7) 0.0223 (8) 0.0028 (7) −0.0031 (6) 0.0009 (6)
O1 0.0359 (7) 0.0594 (9) 0.0286 (7) −0.0063 (7) 0.0036 (6) −0.0020 (6)
O2 0.0598 (9) 0.0259 (6) 0.0285 (6) 0.0030 (6) −0.0079 (6) 0.0004 (5)
N1 0.0376 (8) 0.0255 (7) 0.0198 (7) 0.0002 (6) −0.0016 (6) −0.0001 (6)
C5 0.0252 (8) 0.0313 (8) 0.0283 (9) −0.0048 (8) −0.0037 (7) −0.0017 (7)
C6 0.0303 (9) 0.0334 (9) 0.0224 (8) −0.0006 (8) −0.0081 (7) −0.0034 (7)
C7 0.0338 (10) 0.0271 (8) 0.0244 (8) 0.0000 (7) −0.0023 (7) 0.0021 (7)
C8 0.0365 (10) 0.0284 (8) 0.0194 (8) 0.0010 (8) 0.0007 (7) 0.0000 (7)
C9 0.0442 (11) 0.0264 (8) 0.0248 (9) −0.0025 (8) −0.0018 (8) 0.0011 (7)
C10 0.0446 (11) 0.0382 (11) 0.0581 (13) −0.0029 (10) 0.0089 (10) 0.0104 (10)
C11 0.0506 (12) 0.0316 (9) 0.0451 (11) 0.0038 (9) 0.0135 (10) −0.0045 (9)
C12 0.0421 (10) 0.0311 (9) 0.0195 (8) 0.0074 (8) −0.0050 (7) −0.0020 (7)
C13 0.0593 (14) 0.0570 (13) 0.0234 (9) 0.0184 (12) −0.0023 (9) −0.0081 (9)
C14 0.0476 (12) 0.0433 (11) 0.0395 (11) −0.0028 (10) −0.0093 (10) −0.0081 (9)
C15 0.0293 (8) 0.0193 (7) 0.0240 (8) 0.0019 (7) −0.0004 (7) −0.0002 (6)
C16 0.0396 (10) 0.0323 (9) 0.0260 (9) −0.0076 (8) 0.0005 (8) −0.0016 (7)
C17 0.0568 (12) 0.0351 (10) 0.0238 (9) −0.0080 (9) 0.0009 (9) −0.0033 (8)
C18 0.0555 (13) 0.0322 (9) 0.0285 (9) 0.0005 (9) 0.0126 (9) 0.0031 (8)
C19 0.0360 (10) 0.0348 (9) 0.0373 (10) −0.0009 (8) 0.0090 (9) 0.0038 (8)
C20 0.0305 (9) 0.0281 (8) 0.0300 (9) 0.0011 (8) −0.0023 (7) 0.0000 (7)

Geometric parameters (Å, º)

C1—C6 1.392 (3) C11—H9 0.9800
C1—C2 1.398 (2) C11—H10 0.9800
C1—C7 1.485 (2) C11—H11 0.9800
C2—C3 1.380 (2) C12—C14 1.519 (3)
C2—H1 0.9500 C12—C13 1.524 (3)
C3—C4 1.401 (2) C12—H12 1.0000
C3—H2 0.9500 C13—H13 0.9800
C4—C5 1.404 (2) C13—H14 0.9800
C4—C15 1.494 (2) C13—H15 0.9800
O1—C7 1.217 (2) C14—H16 0.9800
O2—C8 1.231 (2) C14—H17 0.9800
N1—C8 1.342 (2) C14—H18 0.9800
N1—C9 1.485 (2) C15—C20 1.399 (3)
N1—C12 1.489 (2) C15—C16 1.404 (2)
C5—C6 1.388 (2) C16—C17 1.386 (3)
C5—H3 0.9500 C16—H19 0.9500
C6—H4 0.9500 C17—C18 1.382 (3)
C7—C8 1.535 (2) C17—H20 0.9500
C9—C10 1.519 (3) C18—C19 1.382 (3)
C9—C11 1.519 (3) C18—H21 0.9500
C9—H5 1.0000 C19—C20 1.385 (3)
C10—H6 0.9800 C19—H22 0.9500
C10—H7 0.9800 C20—H23 0.9500
C10—H8 0.9800
C6—C1—C2 118.98 (15) H9—C11—H10 109.5
C6—C1—C7 122.22 (15) C9—C11—H11 109.5
C2—C1—C7 118.80 (15) H9—C11—H11 109.5
C3—C2—C1 120.18 (15) H10—C11—H11 109.5
C3—C2—H1 119.9 N1—C12—C14 111.50 (15)
C1—C2—H1 119.9 N1—C12—C13 111.46 (16)
C2—C3—C4 121.88 (15) C14—C12—C13 113.10 (17)
C2—C3—H2 119.1 N1—C12—H12 106.8
C4—C3—H2 119.1 C14—C12—H12 106.8
C3—C4—C5 117.15 (15) C13—C12—H12 106.8
C3—C4—C15 121.29 (14) C12—C13—H13 109.5
C5—C4—C15 121.56 (15) C12—C13—H14 109.5
C8—N1—C9 121.65 (14) H13—C13—H14 109.5
C8—N1—C12 120.38 (14) C12—C13—H15 109.5
C9—N1—C12 117.97 (14) H13—C13—H15 109.5
C6—C5—C4 121.36 (16) H14—C13—H15 109.5
C6—C5—H3 119.3 C12—C14—H16 109.5
C4—C5—H3 119.3 C12—C14—H17 109.5
C5—C6—C1 120.44 (15) H16—C14—H17 109.5
C5—C6—H4 119.8 C12—C14—H18 109.5
C1—C6—H4 119.8 H16—C14—H18 109.5
O1—C7—C1 123.19 (16) H17—C14—H18 109.5
O1—C7—C8 118.74 (16) C20—C15—C16 117.12 (16)
C1—C7—C8 117.87 (15) C20—C15—C4 121.66 (15)
O2—C8—N1 125.77 (17) C16—C15—C4 121.21 (16)
O2—C8—C7 116.41 (16) C17—C16—C15 121.34 (18)
N1—C8—C7 117.78 (15) C17—C16—H19 119.3
N1—C9—C10 111.42 (16) C15—C16—H19 119.3
N1—C9—C11 111.71 (16) C18—C17—C16 120.26 (18)
C10—C9—C11 111.97 (16) C18—C17—H20 119.9
N1—C9—H5 107.1 C16—C17—H20 119.9
C10—C9—H5 107.1 C17—C18—C19 119.54 (17)
C11—C9—H5 107.1 C17—C18—H21 120.2
C9—C10—H6 109.5 C19—C18—H21 120.2
C9—C10—H7 109.5 C18—C19—C20 120.33 (19)
H6—C10—H7 109.5 C18—C19—H22 119.8
C9—C10—H8 109.5 C20—C19—H22 119.8
H6—C10—H8 109.5 C19—C20—C15 121.40 (17)
H7—C10—H8 109.5 C19—C20—H23 119.3
C9—C11—H9 109.5 C15—C20—H23 119.3
C9—C11—H10 109.5
C6—C1—C2—C3 1.2 (2) C1—C7—C8—N1 104.20 (19)
C7—C1—C2—C3 −178.37 (15) C8—N1—C9—C10 110.4 (2)
C1—C2—C3—C4 0.3 (2) C12—N1—C9—C10 −69.1 (2)
C2—C3—C4—C5 −1.0 (2) C8—N1—C9—C11 −123.57 (18)
C2—C3—C4—C15 178.55 (15) C12—N1—C9—C11 57.0 (2)
C3—C4—C5—C6 0.2 (3) C8—N1—C12—C14 65.9 (2)
C15—C4—C5—C6 −179.27 (16) C9—N1—C12—C14 −114.69 (18)
C4—C5—C6—C1 1.2 (3) C8—N1—C12—C13 −61.6 (2)
C2—C1—C6—C5 −1.9 (2) C9—N1—C12—C13 117.88 (18)
C7—C1—C6—C5 177.64 (16) C3—C4—C15—C20 −179.53 (16)
C6—C1—C7—O1 −171.73 (18) C5—C4—C15—C20 −0.1 (2)
C2—C1—C7—O1 7.8 (3) C3—C4—C15—C16 −0.4 (2)
C6—C1—C7—C8 3.1 (2) C5—C4—C15—C16 179.07 (17)
C2—C1—C7—C8 −177.40 (15) C20—C15—C16—C17 0.6 (3)
C9—N1—C8—O2 178.42 (19) C4—C15—C16—C17 −178.57 (17)
C12—N1—C8—O2 −2.2 (3) C15—C16—C17—C18 −1.1 (3)
C9—N1—C8—C7 −3.9 (2) C16—C17—C18—C19 1.0 (3)
C12—N1—C8—C7 175.50 (16) C17—C18—C19—C20 −0.3 (3)
O1—C7—C8—O2 97.1 (2) C18—C19—C20—C15 −0.2 (3)
C1—C7—C8—O2 −77.9 (2) C16—C15—C20—C19 0.0 (2)
O1—C7—C8—N1 −80.7 (2) C4—C15—C20—C19 179.20 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H5···O1 1.00 2.65 3.245 (2) 119
C13—H15···O2 0.98 2.47 3.033 (3) 117
C14—H16···O2 0.98 2.51 3.072 (3) 116
C14—H18···O1i 0.98 2.71 3.612 (3) 154
C17—H20···O2ii 0.95 2.66 3.608 (2) 179

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+3/2.

References

  1. Aoyama, H., Hasegawa, T. & Omote, Y. (1979). J. Am. Chem. Soc. 101, 5343–5347.
  2. Aoyama, H., Hasegawa, T., Watabe, M., Shiraishi, H. & Omote, Y. (1978). J. Org. Chem. 43, 419–422.
  3. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  4. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). GAUSSIAN16. Rev. C.01. Gaussian, Inc., Wallingford CT, USA.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hashizume, D., Kogo, H., Ohashi, Y., Miyamoto, H. & Toda, F. (1998). Anal. Sci. 14, 1187–1188.
  7. Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1995). Acta Cryst. C51, 929–933.
  8. Hashizume, D., Kogo, H., Sekine, A., Ohashi, Y., Miyamoto, H. & Toda, F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 61–66.
  9. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  10. Konieczny, K., Ciesielski, A., Bąkowicz, J., Galica, T. & Turowska-Tyrk, I. (2018). Crystals, 8, 299–311.
  11. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  12. Natarajan, A., Mague, J. T. & Ramamurthy, V. (2005). J. Am. Chem. Soc. 127, 3568–3576. [DOI] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
  15. Sekine, A., Hori, K., Ohashi, Y., Yagi, M. & Toda, F. (1989). J. Am. Chem. Soc. 111, 697–699.
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  19. Thompson, A. L. & Watkin, D. J. (2011). J. Appl. Cryst. 44, 1017–1022.
  20. Toda, F. & Miyamoto, H. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 1129–1132.
  21. Toda, F., Yagi, M. & Sōda, S. (1987). J. Chem. Soc. Chem. Commun. pp. 1413–1414.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021005387/dj2024sup1.cif

e-77-00653-sup1.cif (483.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021005387/dj2024Isup2.hkl

e-77-00653-Isup2.hkl (309.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021005387/dj2024Isup3.cml

CCDC reference: 2085220

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES