Dear editor,
The disease caused by the coronavirus SARS-CoV-2 (COVID-19), which emerged in China in December 2019 [1], has become a global pandemic in just a few months. The concomitant presentation of COVID-19 and some autoimmune diseases has also been reported, among which is Guillain Barré Syndrome (GBS) [2]. GBS is considered an immune-mediated neuropathy preceded 1 to 6 weeks in 70% of cases by a bacterial or a viral infection. In many cases associated with Campylobacter jejuni (the predominant pathogen) the presence of antiganglioside antibodies is observed. This supports a post-infectious mechanism, with molecular mimicry and antibody cross-response [3]. However, in GBS associated with Zika virus infection, an earlier onset is seen, and associated antiganglioside antibodies are rarely present, suggesting a para-infectious pathogenetic mechanism [4]. There is contradictory information on whether GB associated with COVID-19 has also characteristics that may indicate a para-infectious pathogenetic process [[5], [6], [7]]. To review the accumulated evidence about the pathogenic mechanism of this association, we carried out a review of the literature with a selection of the clinical cases reported until February 1st 2021, adding one own case. We selected studies reporting adult patients with all: Guillain-Barré syndrome, according to diagnostic criteria of the GBS Classification Group [8]; SARS-CoV-2 infection confirmed by nasopharyngeal reverse transcription polymerase chain reaction, antigen-detecting rapid diagnostic tests or serum antibody test; Detailed individual clinical description; A minimum of 6/8 points using the Joanna Briggs Institute Critical Appraisal Checklist for Case Reports and for Case Series studies [,][106], [107]. Finally, we selected 82 full text access articles with information about 104 clinical cases (Table 1 ) to which we added our own case (Patient 32). We searched suggestive features of the three pathogenic pathways proposed to neurologic damage in COVID-19 so far [11,12]: direct damage, dysregulated inflammatory response and antibody-mediated injury (Fig. 1 ). Direct damage: As seen in some viral infections such as poliovirus, enterovirus D68, cytomegalovirus, or other human coronaviruses, SARS-Cov-2 has neuroinvasive capacity [12,13]. The proposed access routes have been through circulation, the blood-brain barrier, or retrograde axonal transport, through the olfactory nerve or the enteric nervous system [12]. Endothelium, glial cells, and neurons express angiotensin-converting enzyme receptor 2 (ACE2) and type II transmembrane serine protease (TMPRSS2), both necessary for the virus to get into the cells [14]. A post mortem study found SARS-CoV-2 RNA in neuroanatomical areas receiving olfactory tract projections [15]. However, PCR in CSF for COVID -19 virus was negative in all reported cases of GBS (Table 1), suggesting no intrathecal viral replication. Furthermore, a recent systematic review and meta-analysis showed that no study detected live SARS-COV-2 in various body fluids beyond day 9 of illness [16] and yet the median days of infection until the debut of GBS in the actual review has been 11 days. Dysregulated inflammatory response: In the ”inflammatory phase” of COVID-19 infection, which characteristically begins throughout the second week of infection, elevated IL-2, IL-2R, IL-6, IL-10, IFN-γ, TNF-α, CCL2, procalcitonin, CRP, erythrocyte sedimentation rate and white blood cell, are characteristic [17]. In 2005, brain autopsy studies demonstrate the infiltration of monocytes, macrophages, and T-lymphocytes into gliocytes and brain mesenchyme of SARS-CoV patients [19]. Pilotto et al. has also described the presence of elevated neuroinflammatory parameters (IL-6, IL-8, β2M and TNF-α) in the CSF of 13 patients with encephalitis and COVID-19 [20]. On the other hand, marked increase of cytokines has previously been reported in GBS and its variants, as well as in experimental autoimmune neuritis, the animal model of GBS [21]. Cell-mediated immunity seems to play a crucial role in immunopathology of all types of GBS, especially the AIDP subtype [22]. Of note, AIDP subtype is the predominant in the current systematic revision (73%, counting with mixed forms) (Table 1). Also, in the present work the medium time between the onset of COVID-19 and the neurological symptoms was 11 days, that is, in the stages of the infection in which inflammatory processes predominate over antibody-mediated. In addition, serum inflammatory parameters were elevated at the beginning of the neurological symptoms in 39/53 patients (73%). Antibody-mediated injury. Anti-GM1 IgG are present in a high proportion of patients with classic GBS, mostly those with AMAN or AMSAN. Also, anti-GQ1b IgG antibodies are present in in 80–95% of patients with Miller-Fisher syndrome (MFS), the most common clinical variant of GBS [23]. Nevertheless, Keddie et al. found no significant similarity between SARS CoV-2 and human genome [24] and only 6/58 cases (10%) in our review had positive antiganglioside antibodies, interestingly only 3 of the 17 patients with Miller-Fisher syndrome (20%) (Table 1). Patient number 92 was seropositive for IgM antibodies against panneurofascin without posterior seroconversion to IgG [25]. However, anti-neurofascin antibodies may also have been triggered by tissue damage related to GBS.
Table 1.
First author (Ref.) | Age | Sex | Severity COVID19 1 | Latency2 | GBS Clinical variant3 | EMG | SARS-COV-2 CSF | Antiganglioside antibodies | Biomarkers | Treatment COVID-19 | Treatment GBS | Evolution at day 30 | Study quality [[106], [107]] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Abbaslou [26] | Patient 1 | 55 | F | 3 | 32 | paraparetic GBS | AMSAN | ‐– | ‐– | ‐– | LPV/r | Ig iv | dead (ARDS) | 7/8 |
Abolmaali [27] | Patient 2 | 88 | F | 3 | ‐−3 | classic SGB | AMSAN | ‐– | ‐– | ‐– | DEXA, LPV/r, HCQ | PPH | poor | 7/8 |
Patient 3 | 58 | M | 4 | 9 | classic SGB | AMSAN | ‐– | ‐– | ‐– | Remdensivir, Favipiravir, LPV/r, HCQ | Ig iv + PPH | dead (multi-organ failure) | 7/8 | |
Abrams [28] | Patient 4 | 67 | F | 2 | 10 | classic SGB | ‐– | PCR Neg | Neg | elevated DD, CRP, IgM | ‐– | PPH | partial improvement | 7/8 |
Agosti [29] | Patient 5 | 68 | M | 2 | 5 | classic SGB | AIDP | ‐– | ‐– | thrombocythaemia, lymphopenia | antiviral | Ig iv | partial improvement | 7/8 |
Alberti [30] | Patient 6 | 71 | M | 2 | 4 | classic SGB | AIDP | PCR Neg | ‐– | ‐– | LPV/r, HCQ | Ig iv | dead (ARDS) | 7/8 |
Ameer [31] | Patient 7 | 30 | M | 1 | 4 | classic SGB | AMAN | PCR Neg | Neg | lymphopenia | ‐– | Ig iv | complet recovery | 8/8 |
Arnaud [32] | Patient 8 | 64 | M | 2 | 21 | classic SGB | AIDP | PCR Neg | Neg | ‐– | CXM, AZM, HCQ | Ig iv | complet recovery | 8/8 |
Assini [33] | Patient 9 | 55 | M | 3 | ‐– | Miller-Fisher | AIDP | PCR Neg | Neg | lymphopenia, elevated ferritine, CRP, LDH, oligoclonal bands | HCQ, LPV/r Arbidol | Ig iv | complet recovery | 7/8 |
Patient 10 | 60 | M | 3 | ‐– | classic SGB | AMSAN | ‐– | Neg | lymphopenia, elevated LDH y GGT, oligoclonal bands | HCQ, LPV/r, TCZ | Ig iv | partial improvement | 6/8 | |
Atakla [34] | Patient 11 | 40 | M | 3 | 11 | classic SGB | AIDP | PCR Neg | ‐– | neutropenia, elevated ESR, CRP | AZM | Ig iv | partial improvement | 7/8 |
Barranchina-Esteve [35] | Patient 12 | 54 | F | 3 | 0 | classic SGB | AMSAN | PCR Neg | Neg | elevated DD, ferritine, LDH | CXM, AZM, HCQ, LPV/r, MP, TCZ | Ig iv | complet recovery | 8/8 |
Bigaut [36] | Patient 13 | 43 | M | 2 | 21 | classic SGB | AIDP | PCR Neg | Neg | ‐– | ‐– | Ig iv | partial improvement | 8/8 |
Patient 14 | 70 | F | 3 | 7 | classic SGB | AIDP | PCR Neg | Neg | elevated CRP | ‐– | Ig iv | partial improvement | 8/8 | |
Boostani [37] | Patient 15 | 37 | M | 3 | 15 | classic SGB | AIDP | ‐– | ‐– | elevated ESR, CRP | ‐– | Ig iv | partial improvement | 7/8 |
Bracaglia [38] | Patient 16 | 66 | F | 1 | ‐– | classic SGB | AIDP | ‐– | Neg | lymphopenia, elevated CRP, CK, LDH, TGO, TGP, IL-6 | LPV/r, HCQ, | Ig iv | partial improvement | 7/8 |
Bueso [39] | Patient 17 | 60 | F | 2 | 22 | classic SGB | ‐– | ‐– | ‐– | ‐– | AZM, HCQ | Ig iv | partial improvement | 7/8 |
Caamaño [40] | Patient 18 | 61 | M | 2 | 10 | BWDP | ‐– | PCR Neg | ‐– | ‐– | HCQ, LPV/r | PRED low dose | partial improvement | 8/8 |
Camdessanche [41] | Patient 19 | 64 | M | 2 | 11 | classic SGB | AIDP | ‐– | Neg | ‐– | LPV/r | Ig iv | ‐– | 6/8 |
Chan [42] | Patient 20 | 58 | M | 2 | ‐– | BWDP | AIDP | PCR Neg | ‐– | thrombocythaemia, elevated DD | CXM, AZM, | Ig iv | partial improvement | 7/8 |
Civardi [43] | Patient 21 | 72 | F | 1 | 10 | classic SGB | AIDP | PCR Neg | anti-GM1, anti-GD1a and anti-GD1b | elevated fibrinogen, CRP | HCQ, DOX, | Ig iv | partial improvement | 8/8 |
Coen [44] | Patient 22 | 70 | M | 1 | 10 | classic SGB | AIDP | PCR Neg | Neg | ‐– | ‐– | Ig iv | partial improvement | 8/8 |
Colonna [45] | Patient 23 | 62 | M | 3 | 21 | classic SGB | AIDP | ‐– | ‐– | elevated CRP | LPV/r, MP (60 mg/24 h) | Ig iv | partial improvement | 7/8 |
Defabio [46] | Patient 24 | 70 | F | 1 | 90 | classic SGB | ‐– | ‐– | ‐– | ND | ND | Ig iv | complet recovery | 7/8 |
Diez-Porras [47] | Patient 25 | 54 | M | 1 | 5 | classic SGB | AIDP | ‐– | IgM for GM2 and GD3 and a weak IgG for GT1b | elevated CRP, LDH y CK | AZM, HCQ, LPV/r | Ig iv | partial improvement | 7/8 |
El Otmani [48] | Patient 26 | 70 | F | 2 | 3 | classic SGB | AMSAN | PCR Neg | ‐– | lymphopenia | HCQ, AZM | Ig iv | poor | 7/8 |
Elkhouly [49] | Patient 27 | 75 | M | ‐– | ‐– | classic SGB | ‐– | ‐– | ‐– | ‐– | MP | Ig iv | partial improvement | 6/8 |
Esteban [50] | Patient 28 | 55 | F | 2 | 14 | classic SGB | AIDP | ‐– | ‐– | elevated CRP | HCQ, CXM, AZM | Ig iv | partial improvement | 7/8 |
Farzi [51] | Patient 29 | 41 | M | 2 | 10 | classic SGB | AIDP | ‐– | ‐– | lymphopenia, elevated CRP | LPV/r, HCQ | Ig iv | partial improvement | 7/8 |
Fernandez-Dominguez [52] | Patient 30 | 74 | F | 2 | 15 | Miller-Fisher | AIDP | ‐– | Neg | ‐– | HCQ, LPV/r | Ig iv | partial improvement | 7/8 |
Ferraris [53] | Patient 31 | 65 | F | 4 | 23 | classic SGB | AIDP | ‐– | ‐– | elevated IL-6 | HCQ, HBPM, AZM, TCZ, LPV/r, MP | Ig iv | partial improvement | 7/8 |
Freire | Patient 32 | 71 | M | 2 | 9 | classic SGB | AIDP | ‐– | Neg | Elevated CRP, DD, LDH, ferritin, IL-6 | MP | Ig iv | partial improvement | 7/8 |
Gale [54] | Patient 33 | 58 | M | 2 | ‐– | classic SGB | AIDP | ‐– | ‐– | lymphopenia, elevated CRP | ‐– | Ig iv | partial improvement | 6/8 |
Garcia-Manzanedo [55] | Patient 34 | 77 | M | 2 | 21 | PCBW | Mixed | ‐– | ‐– | ‐– | LPV/r, HCQ | Ig iv | partial improvement | 7/8 |
Garnero [56] | Patient 35 | 65 | M | 2 | ‐– | classic SGB | AIDP | ‐– | Neg | ‐– | ‐– | Ig iv | ‐– | 6/8 |
Patient 36 | 73 | M | 2 | 0 | classic SGB | ‐– | PCR Neg | Neg | ‐– | ‐– | Ig iv | ‐– | 7/8 | |
Patient 37 | 55 | M | 2 | 20 | Miller-Fisher-GBS overlap | ‐– | PCR Neg | Neg | ‐– | ‐– | Ig iv | ‐– | 7/8 | |
Patient 38 | 46 | F | 1 | 3 | classic SGB | ‐– | PCR Neg | Neg | ‐– | ‐– | Ig iv | ‐– | 7/8 | |
Patient 39 | 60 | M | 2 | 20 | classic SGB | AMSAN | PCR Neg | Neg | ‐– | ‐– | Ig iv | ‐– | 7/8 | |
Patient 40 | 63 | F | 2 | 15 | classic SGB | AMSAN | Neg | ‐– | ‐– | Ig iv | ‐– | 7/8 | ||
Ghosh [57] | Patient 41 | 20 | M | 1 | 8 | classic SGB | AMAN | ‐– | Neg | lymphopenia | ‐– | Ig iv | partial improvement | 7/8 |
First author (Ref.) | Age | Sex | Severity COVID191 | Latency2 | GBS Clinical variant3 | EMG | SARS-COV-2 CSF | Antiganglioside antibodies | Biomarkers | Treatment COVID-19 | Treatment GBS | Evolution at day 30 | Study quality4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gigli [58] | Patient 42 | 53 | M | 2 | ‐ – | paraparetic SGB | AIDP | ‐– | Neg | elevated IL-8, IL-6 | ‐– | Ig iv | partial improvement | 7/8 |
Granjer [59] | Patient 43 | 48 | M | 1 | 25 | classic SGB | AIDP | ‐– | ‐– | ‐– | ‐– | PPH | partial improvement | 7/8 |
Guijarro-Castro [60] | Patient 44 | 70 | M | 2 | 21 | classic SGB | Mixed | ‐– | Neg | lymphopenia thrombocythaemia, | HCQ, CXM, AZM, DXM | Ig iv | partial improvement | 7/8 |
Gutierrez-Ortiz [61] | Patient 45 | 50 | M | 1 | 5 | Miller-Fisher | ‐– | PCR Neg | anti-GD1b | lymphopenia, elevated CRP | ‐– | Ig iv | complet recovery | 7/8 |
Helbok [62] | Patient 46 | 68 | M | 2 | 14 | classic SGB | AIDP | PCR Neg | Neg | elevated CRP, ESR, fibrinogen | ‐– | Ig iv + PPH | partial improvement | 8/8 |
Hirayama [63] | Patient 47 | 54 | F | 2 | 20 | classic SGB | AMAN | ‐– | Neg | normal | ‐– | partial improvement | 8/8 | |
Hutchins [64] | Patient 48 | 21 | M | 2 | 16 | BWDP | Mixed | ‐– | Neg | lymphopenia | PPH | partial improvement | 7/8 | |
Kajani [65] | Patient 49 | 50 | M | 1 | ‐– | Miller-Fisher | ‐– | PCR Neg | Neg | normal | ‐– | Ig iv | dead (ventricular arrhythmia) | 6/8 |
Khaja [66] | Patient 50 | 44 | M | 1 | 0 | Bifacial weakness | ‐– | PCR Neg | Neg | normal | ‐– | Ig iv | complet recovery | 8/8 |
Kopscick [67] | Patient 51 | 31 | M | 1 | 0 | Miller-Fisher | ‐– | ‐– | anti-GQ1b | ‐– | convalescent plasma, TCZ | Ig iv | partial improvement | 7/8 |
Korem [68] | Patient 52 | 58 | F | 1 | 14 | classic SGB | ‐– | ‐– | ‐– | normal | AZM | Ig iv | partial improvement | 7/8 |
Lampe [69] | Patient 53 | 65 | M | 1 | 1 | classic SGB | AIDP | ‐– | Neg | leucopenia, elevated CRP | ‐– | Ig iv | partial improvement | 7/8 |
Lantos [70] | Patient 54 | 36 | M | 1 | 4 | Miller-Fisher | ‐– | ‐– | Neg | ‐– | HCQ | Ig iv | complet recovery | 7/8 |
Lascano [71] | Patient 55 | 52 | F | 1 | 15 | classic SGB | AIDP | PCR Neg | Neg | normal | ‐– | Ig iv | complet recovery | 8/8 |
Patient 56 | 63 | F | 1 | 7 | classic SGB | AIDP | PCR Neg | ‐– | lymphopenia, elevated transaminases | ‐– | Ig iv | poor | 7/8 | |
Patient 57 | 61 | F | 1 | 22 | classic SGB | AIDP | PCR Neg | ‐– | lymphopenia | ‐– | Ig iv | partial improvement | 7/8 | |
Lowery [72] | Patient 58 | 45 | M | 2 | 14 | Overlap Miller Fisher + SGB | ‐– | ‐– | anti-GQ1b | ‐– | HCQ | Ig iv | partial improvement | 8/8 |
Liberatore [73] | Patient 59 | 49 | M | 2 | 12 | PCBW | AMAN | PCR Neg | Neg | lymphopenia, thrombocythaemia. eElevated CRP | HCQ, LPV/r, CXM | partial improvement | 8/8 | |
MacDonell [74] | Patient 60 | 54 | M | 2 | 3 | classic SGB | ‐– | Neg | normal | HCQ | Ig iv | complet recovery | 8/8 | |
Maideniuc [75] | Patient 61 | 61 | F | 1 | 28 | classic SGB | AMAN | PCR Neg | normal | PPH | partial improvement | 8/8 | ||
Manganotti [76] | Patient 62 | 50 | F | 2 | 16 | Miller-Fisher | ‐– | Neg | ‐– | LPV/r, HCQ | Ig iv | complet recovery | 7/8 | |
Manganotti [77] | Patient 63 | 72 | M | 2 | 18 | classic SGB | AIDP | PCR Neg | Neg | Elevated IL6 | HCQ, Oseltamivir, darunavir, MP, TCZ | Ig iv | partial improvement | 8/8 |
Patient 64 | 72 | M | 2 | 30 | classic SGB | Mixed | PCR Neg | Neg | Normal | HCQ, LPV/r, MP | Ig iv | partial improvement | 8/8 | |
Patient 65 | 49 | F | 2 | 14 | Miller-Fisher | AIDP | PCR Neg | Neg | Normal | HCQ, LPV/r, MP | Ig iv | partial improvement | 8/8 | |
Patient 66 | 94 | M | 2 | 33 | classic SGB | AIDP | ‐– | ‐– | ‐– | MP | MP | poor | 7/8 | |
Patient 67 | 76 | M | 2 | 22 | classic SGB | AIDP | PCR Neg | Neg | Elevated IL6 | HCQ, Oseltamivir, darunavir, MP, TCZ. | Ig iv | partial improvement | 8/8 | |
Marta-Enguita [78] | Patient 68 | 78 | F | 2 | 8 | classic SGB | ‐– | ‐– | ‐– | thrombocythaemia, Elevated DD | ‐– | – | dead | 7/8 |
Naddaf [79] | Patient 69 | 58 | F | 2 | 17 | classic SGB | AIDP | PCR Neg | Neg | Elevated DD, ferritine | HCQ, MP | PPH | partial improvement | 8/8 |
Nanda [80] | Patient 70 | 55 | F | 1 | 10 | classic SGB | AMAN | ‐– | ‐– | elevated CRP, Ferritine, IL6, DD, LDH | ‐– | Ig iv | complet recovery | 7/8 |
Patient 71 | 72 | M | 2 | 6 | classic SGB | AIDP | ‐– | ‐– | elevated CRP, Ferritine, IL6, DD, LDH | ‐– | Ig iv | dead | 7/8 | |
Patient 72 | 55 | M | 1 | 7 | classic SGB | AMSAN | ‐– | ‐– | Elevated CRP, Ferritine, IL6, DD, LDH | ‐– | Ig iv | complet recovery | 7/8 | |
Patient 73 | 49 | M | 2 | 10 | classic SGB | AMAN | ‐– | ‐– | Elevated ferritin, LDH | ‐– | Ig iv | complet recovery | 7/8 | |
Oguz-Akarsu [81] | Patient 74 | 53 | F | 2 | 0 | classic SGB | AIDP | PCR Neg | ‐– | lymphopenia, elevated CRP | HCQ, AZM | PPH | complet recovery | 7/8 |
Ottavani [5] | Patient 75 | 66 | F | 3 | 7 | classic SGB | Mixed | PCR Neg | Neg | lymphopenia, elevated CRP, DD. | LPV/r, HCQ, | Ig iv | ‐– | 7/8 |
Paybast [82] | Patient 76 | 38 | M | 1 | 21 | classic SGB | Mixed | ‐– | ‐– | normal | HCQ | PPH | partial improvement | 7/8 |
Pelea [83] | Patient 77 | 56 | F | 1 | 7 | classic SGB | Mixed | PCR Neg | Neg | normal | ‐– | PPH + Ig iv | partial improvement | 8/8 |
Petrelli [84] | Patient 78 | 57 | M | 1 | 17 | classic SGB | AMAN | PCR Neg | anti-GM1, anti-GD1a | ‐– | ‐– | Ig iv, DM | partial improvement | 8/8 |
Padroni [85] | Patient 79 | 70 | F | 1 | 24 | classic SGB | AIDP | ‐– | ‐– | linfocitosis | ‐– | Ig iv | poor | 7/8 |
First author (Ref.) | Age | Sex | Severity COVID191 | Latency2 | GBS Clinical variant3 | EMG | SARS-COV-2 CSF | Antiganglioside antibodies | Biomarkers | Treatment COVID-19 | Treatment GBS | Evolution at day 30 | Study quality4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raahimi [86] | Patient 80 | 46 | M | 3 | 45 | classic SGB | AIDP | ‐– | ‐– | Normal | ‐– | Ig iv | partial improvement | 7/8 |
Rajdev [87] | Patient 81 | 36 | M | 3 | 18 | classic SGB | AIDP | ‐– | ‐– | ‐– | remdesivir | Ig iv, PPH | partial improvement | 7/8 |
Rana [88] | Patient 82 | 54 | M | 1 | 14 | overlap Miller Fisher - classic SGB | AIDP | ‐– | ‐– | ‐– | amoxicilin, short course steroids, HCQ, AZM | Ig iv, PPH | 7/8 | |
Ray [89] | Patient 83 | 63 | M | 1 | 1 | Miller Fisher | ‐– | ‐– | ‐– | Elevated CRP, lymphopenia, neutropenia | ‐– | ‐– | partial improvement | 6/8 |
Redondo [90] | Patient 84 | 54 | F | 2 | 15 | classic SGB | AIDP | PCR Neg | ‐– | Normales | ‐– | Ig iv | partial improvement | 7/8 |
Reyes-Bueno [91] | Patient 85 | 51 | F | 1 | 15 | overlap Miller Fisher - classic SGB | AIDP | Neg | ‐– | ‐– | Ig iv, gabapentina | partial improvement | 7/8 | |
Riva [92] | Patient 86 | sixties | M | 2 | 20 | classic SGB | AIDP | PCR Neg | Neg | Elevated IL-6, ferritina, LDH, fibrinógeno | ‐– | Ig iv | ‐– | 7/8 |
Sancho-Saldaña [93] | Patient 87 | 56 | F | 2 | 15 | classic SGB | AIDP | Neg | ‐– | HCQ, AZM | Ig iv | ‐– | 7/8 | |
Scheidl [94] | Patient 88 | 54 | F | 1 | 21 | classic SGB | AIDP | ‐– | ‐– | CRP normal | ‐– | Ig iv | complet recovery | 7/8 |
Sedaghat [95] | Patient 89 | 65 | M | 2 | 14 | classic SGB | AMAN | Elevated ESR, CRP | HCQ, LPV/r, AZM | Ig iv | 7/8 | |||
Senel [96] | Patient 90 | 61 | M | 1 | 20 | Miller Fisher | AIDP | PCRNeg Ac Neg | Neg | Neurofilament light chain (NfL) protein elevated | ‐– | Ig iv | complet recovery | 8/8 |
Su [97] | Patient 91 | 72 | M | 1 | 6 | classic SGB | AIDP | PCR Neg | Neg | Ig iv | poor | 7/8 | ||
Tard [25] | Patient 92 | 76 | M | 1 | 7 | overlap Miller Fisher - classic SGB | AIDP | PCR Neg | Neg, Anti-NF155 and anti-NF186 IgM, no IgG seroconversion |
‐– | ‐– | Ig iv, PPH, MP | partial improvement | 7/8 |
Tiet [98] | Patient 93 | 49 | M | 1 | 21 | classic SGB | AIDP | PCR Neg | ‐– | Elevated CRP, LDH, CK | ‐– | Ig iv, gabapentina | partial improvement | 7/8 |
Toscano [99] | Patient 94 | 77 | F | 2 | 7 | classic SGB | AMAN | PCR Neg | Neg | lymphopenia, Elevated CRP, LDH | ‐– | Ig iv | poor | 8/8 |
Patient 95 | 23 | M | 1 | 10 | overlap Miller Fisher - classic SGB | AMAN | PCR Neg | ‐– | lymphopenia, Elevated ferritine, CRP, LDH, AST | ‐– | Ig iv | partial improvement | 7/8 | |
Patient 96 | 55 | M | 2 | 10 | classic SGB | AMAN | PCR Neg | Neg | lymphopenia, Elevated CRP, LDH, AST, GGT | ‐– | Ig iv | poor | 8/8 | |
Patient 97 | 76 | M | 1 | 5 | overlap Miller Fisher - classic SGB | AIDP | PCR Neg | ‐– | lymphopenia Raised CRP, | ‐– | Ig iv | partial improvement | 7/8 | |
Patient 98 | 61 | M | 2 | 7 | classic SGB | AIDP | PCR Neg | Neg | Lymphocytopenia Elevated CRP, LDH, AST | ‐– | Ig iv, PPH | poor | 8/8 | |
Velayos [100] | Patient 99 | 43 | M | 2 | 10 | classic SGB | AIDP | ‐– | ‐– | ‐– | HCQ, LPV/r, corticoids (NE) | Ig iv | satisfactory | 7/8 |
Virani [101] | Patient 100 | 54 | M | 2 | 10 | classic SGB | ‐– | ‐– | ‐– | ‐– | ‐– | Ig iv | partial improvement | 7/8 |
Webb [102] | Patient 101 | 57 | M | 2 | 7 | classic SGB | AIDP | PCR Neg | Neg | lymphopenia, thrombocythaemia, raised CRP | Ig iv | partial improvement | 8/8 | |
Zhao [103] | Patient 102 | 61 | F | 2 | 7 | classic SGB | AIDP | lymphopenia thrombocytopenia | arbidol, LPV/r | Ig iv | complet recovery | 8/8 | ||
Zito [104] | Patient 103 | 57 | M | 1 | 12 | classic SGB | AMAN | Neg | elevated CRP | Ig iv | complet recovery | 8/8 | ||
Zubair [105] | Patient 104 | 32 | M | 4 | 60 | classic SGB | AMSAN | ‐– | Neg | ‐– | TCZ, HCQ, remdesivir | Ig iv | partial improvement | 7/8 |
Patient 105 | 61 | M | 4 | 60 | classic SGB | AMSAN | ‐– | Neg | ‐– | TCZ | Ig iv | partial improvement | 7/8 |
-: information not available; 1 1: uncomplicated disease, 2: mild pneumonia, 3: respiratory distress, 4: septic shock; 2 Days from onset of COVID-19 symptoms to onset of GB symptoms; 3 According to diagnostic criteria for GBS, MFS and their subtypes of the GBS Classification Group [8].; 4 JBI (Joanna Briggs Institute) Critical Appraisal Checklist for Case Reports and for Case Series studies [,]; F: female; M: male; BWDP: bifacial weaknees whit distal parestesias; PCBW: pharyngeal-cervical-brachial weakness; AMSAN: acute motor-sensory axonal neuropathy; AIDP: Acute inflammatory demyelinating polyneuropathy; AMAN: acute motor axonal neuropathy; Neg: negative; Pos: positive; PCR SARS-COV-2 CSF: Polymerase chain reaction detection of SARS-Cov-2 in cerebrospinal fluid; DD: D-dimer; CRP: c-reactive protein; ESR: erythrocyte sedimentation rate; LPV/r: Lopinavir/ritonavir; NE: not specified; HCQ: Hydroxychloroquine; CXM: ceftriaxone; AZM: azithromycin; MP: methylprednisolone; TCZ: tocilizumab; DOX: doxycycline; DXM: dexamethasone; Ig iv: intravenous immunoglobulins; PPH: plasmapheresis; PRED: prednisone; ARDS: acute respiratory distress syndrome.
In conclusion, the absence of autoantibodies in most GBS cases associated with SARS-CoV2 infection, would force us to think about pathogenic mechanisms other than molecular mimicry. Both the short of the interval of days between the onset of COVID-19 and the neurological symptoms, and the high proportion of patients with serum elevation of inflammation markers at the beginning of neurological symptoms, support the hypothesis that cell-mediated immunity could play a role, as previously proposed for GBS related to Zika.
Funding
The study had no specific funding.
Declaration of Competing Interest
The authors declare that no conflict of interest exists.
References
- 1.Guan W.-J., Ni Z.-Y., Hu Y., Liang W.-H., Ou C.-Q., He J.-X., et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Dotan A., Muller S., Kanduc D., David P., Halpert G., Shoenfeld Y. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;Vol. 20:102792. doi: 10.1016/j.autrev.2021.102792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Hao Y., Wang W., Jacobs B.C., Qiao B., Chen M., Liu D., et al. Antecedent infections in Guillain-Barré syndrome: a single-center, prospective study. Ann Clin Transl Neurol. 2019;6(12):2510–2517. doi: 10.1002/acn3.50946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Parra B., Lizarazo J., Jiménez-Arango J.A., Zea-Vera A.F., González-Manrique G., Vargas J., et al. Guillain–Barré syndrome associated with Zika virus infection in Colombia. N Engl J Med. 2016;375(16):1513–1523. doi: 10.1056/NEJMoa1605564. [DOI] [PubMed] [Google Scholar]
- 5.Ottaviani D., Boso F., Tranquillini E., Gapeni I., Pedrotti G., Cozzio S., et al. Early Guillain-Barré syndrome in coronavirus disease 2019 (COVID-19): a case report from an Italian COVID-hospital. Neurol Sci. 2020;41(6):1351–1354. doi: 10.1007/s10072-020-04449-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Abu-Rumeileh S., Abdelhak A., Foschi M., Tumani H., Otto M. Guillain–Barré syndrome spectrum associated with COVID-19: an up-to-date systematic review of 73 cases. J Neurol. 2020;95:1–38. doi: 10.1007/s00415-020-10124-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Hasan I., Saif-Ur-Rahman K., Hayat S., Papri N., Jahan I., Azam R., et al. Guillain-Barré syndrome associated with SARS-CoV -2 infection: a systematic review and individual participant data meta-analysis. J Peripher Nerv Syst. 2020;25(4):335–343. doi: 10.1111/jns.12419. [DOI] [PubMed] [Google Scholar]
- 8.Wakerley B.R., Uncini A., Yuki N. Guillain-Barré and miller fisher syndromes - new diagnostic classification. Nat Rev Neurol. 2014;10(9):537–544. doi: 10.1038/nrneurol.2014.138. [DOI] [PubMed] [Google Scholar]
- 11.Guadarrama-Ortiz P., Choreño-Parra J., Sánchez-Martínez C., Al E. Neurological aspects of SARS-CoV-2 infection: mechanisms and manifestations. Front Neurol. 2020;11:1039. doi: 10.3389/fneur.2020.01039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Mohammadi S., Moosaie F., Aarabi M.H. Understanding the immunologic characteristics of neurologic manifestations of SARS-CoV-2 and potential immunological mechanisms. Mol Neurobiol. 2020;57(12):5263–5275. doi: 10.1007/s12035-020-02094-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Rabi F.A., Al Zoubi M.S., Al-Nasser A.D., Kasasbeh G.A., Salameh D.M. Sars-cov-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi: 10.3390/pathogens9030231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Meinhardt J., Radke J., Dittmayer C., Mothes R., Franz J., Laue M., et al. Olfactory transmucosal SARS-CoV-2 invasion as port of central nervous system entry in COVID-19 patients. Nat Neurosci. 2020;24(2):168–175. doi: 10.1038/s41593-020-00758-5. [DOI] [PubMed] [Google Scholar]
- 16.Cevik M., Tate M., Lloyd O., Maraolo A.E., Schafers J., Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2021;2(1):e13–e22. doi: 10.1016/S2666-5247(20)30172-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.López-Collazo E., Avendaño-Ortiz J., Martín-Quirós A., Aguirre L.A. Immune response and COVID-19: a mirror image of sepsis. Int J Biol Sci. 2020;16(14):2479–2489. doi: 10.7150/ijbs.48400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Xu J., Zhong S., Liu J., Li L., Li Y., Wu X., et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–1096. doi: 10.1086/444461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Pilotto A., Masciocchi S., Volonghi I., De Giuli V., Caprioli F., Mariotto S., et al. SARS-CoV-2 encephalitis is a cytokine release syndrome: evidences from cerebrospinal fluid analyses. Clin Infect Dis. 2021;Jan 4:ciaa1933. doi: 10.1093/cid/ciaa1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Wu X., Wang J., Liu K., Zhu J., Zhang H.L. Are Th17 cells and their cytokines a therapeutic target in Guillain-Barré syndrome? Expert Opin Ther Targets. 2016;20(2):209–222. doi: 10.1517/14728222.2016.1086751. [DOI] [PubMed] [Google Scholar]
- 22.Ebrahim Soltani Z., Rahmani F., Rezaei N. Autoimmunity and cytokines in Guillain-Barré syndrome revisited: review of pathomechanisms with an eye on therapeutic options. Eur Cytokine Netw. 2019;30(1):1–14. doi: 10.1684/ecn.2019.0424. [DOI] [PubMed] [Google Scholar]
- 23.Goodfellow J.A., Willison H.J. Guillain-Barré syndrome: a century of progress. Nat Rev Neurol. 2016;12(12):723–731. doi: 10.1038/nrneurol.2016.172. [DOI] [PubMed] [Google Scholar]
- 24.Keddie S., Pakpoor J., Mousele C., Pipis M., Machado P.M., Foster M., et al. Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain. 2021 Mar;144(2):682–693. doi: 10.1093/brain/awaa433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Tard C., Maurage C.A., de Paula A.M., Cassim F., Delval A., Kuchcinski G., et al. Anti-pan-neurofascin IgM in COVID-19-related Guillain-Barré syndrome: evidence for a nodo-paranodopathy. Neurophysiol Clin. 2020;50(5):397–399. doi: 10.1016/j.neucli.2020.09.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Abbaslou M.A., Karbasi M., Mozhdehipanah H. A rare axonal variant of guillain-barré syndrome as a neurological complication of covid-19 infection. Arch Iran Med. 2020;23(10):718–721. doi: 10.34172/aim.2020.93. [DOI] [PubMed] [Google Scholar]
- 27.Abolmaali M., Heidari M., Zeinali M., Moghaddam P., Ghamsari M.R., Makiani M.J., et al. Guillain-Barre syndrome as a parainfectious manifestation of SARS-CoV-2 infection: a case series. J Clin Neurosci. 2021 Jan;83:119–122. doi: 10.1016/j.jocn.2020.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Abrams R.M.C., Kim B.D., Markantone D.M., Reilly K., Paniz-Mondolfi A.E., Gitman M.R., et al. Severe rapidly progressive Guillain-Barré syndrome in the setting of acute COVID-19 disease. J Neuro-Oncol. 2020;26(5):797–799. doi: 10.1007/s13365-020-00884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Agosti E., Giorgianni A., D’Amore F., Vinacci G., Balbi S., Locatelli D. Is Guillain-Barrè syndrome triggered by SARS-CoV-2? Case report and literature review. Neurol Sci. 2020;42(2):607–612. doi: 10.1007/s10072-020-04553-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Alberti P., Beretta S., Piatti M., Karantzoulis A., Piatti M.L., Santoro P., et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol NeuroInflam. 2020;7(4):1–3. doi: 10.1212/NXI.0000000000000741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Ameer N., Shekhda K.M., Cheesman A. Guillain-Barré syndrome presenting with COVID-19 infection. BMJ Case Rep. 2020;13(9):3–5. doi: 10.1136/bcr-2020-236978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Arnaud S., Budowski C., Ng Wing Tin S., Degos B. Post SARS-CoV-2 Guillain-Barré syndrome. Clin Neurophysiol. 2020;131(7):1652–1654. doi: 10.1016/j.clinph.2020.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Assini A., Benedetti L., Di Maio S., Schirinzi E., Del Sette M. Correction to: New clinical manifestation of COVID-19 related Guillain-Barrè syndrome highly responsive to intravenous immunoglobulins: two Italian cases (Neurological Sciences, (2020), 41, 7, (1657–1658)) Neurol Sci. 2020;41(8):2307. doi: 10.1007/s10072-020-04484-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Atakla H.G., Noudohounsi M.M.U.D., Sacca H., Tassiou N.R.A., Noudohounsi W.C., Houinato D.S. Acute guillain-barré polyradiculoneuritis indicative of covid-19 infection: a case report. Pan Afr Med J. 2020;35(Supp 2):1–6. doi: 10.11604/pamj.supp.2020.35.150.25745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Barrachina-Esteve O., Palau-Domínguez A., Hidalgo-Torrico I., Viguera Martínez M. Guillain-Barré syndrome as the first manifestation of SARS-CoV-2 infection. Neurología. 2020;35(9):710–712. doi: 10.1016/j.nrleng.2020.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Bigaut K., Mallaret M., Baloglu S., Nemoz B., Morand P., Baicry F., et al. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflam. 2020;7(5):4–6. doi: 10.1212/NXI.0000000000000785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Boostani R., Talab F.R., Meibodi N.T., Zemorshidi F. COVID-19 associated with sensorimotor polyradiculoneuropathy and skin lesions: a case report. J Neuroimmunol. 2021;350:577434. doi: 10.1016/j.jneuroim.2020.577434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Bracaglia M., Naldi I., Govoni A., Brillanti Ventura D., De Massis P. Acute inflammatory demyelinating polyneuritis in association with an asymptomatic infection by SARS-CoV-2. J Neurol. 2020;267(11):3166–3168. doi: 10.1007/s00415-020-10014-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Bueso T., Montalvan V., Lee J., Gomez J., Ball S., Shoustari A., et al. Guillain-Barre syndrome and COVID-19: a case report. Clin Neurol Neurosurg. 2021;200:106413. doi: 10.1016/j.clineuro.2020.106413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Juliao Caamaño D.S., Alonso Beato R. Facial diplegia, a possible atypical variant of Guillain-Barré syndrome as a rare neurological complication of SARS-CoV-2. J Clin Neurosci. 2020;77:230–232. doi: 10.1016/j.jocn.2020.05.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Camdessanche J.P., Morel J., Pozzetto B., Paul S., Tholance Y., Botelho-Nevers E. COVID-19 may induce Guillain–Barré syndrome. Rev Neurol (Paris) 2020;176(6):516–518. doi: 10.1016/j.neurol.2020.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Chan J.L., Ebadi H., Sarna J.R. Guillain-Barré syndrome with facial Diplegia related to SARS-CoV-2 infection. Can J Neurol Sci. 2020;47(6):852–854. doi: 10.1017/cjn.2020.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Civardi C., Collini A., Geda D.J., Geda C. Antiganglioside antibodies in Guillain-Barré syndrome associated with SARS-CoV-2 infection. J Neurol Neurosurg Psychiatry. 2020;91(12):1361–1362. doi: 10.1136/jnnp-2020-324279. [DOI] [PubMed] [Google Scholar]
- 44.Coena M., Jeansonc G., Culebras Almeida L.A., Hübersd A., Stierlina F., Najjara I., et al. Guillain-Barré syndrome as a complication of SARS-CoV-2 infection. Brain Behav Immun J. 2020;87:111–112. doi: 10.1016/j.bbi.2020.04.074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Colonna S., Sciume L., Giarda F., Innocenti A., Beretta G., Dalla Costa D. Case report: Postacute rehabilitation of Guillain-Barre syndrome and cerebral Vasculitis-like pattern accompanied by SARS-CoV-2 infection. Front Neurol. 2021;11:602554. doi: 10.3389/fneur.2020.602554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Defabio A.C., Scott T.R., Stenberg R.T., Simon E.L. Guillain-Barré syndrome in a patient previously diagnosed with COVID-19. Am J Emerg Med. 2020 doi: 10.1016/j.ajem.2020.07.074. Epub:S0735–6757(20)30669–0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Diez-Porras L., Vergés E., Gil F., Vidal M.J., Massons J., Arboix A. Guillain-Barré-Strohl syndrome and COVID-19: case report and literature review. Neuromuscul Disord. 2020;30(10):859–861. doi: 10.1016/j.nmd.2020.08.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.El Otmani H., El Moutawakil B., Rafai M.A., El Benna N., El Kettani C., Soussi M., et al. Covid-19 and Guillain-Barré syndrome: more than a coincidence! Rev Neurol (Paris) 2020;176(6):518–519. doi: 10.1016/j.neurol.2020.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Elkhouly A., Kaplan A.C. Noteworthy neurological manifestations associated with COVID-19 infection. Cureus. 2020;12(7):3–7. doi: 10.7759/cureus.8992. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 50.Esteban A., Mata M., Sánchez P., Carrillo A., ISancho I., Sanjuan T. Guillain-Barré syndrome associated with SARS-CoV-2 infection. Med Int. 2020;44(8):513–519. doi: 10.1016/j.medin.2020.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Farzi M.A., Ayromlou H., Jahanbakhsh N., Bavil P.H., Janzadeh A., Shayan F.K. Guillain-Barré syndrome in a patient infected with SARS-CoV-2, a case report. J Neuroimmunol. 2020;346:577294. doi: 10.1016/j.jneuroim.2020.577294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Fernández-Domínguez J., Ameijide-Sanluis E., García-Cabo C., García-Rodríguez R., Mateos V. Miller–fisher-like syndrome related to SARS-CoV-2 infection (COVID 19) J Neurol. 2020;267(9):2495–2496. doi: 10.1007/s00415-020-09912-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Ferraris L.E., Sala G., Casalino S., Losurdo L., De Filippis V. Mesenteric artery thrombosis, microvascular intestinal Endothelitiis, and Guillain-Barrè syndrome in the same SARS-CoV-2 patient. Cureus. 2020;12(11):4–9. doi: 10.7759/cureus.11326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Gale A., Sabaretnam S., Lewinsohn A. Guillain-Barré syndrome and COVID-19: association or coincidence. BMJ Case Rep. 2020;13(11) doi: 10.1136/bcr-2020-239241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.García-Manzanedo S., López de la Oliva Calvo L., Ruiz Álvarez L. Guillain-Barré syndrome after covid-19 infection. Med Clin (Barc) 2020;155(8):366. doi: 10.1016/j.medcle.2020.06.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Garnero M., Del Sette M., Assini A., Beronio A., Capello E., Cabona C., et al. COVID-19-related and not related Guillain-Barré syndromes share the same management pitfalls during lock down: The experience of Liguria region in Italy. J Neurol Sci. 2020;418:117114. doi: 10.1016/j.jns.2020.117114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Ghosh R., Roy D., Sengupta S., Benito-León J. Autonomic dysfunction heralding acute motor axonal neuropathy in COVID-19. J Neuro-Oncol. 2020:964–966. doi: 10.1007/s13365-020-00908-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Gigli G.L., Vogrig A., Nilo A., Fabris M., Biasotto A., Curcio F., et al. HLA and immunological features of SARS-CoV-2-induced Guillain-Barré syndrome. Neurol Sci. 2020;41(12):3391–3394. doi: 10.1007/s10072-020-04787-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Granger A., Omari M., Jakubowska-Sadowska K., Boffa M., Zakin E. SARS-CoV-2-associated Guillain-Barre syndrome with good response to plasmapheresis. J Clin Neuromuscul Dis. 2020;22(1):58–59. doi: 10.1097/CND.0000000000000310. [DOI] [PubMed] [Google Scholar]
- 60.Guijarro-Castro C., Rosón-González M., Abreu A., García-Arratibel A., Ochoa-Mulas M. Guillain-Barré syndrome associated with SARS-CoV-2 infection. Comments after 16 published cases. Neurologia. 2020;35(6):412–415. doi: 10.1016/j.nrl.2020.06.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Gutiérrez-Ortiz C., Méndez-Guerrero A., Rodrigo-Rey S., San Pedro-Murillo E., Bermejo-Guerrero L., Gordo-Mañas R., et al. Miller fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95(5):e601–e605. doi: 10.1212/WNL.0000000000009619. [DOI] [PubMed] [Google Scholar]
- 62.Helbok R., Beer R., Löscher W., Boesch S., Reindl M., Hornung R., et al. Guillain-Barré syndrome in a patient with antibodies against SARS-COV-2. Eur J Neurol. 2020;27(9):1754–1756. doi: 10.1111/ene.14388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Hirayama T., Hongo Y., Kaida K., Kano O. Guillain-Barré syndrome after COVID-19 in Japan. BMJ Case Rep. 2020;13(10):1–4. doi: 10.1136/bcr-2020-239218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Hutchins K.L., Jansen J.H., Comer A.D., Scheer R.V., Zahn G.S., Capps A.E., et al. COVID-19-associated bifacial weakness with paresthesia subtype of guillain-barré syndrome. Am J Neuroradiol. 2020;41(9):1707–1711. doi: 10.3174/ajnr.A6654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Kajani S., Kajani R., Huang C.-W., Tran T., Liu A.K. Miller fisher syndrome in the COVID-19 era - a novel target antigen calls for novel treatment. Cureus. 2021;13(1) doi: 10.7759/cureus.12424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Khaja M., Roa Gomez G.P., Santana Y., Hernandez N., Haider A., Lara J.L.P., et al. A 44-year-old hispanic man with loss of taste and bilateral facial weakness diagnosed with Guillain-Barré syndrome and Bell’s palsy associated with SARS-CoV-2 infection treated with intravenous immunoglobulin. Am J Case Rep. 2020;21:1–6. doi: 10.12659/AJCR.927956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Kopscik M., Giourgas B., Presley B. A case report of acute motor and sensory polyneuropathy as the presenting symptom of SARS-CoV-2. Clin Pract Cases Emerg Med. 2020;4(3):352–354. doi: 10.5811/cpcem.2020.6.48683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Korem S., Gandhi H., Dayag D.B. Guillain-Barré syndrome associated with COVID-19 disease. BMJ Case Rep. 2020;13(9) doi: 10.1136/bcr-2020-237215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Lampe A., Winschel A., Lang C., Steiner T. Vol. 0. 2020. Guillain-Barré Syndrome and SARS-CoV-2. 10–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Lantos J., Strauss S., Lin E. 2020. COVID-19 – Associated Miller Fisher Syndrome: MRI Findings; pp. 1184–1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Lascano A.M., Epiney J.B., Coen M., Serratrice J., Bernard-Valnet R., Lalive P.H., et al. SARS-CoV-2 and Guillain–Barré syndrome: AIDP variant with a favourable outcome. Eur J Neurol. 2020;27(9):1751–1753. doi: 10.1111/ene.14368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Lowery M.M., Taimur Malik M., Seemiller J., Tsai C.S. Atypical variant of Guillain Barre syndrome in a patient with COVID-19. J Crit Care Med. 2020;6(4):231–236. doi: 10.2478/jccm-2020-0038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Liberatore G., De Santis T., Doneddu P.E., Gentile F., Albanese A., Nobile-Orazio E. Clinical reasoning: a case of COVID-19-associated pharyngeal-cervical-brachial variant of Guillain-Barré syndrome. Neurology. 2020;95(21):978–983. doi: 10.1212/WNL.0000000000010817. [DOI] [PubMed] [Google Scholar]
- 74.McDonnell E.P., Altomare N.J., Parekh Y.H., Gowda R.C., Parikh P.D., Lazar M.H., et al. COVID-19 as a trigger of recurrent Guillain–Barré syndrome. Pathogens. 2020;9(11):1–9. doi: 10.3390/pathogens9110965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Maideniuc C., Memon A.B. Acute necrotizing myelitis and acute motor axonal neuropathy in a COVID-19 patient. J Neurol. 2020;268(2):739. doi: 10.1007/s00415-020-10145-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Manganotti P., Pesavento V., Buoite Stella A., Bonzi L., Campagnolo E., Bellavita G., et al. Miller fisher syndrome diagnosis and treatment in a patient with SARS-CoV-2. J Neuro-Oncol. 2020;26(4):605–606. doi: 10.1007/s13365-020-00858-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Manganotti P., Bellavita G., D’Acunto L., Tommasini V., Fabris M., Sartori A., et al. Clinical neurophysiology and cerebrospinal liquor analysis to detect Guillain-Barré syndrome and polyneuritis cranialis in COVID-19 patients: a case series. J Med Virol. 2020;93(2):766–774. doi: 10.1002/jmv.26289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Marta-Enguita J., Rubio-Baines I., Gastón-Zubimendi I. Síndrome de Guillain-Barré fatal tras infección por el virus SARS-CoV-2. Neurología. 2020;35(4):265–267. doi: 10.1016/j.nrl.2020.04.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Naddaf E., Laughlin R.S., Klein C.J., Toledano M., Theel E.S., Binnicker M.J., et al. Guillain-Barré syndrome in a patient with evidence of recent SARS-CoV-2 infection. Mayo Clin Proc. 2020;95(8):1799–1801. doi: 10.1016/j.mayocp.2020.05.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Nanda S., Handa R., Prasad A., Anand R., Zutshi D., Dass S.K., et al. Covid-19 associated Guillain-Barre syndrome: contrasting tale of four patients from a tertiary care Centre in India. Am J Emerg Med. 2021 Jan;39:125–128. doi: 10.1016/j.ajem.2020.09.029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Oguz-Akarsu E., Ozpar R., Mirzayev H., Acet-Ozturk N.A., Hakyemez B., Ediger D., et al. Guillain-Barré syndrome in a patient with minimal symptoms of COVID-19 infection. Muscle Nerve. 2020;62(3):E54–E57. doi: 10.1002/mus.26992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Paybast S., Gorji R., Mavandadi S. Guillain-Barré syndrome as a neurological complication of novel COVID-19 infection: a case report and review of the literature. Neurologist. 2020;25(4):101–103. doi: 10.1097/NRL.0000000000000291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Pelea T., Reuter U., Schmidt C., Laubinger R., Siegmund R., Walther B.W. SARS-CoV-2 associated Guillain–Barré syndrome. J Neurol. 2020;268(4):1191–1194. doi: 10.1007/s00415-020-10133-w. Epub(Aug 8):1–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Petrelli C., Scendoni R., Paglioriti M., Logullo F.O. Acute motor axonal neuropathy related to COVID-19 infection: a new diagnostic overview. J Clin Neuromuscul Dis. 2020;22(2):120–121. doi: 10.1097/CND.0000000000000322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Padroni M., Mastrangelo V., Asioli G.M., Pavolucci L., Abu-Rumeileh S., Piscaglia M.G., et al. Guillain-Barré syndrome following COVID-19: new infection, old complication? J Neurol. 2020;267(7):1877–1879. doi: 10.1007/s00415-020-09849-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Raahimi M.M., Kane A., Moore C.E., Alareed A.W. Late onset of Guillain-Barré syndrome following SARS-CoV-2 infection: part of “long COVID-19 syndrome”? BMJ Case Rep. 2021;14(1) doi: 10.1136/bcr-2020-240178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Rajdev K., Victor N., Buckholtz E.S., Hariharan P., Saeed M.A., Hershberger D.M., et al. A case of Guillain-Barré syndrome associated with COVID-19. J Investig Med. 2020;8 doi: 10.1177/2324709620961198. (high impact case reports). 2324709620961198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Rana S., Lima A.A., Chandra R., Valeriano J., Desai T., Freiberg W., et al. Novel coronavirus (COVID-19)-associated Guillain-Barré syndrome: case report. J Clin Neuromuscul Dis. 2020 Jun;21(4):240–242. doi: 10.1097/CND.0000000000000309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Ray A. Miller fisher syndrome and COVID-19: is there a link. BMJ Case Rep. 2020;13(8):19–22. doi: 10.1136/bcr-2020-236419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Redondo-Urda M.J., Rodríguez-Peguero F.J., Pérez-Gil O., Del Valle-Sánchez M., Carrera-Izquierdo M. SARS-CoV-2, nuevo agente causal del síndrome de Guillain-Barré. Rev Neurol. 2020;71(7):275–276. doi: 10.33588/rn.7107.2020264. [DOI] [PubMed] [Google Scholar]
- 91.Reyes-Bueno J.A., García-Trujillo L., Urbaneja P., Ciano-Petersen N.L., Postigo-Pozo M.J., Martínez-Tomás C., et al. Miller-fisher syndrome after SARS-CoV-2 infection. Eur J Neurol. 2020;27(9):1759–1761. doi: 10.1111/ene.14383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Riva N., Russo T., Falzone Y.M., Strollo M., Amadio S., Del Carro U., et al. Post-infectious Guillain–Barré syndrome related to SARS-CoV-2 infection: a case report. J Neurol. 2020;267(9):2492–2494. doi: 10.1007/s00415-020-09907-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Sancho-Saldaña A., Lambea-Gil Á., Capablo Liesa J.L., Barrena Caballo M.R., Garay M.H., Celada D.R., et al. Guillain-Barré syndrome associated with leptomeningeal enhancement following SARS-CoV-2 infection. Clin Med J R Coll Physicians London. 2020;20(4):E93–E94. doi: 10.7861/clinmed.2020-0213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Scheidl E., Canseco D.D., Hadji-Naumov A., Bereznai B. Guillain-Barré syndrome during SARS-CoV-2 pandemic: a case report and review of recent literature. J Peripher Nerv Syst. 2020;25(2):204–207. doi: 10.1111/jns.12382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Sedaghat Z., Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233–235. doi: 10.1016/j.jocn.2020.04.062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Senel M., Abu-Rumeileh S., Michel D., Garibashvili T., Althaus K., Kassubek J., et al. Miller-fisher syndrome after COVID-19: neurochemical markers as an early sign of nervous system involvement. Eur J Neurol. 2020;27(11):2378–2380. doi: 10.1111/ene.14473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Su X.W., Palka S.V., Rao R.R., Chen F.S., Brackney C.R., Cambi F. SARS-CoV-2–associated Guillain-Barré syndrome with dysautonomia. Muscle Nerve. 2020;62(2):E48–E49. doi: 10.1002/mus.26988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Tiet M.Y., Alshaikh N. Guillain-Barré syndrome associated with COVID-19 infection: a case from the UK. BMJ Case Rep. 2020;13(7):1–4. doi: 10.1136/bcr-2020-236536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Toscano G., Palmerini F., Ravaglia S., Ruiz L., Invernizzi P., Cuzzoni M.G., et al. Guillain–Barré syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574–2576. doi: 10.1056/NEJMc2009191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Velayos Galán A., del Saz Saucedo P., Peinado Postigo F., Botia Paniagua E. Síndrome de Guillain-Barré asociado a infección por SARS-CoV-2. Neurología. 2020;35(4):268–269. doi: 10.1016/j.nrl.2020.04.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Virani A., Rabold E., Hanson T., Haag A., Elrufay R., Cheema T., et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection. IDCases. 2020;20 doi: 10.1016/j.idcr.2020.e00771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Webb S., Wallace V.C.J., Martin-Lopez D., Yogarajah M. Guillain-Barré syndrome following COVID-19: a newly emerging post-infectious complication. BMJ Case Rep. 2020;13(6):1–4. doi: 10.1136/bcr-2020-236182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Zhao H., Shen D., Zhou H., Liu J., Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19(5):383–384. doi: 10.1016/S1474-4422(20)30109-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Zito A., Alfonsi E., Franciotta D., Todisco M., Gastaldi M., Cotta Ramusino M., et al. COVID-19 and Guillain–Barré syndrome: a case report and review of literature. Front Neurol. 2020;11:909. doi: 10.3389/fneur.2020.00909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Zubair A.S., Zubair A.S., Desai K., Abulaban A., Roy B. Guillain-Barre syndrome as a complication of COVID-19. Cureus. 2021 Jan;13(1) doi: 10.7759/cureus.12695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.2017. Joanna Briggs Institute Checklist for Case Reports
- 107.2017. Joanna Briggs Institute Checklist for Case Series