Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2021 Jun 10;185:144–151. doi: 10.1016/j.procs.2021.05.016

Incorporating Time Delays in the Mathematical Modelling of the Human Immune Response in Viral Infections

Gabrielle Dagasso a, Joanna Urban b, Mila Kwiatkowska a
PMCID: PMC8191523  PMID: 34131452

Abstract

Mathematical modelling helps to describe the functional and causal relationships between objects in the physical world. The complexity of these models increases as more components and variables are added to maintain and observe. Differential equations are regularly used in these models, as they are able to display the interactions between several variables and describe non-linear behaviour. Differential equations are commonly used in immune response mathematical models to help describe these complex and dynamic interactions within the immune system of the organism. Time delays in the immune system are common and are often disregarded due to the low-resolution of models, which provide limited description of the specific section of immune system being studied. The few models that incorporate time delays are mostly at the epidemiological level, to track the spread of the virus in the population. In this paper we review the applications of the models based on differential equations and describe their potential utilization for the studies of immune response in SARS-CoV-2.

Keywords: Mathematical Modelling, Time Delay, Viral Infection

References

  • 1.Torres N.V., Santos G. "The (Mathematical) Modeling Process in Biosciences.". Front Genet. 2015;6:354. doi: 10.3389/fgene.2015.00354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Brodland G.W. "How computational models can help unlock biological systems.". Semin Cell Dev Biol. 2015;47-48:62–73. doi: 10.1016/j.semcdb.2015.07.001. [DOI] [PubMed] [Google Scholar]
  • 3.Galas David. "Systems biology.". Encyclopædia Britannica. 2018 [Google Scholar]
  • 4.Du S.Q., Yuan W. "Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis.". J Med Virol. 2020 doi: 10.1002/jmv.25866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Pappalardo F., Pennisi M., Reche P.A., Russo G. "Toward computational modelling on immune system function.". BMC Bioinformatics. 2019;20(Suppl 6):622. doi: 10.1186/s12859-019-3239-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Germain R.N., Meier-Schellersheim M., Nita-Lazar A., Fraser I.D. "Systems biology in immunology: a computational modeling perspective.". Annu Rev Immunol. 2011;29:527–585. doi: 10.1146/annurev-immunol-030409-101317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Murray J.M., Ribeiro R.M. "Special Issue “Mathematical Modeling of Viral Infections.". Viruses. 2018;10(6) doi: 10.3390/v10060303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Fenton A., Lello J., Bonsall M.B. "Pathogen responses to host immunity: the impact of time delays and memory on the evolution of virulence.". Proc Biol Sci. 2006;273(1597):2083–2090. doi: 10.1098/rspb.2006.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Thakar J., Poss M., Albert R., Long G.H., Zhang R. "Dynamic models of immune responses: what is the ideal level of detail?". Theor Biol Med Model. 2010;7:35. doi: 10.1186/1742-4682-7-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Minucci Sarah B., Heise Rebecca L., Reynolds Angela M. "Review of Mathematical Modeling of the Inflammatory Response in Lung Infections and Injuries.". Frontiers in Applied Mathematics and Statistics. 2020;6:36. [Google Scholar]
  • 11.Taylor S. Richard. "Probabilistic Properties of Delay Differential Equations.". UWSpace; 2004. [Google Scholar]
  • 12.Li Geng, Fan Yaohua, Lai Yanni, Han Tiantian, Li Zonghui, Zhou Peiwen, Wu Jianguo. "Coronavirus infections and immune responses.". Journal of Medical Virology. 2020;92(4):424–432. doi: 10.1002/jmv.25685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Schoeman Dewald, Fielding Burtram C. "Coronavirus envelope protein: current knowledge.". Virology Journal. 2019;16(1):69. doi: 10.1186/s12985-019-1182-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Petersen Eskild, Koopmans Marion, Go Unyeong, Hamer Davidson H., Petrosillo Nicola, Castelli Francesco, Simonsen Lone. "Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics.". The Lancet Infectious Diseases. 2020;20(9):e238–e244. doi: 10.1016/S1473-3099(20)30484-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Sohail Ayesha, Nutini Alessandro. "Forecasting the timeframe of 2019-nCoV and human cells interaction with reverse engineering.". Progress in Biophysics and Molecular Biology. 2020;155:29–35. doi: 10.1016/j.pbiomolbio.2020.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Tang S., Ma W., Bai P. "A Novel Dynamic Model Describing the Spread of the MERS-CoV and the Expression of Dipeptidyl Peptidase 4.". Comput Math Methods Med. 2017:5285810. doi: 10.1155/2017/5285810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zhu Zhixing, Lian Xihua, Su Xiaoshan, Wu Weijing, Marraro Giuseppe A., Zeng Yiming. "From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses.". Respiratory Research. 2020;21(1):224. doi: 10.1186/s12931-020-01479-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lau S.K., Chan J.F. "Coronaviruses: emerging and re-emerging pathogens in humans and animals.". Virol J. 2015;12:209. doi: 10.1186/s12985-015-0432-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Smith A.M. "Validated Models of Immune Response to Virus Infection.". Curr Opin Syst Biol. 2018;12:46–52. doi: 10.1016/j.coisb.2018.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Alnaeem A., Kasem S., Qasim I., Al-Doweriej A., Refaat M., Al-Shabebi A., Hemida M.G. "The dipeptidyl peptidase-4 expression in some MERS-CoV naturally infected dromedary camels in Saudi Arabia 2018-2019.". Virusdisease. 2020:1–4. doi: 10.1007/s13337-020-00586-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Watabe Teruaki, Kishino Hirohisa. "Structural considerations in the fitness landscape of a virus.". Molecular biology and evolution. 2010;27(8):1782–1791. doi: 10.1093/molbev/msq056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Shegogue Daniel, Jim Zheng W. "Object-oriented biological system integration: a SARS coronavirus example.". Bioinformatics (Oxford, England) 2005;21(10):2502–2509. doi: 10.1093/bioinformatics/bti344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Krishnapriya P., Pitchaimani M., Witten Tarynn M. "Mathematical analysis of an influenza A epidemic model with discrete delay.". Journal of Computational and Applied Mathematics. 2017;324:155–172. [Google Scholar]
  • 24.Baccam P., Beauchemin C., Macken C.A., Hayden F.G., Perelson A.S. "Kinetics of influenza A virus infection in humans.". J Virol. 2006;80(15):7590–7599. doi: 10.1128/JVI.01623-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Handel A., Longini I.M., Antia R. "Towards a quantitative understanding of the within-host dynamics of influenza A infections.". J R Soc Interface. 2010;7(42):35–47. doi: 10.1098/rsif.2009.0067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Khurana S., Krementsov D.N., de Parseval A., Elder J.H., Foti M., Thali M. "Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains.". J Virol. 2007;81(22):12630–126340. doi: 10.1128/JVI.01255-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Liu Jun, Wang Yan, Liu Luju, Zhao Tingting. "A Stochastic HIV Infection Model with Latent Infection and Antiretroviral Therapy.". Discrete Dynamics in Nature and Society. 2018:5175383. [Google Scholar]
  • 28.Yuan Y., Allen L.J. "Stochastic models for virus and immune system dynamics.". Math Biosci. 2011;234(2):84–94. doi: 10.1016/j.mbs.2011.08.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Handel A. "A software package for immunologists to learn simulation modeling.". BMC Immunol. 2020;21(1):1. doi: 10.1186/s12865-019-0321-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Wölfel Roman, Corman Victor M., Guggemos Wolfgang, Seilmaier Michael, Zange Sabine, Müller Marcel A., Wendtner Clemens. "Virological assessment of hospitalized patients with COVID-2019.". Nature. 2020;581(7809):465–469. doi: 10.1038/s41586-020-2196-x. [DOI] [PubMed] [Google Scholar]
  • 31.Hernandez-Vargas, Esteban A., and Jorge X. Velasco-Hernandez. (2020) “In-host Modelling of COVID-19 in Humans.” medRxiv. 2020.03.26.20044487. [DOI] [PMC free article] [PubMed]
  • 32.Du S.Q., Yuan W. "Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis.". J Med Virol. 2020;92(9):1615–1628. doi: 10.1002/jmv.25866. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Procedia Computer Science are provided here courtesy of Elsevier

RESOURCES