Skip to main content
eLife logoLink to eLife
. 2021 Jun 1;10:e67789. doi: 10.7554/eLife.67789

Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors

Moirangthem Kiran Singh 1,2, Parisa Zangoui 1,2, Yuki Yamanaka 1,, Linda J Kenney 1,2,
Editors: Petra Anne Levin3, Gisela Storz4
PMCID: PMC8192122  PMID: 34061032

Abstract

Type three secretion systems enable bacterial pathogens to inject effectors into the cytosol of eukaryotic hosts to reprogram cellular functions. It is technically challenging to label effectors and the secretion machinery without disrupting their structure/function. Herein, we present a new approach for labeling and visualization of previously intractable targets. Using genetic code expansion, we site-specifically labeled SsaP, the substrate specificity switch, and SifA, a here-to-fore unlabeled secreted effector. SsaP was secreted at later infection times; SsaP labeling demonstrated the stochasticity of injectisome and effector expression. SifA was labeled after secretion into host cells via fluorescent unnatural amino acids or non-fluorescent labels and a subsequent click reaction. We demonstrate the superiority of imaging after genetic code expansion compared to small molecule tags. It provides an alternative for labeling proteins that do not tolerate N- or C-terminal tags or fluorophores and thus is widely applicable to other secreted effectors and small proteins.

Research organism: Other

Introduction

Salmonellae use an evolved complex protein secretion system known as a type three secretion system (T3SS) to deliver virulence factors (referred to as effectors) directly into host cells (Marlovits et al., 2004; Kubori et al., 1998). The T3SS is a ‘needle-like’, complex, supramolecular structure that spans the bacterial inner and outer membrane and is capable of injecting effectors into the host (Marlovits et al., 2004; Kubori et al., 1998; Erhardt et al., 2010). Inside the host cytoplasm, effectors manipulate host cell signaling pathways to drive pathogenesis (LaRock et al., 2015). Salmonella uses two distinct T3SS that are encoded within Salmonella pathogenicity islands 1 and 2 that function at different times during infection. The Salmonella pathogenicity island 1 (SPI-1)-encoded T3SS delivers effectors that alter host actin cytoskeleton dynamics, leading to extensive plasma membrane ruffling and bacterial uptake (LaRock et al., 2015; Galán and Waksman, 2018). Upon entry into host cells, Salmonella resides within an acidic membrane-bound compartment, the Salmonella-containing vacuole (SCV). The acid pH of the SCV acidifies the bacterial cytoplasm and activates Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS (Liew et al., 2019; Kenney, 2019) to translocate a cocktail of ~30 effectors across the vacuolar membrane into the host cytosol (Erhardt et al., 2010; LaRock et al., 2015; Galán and Waksman, 2018; Liew et al., 2019; Kenney, 2019; Jennings et al., 2017). This complex mixture of effectors induces massive remodeling of endosomes, leading to the formation of highly dynamic, extensive tubular membrane structures known as Salmonella-induced filaments (SIFs) (LaRock et al., 2015; Galán and Waksman, 2018; Jennings et al., 2017; Garcia-del Portillo et al., 1993; Drecktrah et al., 2008; Steele-Mortimer, 2008; Knuff and Finlay, 2017). SifA is one of the key effectors that is involved in SIF formation (Stein et al., 1996); a sifA deletion eliminates SIF formation and attenuates virulence in the mouse (Beuzón et al., 2000; Brumell et al., 2001; Ruiz-Albert et al., 2002). To understand how such effectors manipulate host cell biology, it is informative to examine the localization of SPI-2 effectors within host cells.

Labeling and localization of secreted T3SS effectors in the host has proven to be technically challenging (see Singh and Kenney, 2021 for a review). Earlier studies localized effectors by immunofluorescence of individually over-expressed effectors (Ohlson et al., 2008; McGourty et al., 2012). Not only was the stoichiometry of effectors disrupted by this approach, but also the effectors were not present at native copy numbers. Further, antibodies often produce off-target staining, and the location of epitope tag integration can be problematic (Schnell et al., 2012). The most conventional method for tracking and localization of proteins is to express the target protein fused to a fluorescent protein such as GFP or one of its variants. However, direct labeling of effectors with bulky fluorescent proteins interferes with secretion and jams the T3SS (Akeda and Galán, 2005). The utility of the 4Cys-FLaSH tagging system is limited by low labeling specificity, a poor signal-to-noise ratio, and cellular toxicity (Enninga et al., 2005; Martin et al., 2005; Adams et al., 2002). Tandem-repeat fluorescent tags such as split-GFP are also of limited value, because they do not overcome the dim signal from effectors expressed at low levels (Young et al., 2017; Park et al., 2017). All these methods require an additional protein tag fused to either the N- or C-terminus of the effector, and these tags, whether small or large, can perturb effector structure-function by disrupting trafficking or post-translational modification of fused effector proteins. Although the SPI-2 effector SseJ tolerated an HA-tag at its C-terminus (Chakraborty et al., 2015; Gao et al., 2018), we were unable to label SifA at either the N- or C-terminus or in intracellular loops and still preserve its function (Gao et al., 2018; Brumell et al., 2002). New strategies are therefore required to selectively label and visualize T3SS effectors in host cells during infection.

The T3SS systems share striking homology with the flagellar system and are believed to have evolved from a common ancestor (Pallen and Gophna, 2007). In the flagellar system, FliK functions as a ‘ruler’ protein to measure the hook length before switching to secrete the filament (Shibata et al., 2007). In pathogens such as Yersinia, Shigella, and Salmonella, FliK homologues control injectisome needle length (Journet et al., 2003; Wee and Hughes, 2015); its deletion produces long needles (Muramoto et al., 1998; Kubori et al., 2000; Magdalena et al., 2002; Bergeron et al., 2016). In the SPI-2 T3SS, SsaP is proposed to function in a similar manner (Yu et al., 2018), although its deletion does not produce long needles (Y. Yamanaka and L.J. Kenney, data not shown). SsaP is required for the secretion-specificity switch from substrates for injectisome assembly to the secretion of SPI-2 effectors, but its small size (124 amino acids) and low abundance makes labeling and visualization difficult. A C-terminal fusion with photoactivatable mCherry (PAmCherry) resulted in a fusion protein that was cleaved, preventing imaging of SsaP. How SsaP functions to control SPI-2 effector secretion is still unknown (Yu et al., 2018).

Genetic incorporation of non-canonical amino acids (ncAA) bearing bio-orthogonal chemical labeling handles such as azide, ring-strained alkynes, or alkenes into bacteria via genetic code expansion (GCE) provides a solution to these problems. A ncAA is first encoded by a nonsense codon (typically TAG) and is co-translationally incorporated into a protein of interest site-specifically, using a ncAA-specific orthogonal tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair (Lang and Chin, 2014a; Davis and Chin, 2012; Chin et al., 2002). Subsequently, the bacterial protein bearing a bio-orthogonal handle (such as azide, ring-strained alkenes) reacts with dibenzocyclooctyne (DBCO)/tetrazine (Tz)-containing fluorophores through catalyst free strain-promoted azide-alkyne cycloaddition (SPAAC) or strain-promoted inverse-electron–demand Diels–Alder cycloaddition (SPIEDAC) reactions (Lang and Chin, 2014aAgard et al., 2004Plass et al., 2012) as illustrated in Figure 1 . Due to its high selectivity, fast reaction rate compared to SPAAC, and fluorogenic tetrazine fluorophore, the SPIEDAC click reaction has emerged as an invaluable selective bioconjugation tool in cells (Plass et al., 2012; Lang and Chin, 2014b). Since such a labeling approach is not limited to the N- or C-terminus of the effector of interest, and organic fluorophores are much smaller compared to fluorescent proteins (∼0.5 vs. ∼27 kDa), this approach reduces the potential negative impact of the fluorescent tags on the structure and function of labeled secreted effectors. The organic fluorophores can also offer superior photophysical properties and more spectral variants compared to fluorescent proteins.

Figure 1. Scheme for site-specific fluorescent labeling of SPI-2 effectors.

Figure 1.

(A) Chemical structure of 4-azidophenylalanine (AzF), 7-(Hydroxy-coumarin-4-yl) ethylglycine (Hco), trans-Cyclooct-2-en – L - Lysine (TCO*Lys), BDP-DBCO, and SiR-tetrazine. (B) Incorporation of a ncAA in a SPI-2 effector is schematically represented. A plasmid carrying the gene for an effector of interest (green) and an orthogonal suppressor tRNA (dark blue)/aminoacyl synthetase (orange) pair are introduced into the bacterial cell by transformation. The amber stop codon (TAG, red) replaces a native codon at a permissive site within the sequence of the effector gene. The ncAA (red stars) is supplemented in the growth medium. Inside the cell, the orthogonal synthetase specifically charges the orthogonal suppressor tRNA with the desired ncAA through a catalytic reaction driven by ATP. The ncAA-acylated tRNA which contains a CUA anticodon, then enters the ribosomal machinery and incorporates the attached ncAA into the effector in response to the complementary amber codon on the effector mRNA (black). Once released from the ribosome, the tRNA can be further reused for ncAA amino-acylation by the cognate synthetase. The full-length polypeptide chain of the effector site-specifically carries the ncAA and undergoes folding and assembly into a functioning effector protein. The newly formed effector is translocated into the host cell through the T3SS. The secreted SPI-2 effectors incorporated with ncAA can be labeled by an externally added fluorophore. (C) Reaction scheme of effector labeling with a genetically encoded azide-containing protein. An azide-containing amino acid (AzF) is genetically incorporated into a protein (SifA) and the azido group reacts with a conjugation reagent containing dibenzocyclooctyne (BDP-DBCO) through SPAAC. (D) Reaction scheme for the copper-free click reaction with a fluorogenic tetrazine dye. An ncAA with a strained alkene group (e.g. TCO-Lys, as shown here) incorporated into an effector protein (SsaP) reacts with tetrazine‐coupled dyes (SiR-Tz) through SPIEDAC click reaction. Dyes coupled to tetrazine are only fluorescent (magenta) after successful labeling.

Although GCE has been used for specific labeling of cellular proteins, protein-protein interactions and post-translational studies in E. coli, yeast and mammalian cells (Lang and Chin, 2014a; Davis and Chin, 2012; Chin et al., 2002; Lin et al., 2011; Peng and Hang, 2016; Ko et al., 2016; Zhang et al., 2011; Lammers et al., 2010; Hancock et al., 2010), no study has used GCE for direct visualization of secreted bacterial effector proteins inside host cells. Herein, we report a GCE-based approach for fluorescent labeling and visualization of the secreted effector SifA of Salmonella enterica serovar Typhimurium, as well as the substrate specificity switch protein SsaP (Figure 1C–D). The efficiency and specificity of this labeling strategy is notably affected by the cellular properties of the organic fluorophores. One solution to this problem is to visualize secreted SifA directly by site-specifically introducing a relatively compact fluorescent ncAA (7-(Hydroxy-coumarin-4-yl) ethylglycine, Hco), avoiding the subsequent click reaction. The versatility of the GCE-based labeling approach allowed us to use it in fixed-cells, live-cells, as well as super-resolution imaging of bacterial secreted effectors inside host cells. Using this approach, we observed that SifA was co-localized with LAMP1, the effector SseJ, and the host motor protein kinesin. However, in contrast to SseJ, SifA did not continuously decorate the SIFs, indicating that the stoichiometry of SifA to SseJ was not 1:1. SsaP was labeled and visualized for the first time in bacterial cells. It was localized predominantly at the cell poles, as was the SPI-2 T3SS apparatus (Chakraborty et al., 2015). SsaP was secreted into host cells at later times during infection. Finally, we provide evidence of the superiority of labeling by GCE compared to small molecule HA tags. The approach and application described herein is not limited to SifA, SseJ, or SsaP, but is readily applicable to other T3SS effector proteins, as well as to proteins that are not secreted, yet difficult to label.

Results

Engineering and selection of label positions

Theoretically, an ncAA can be incorporated into any site of a protein of interest. However, in practice, finding a suitable site can be laborious and empirical. Although the incorporation efficiency of an ncAA by an orthogonal tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) system is influenced by multiple factors, codon context appears to be the most important (Xu et al., 2016). The preferred context of orthogonal tRNA is AAT-TAG-ACT, affording the most efficient ncAA incorporation (Xu et al., 2016). Salmonella Typhimurium LT2 contains approximately 452 endogenous TAG stop codons out of 4696 genes, i.e., 9.6% of its genome (Nakamura et al., 2000). To the best of our knowledge, only a few SPI-1 genes (SopA) and SPI-2 genes (PipB, PipB2 and SspH2) employ TAG codons. Given that nearly 10% of the genome contains a TAG codon, one would anticipate a certain level of ncAA incorporation at endogenous TAGs, which would lead to spurious dye labeling of other proteins, in addition to labeling of the protein of interest. However, in-gel fluorescence of off-target incorporation into the proteomes of an E. coli derivative of BW25993 (where all the TAG codons were mutated to TAA stop codons) was compared with its wild-type parent. Similar levels of ‘off-target’ incorporation in the presence of the orthogonal tRNA and ncAA were observed (Kipper et al., 2017; Uttamapinant et al., 2015). We further circumvent this problem by examining SifA and SsaP under SPI-2-inducing conditions, during which SPI-1 effectors are present at very low (if any) concentrations. Since the tRNA preferred sequence is actually AAT-TAG-ACT (Xu et al., 2016), this sequence is absent in the TAG-containing SPI-1 and SPI-2 genes. Lastly, TAG codons tend to be present in genes that are not abundantly expressed (Kipper et al., 2017). For all the above reasons, amber suppression and subsequent labeling of off target proteins is quite rare.

Site-specific incorporation of labels into SifA and SsaP

We selected the secreted effector SifA and SsaP for labeling by GCE, because of the past difficulties in labeling (Gao et al., 2018; Brumell et al., 2002). In the case of SsaP, it is a small protein (124 amino acids) and labeling with photoactivatable mCherry (PAmCherry) resulted in a cleaved fusion protein (Figure 2—figure supplement 1). The ncAA contains an azide group/ring-strained alkenes (TCO), thus SifA and SsaP can react with the DBCO/Tz-containing dyes by genetically incorporating AzF/TCO*Lys into its permissive sites. We first identified potential amino acid residues that would be optimal candidates for ncAA incorporation into SifA using amino acid conservation analysis with the ConSurf web server (Ashkenazy et al., 2010). We chose position 52 in SifA for AzF incorporation based on its low conservation score and the surface accessibility of the selected position was verified from the protein structure (Figure 2—figure supplement 2). In the case of SsaP, we engineered the TAG at position 65 to ensure a higher likelihood of labeling (Xu et al., 2016), this position was also within a region that had tolerated the insertion of an HA tag (Figure 2—figure supplement 3). Expression of either the full-length SifA-E52AzF mutant or SsaP-Y65TCO was dependent on the presence of ncAAs and the corresponding optimal tRNA/aaRS, as evident from SDS-PAGE (Figure 2). SifA-E52AzF and SsaP-Y65TCO were labeled with BDP-DBCO and SiR-Tz using SPAAC/SPIEDAC click chemistry, respectively. A bright fluorescent band was present that corresponded to full length AzF-SifA (Figure 2A). In the case of SsaP-Y65TCO, a weak, diffusive fluorescent band was observed (Figure 2C) that was confirmed by western blot analysis of secreted SsaP (Figure 2—figure supplement 3). Fluorescence microscopy analysis further verified the selective labeling of SifA/SsaP in Salmonella cells in vitro (Figure 2B,D).

Figure 2. AzF is site-specifically incorporated into SifA-E52TAG in Salmonella.

(A) Left: Coomassie stained SDS-PAGE; right: SDS-PAGE fluorescence imaging confirms selective labeling of SifA-E52AzF with BDP-DBCO in the cell lysate. (B) Expression of SifA-E52AzF in Salmonella analyzed by fluorescence microscopy in the presence (top) or absence (bottom) of 1mM AzF. Salmonella cells expressing SifA-E52AzF in the presence or absence of AzF were incubated with BDP-DBCO, and imaged for BDP fluorescence (green). SifA fluorescence (green) is only observed in the presence of AzF. (C) Site-specific incorporation of TCO*Lys into SsaP-Y65TCO in Salmonella left: Coomassie stained SDS-PAGE; right: SDS-PAGE fluorescence imaging confirms selective labeling of SsaPY65TCO with BDP-Tz in the secreted fraction collected after TCA precipitation. (D) Expression of SsaP-Y65TCO in Salmonella analyzed by fluorescence microscopy in the presence (top) or absence (bottom) of 1mM TCO*Lys. Salmonella cells expressing SsaP-Y65TCO in the presence or absence of TCO*Lys were incubated with SiR-Tz, fixed at 8 hr post acid induction and imaged for SiR fluorescence (magenta). Polarly localized SsaP fluorescence (magenta) is only observed in the presence of TCO*Lys. A higher magnification merged imaged is shown in the inset. See Figure 2—figure supplement 5 for statistical analysis for the fraction of polarly localized SsaP. Images were acquired using confocal microscopy. The data are representative of at least three independent experiments. BF = bright field. Scale bar, 2 µm (B,D), 1 µm (inset).

Figure 2.

Figure 2—figure supplement 1. SsaP is required for SPI-2 secretion.

Figure 2—figure supplement 1.

In the wild-type background, the secreted translocon protein SseB appears in both whole cell and secreted fractions (left panel, lane 1). In the ssaP null strain, SseB is produced, but not secreted. SseB secretion is restored by providing ssaP in trans at the ʎ attachment site. A fusion protein with PAmCherry at the N-terminus of SsaP does not support SseB secretion, but a C-terminal PAmCherry fusion restores secretion. GroEL was used as a loading control. The C-terminal SsaP-PAmCherry fusion appears to be cleaved as observed by western blot (right panel).
Figure 2—figure supplement 2. Selection of ncAA incorporation sites.

Figure 2—figure supplement 2.

Residue conservation scores calculated from multiple sequence alignments were mapped onto the crystal structure of SifA (PDB ID: 3CXB) using the ConSurf web server (http://consurf.tau.ac.il/). The visual color key indicates the residue conservation score (cyan: low conservation, magenta: high conservation). The ncAA incorporation sites are highlighted in red rectangles. Protein structures were visualized in Chimera (left) and NGL 3D Viewer (right).
Figure 2—figure supplement 3. Western blot of SseB (translocon) and SsaP-HA secretion.

Figure 2—figure supplement 3.

Whole cell and secreted fractions were harvested after growth in SPI-2-inducing conditions. The SseB translocon was secreted in the wild-type strain (far left), but not in the ssaP null strain. Complementation of ssaP restored SseB secretion. HA tags were inserted at various locations in SsaP, and the effect on secretion was monitored. HA tags at amino acid position 20, 50, and 110 (red) supported SseB secretion, whereas HA tags at position 86 and 124 did not. In the lower panels, the HA antibody identifies a diffuse band of SsaP protein in the secreted fraction, similar to the fluorescently labeled SsaP (Figure 2). Wild-type SsaP was not detected, because it lacked the HA tag. GroEL was used as a loading control.
Figure 2—figure supplement 4. AzF and subsequent Alexa555 sDIBO Alkyne incorporation is highly specific.

Figure 2—figure supplement 4.

Cells were transformed with pEVOL and psifA52TAG-GFP or psifA-WT-GFP were grown in the presence of 1 mM AzF and 0.2% L-arabinose in MgM pH 5.6, 37°C. Cells were harvested at OD600 = 0.4. After extensive washout of excess AzF, cells were incubated with 1 μM Alexa555-sDIBO at 37°C for 60 min. After another extensive washout of excess dye, cells were imaged on agarose pads at ambient temperature using a 488 nm (GFP signal) and 561 nm (Alexa555) excitation laser. First row, left panel shows the expression of wild-type SifA-GFP in the presence of AzF. It is not labeled by Alexa555-sDIBO (bottom panel). The middle panel shows the absence of SifA-E52AzF-GFP-containing bacteria in the absence of ncAA (top), whereas the same strain expressed SifA-E52AzF-GFP in the presence of 1 mM AzF (right). Fluorescent labeling of Salmonella expressing SifA-E52AzF-GFP with Alexa555-sDIBO revealed red fluorescence, which also corresponds to the GFP signal (compare top and bottom rows, right panel). The red fluorescence is absent in the absence of AzF (bottom row middle panel). No red fluorescence was observed in Salmonella cells expressing wild-type SifA-GFP in the presence of AzF (bottom row left panel), demonstrating the extent of SifA-specific labeling using GCE. Results presented in each panel were obtained in at least three independent experiments. Scale bar, 2 µm.
Figure 2—figure supplement 5. Average fraction of cells that display polarly localized SsaP (ntotal = 112 cells).

Figure 2—figure supplement 5.

Error bars are standard deviation across 18 ROIs pooled from three independent experiments.
Figure 2—figure supplement 5—source data 1. Source data for Figure 2—figure supplement 5.

To evaluate the specificity of ncAA incorporation in SifA, we compared images of SifA-GFP that lacked the TAG codon (sifA-WT-GFP), or contained the TAG (sifA-TAG-GFP) (Figure 2—figure supplement 4). In the sifA-WT-GFP, the GFP signal was apparent (top panel), but no labeling by Alexa555 sDIBO was observed (bottom). In the case of sifA-TAG-GFP, in the absence of AzF, there was no labeled SifA (middle top panel), but addition of AzF restored amber suppression and the GFP signal was observed (top right). Labeling by Alexa555 sDIBO of SifA was identical to the SifA GFP image (bottom right). This experiment demonstrated the high specificity of ncAA incorporation and the absence of off-site labeling. Thus, ncAAs were site-specifically incorporated at an amber codon in sifA and ssaP using GCE.

Amber suppression does not affect Salmonella pathogenesis

To determine the consequences of the pEVOL orthogonal amber suppression system on Salmonella pathogenesis, we first evaluated the effect of pEVOL on cell growth of wild-type Salmonella and its isogenic sifA null strain. The presence of pEVOL had no significant effect on bacterial cell growth (Figure 3—figure supplement 1A). We next evaluated the effect of pEVOL on the ability of Salmonella to survive inside HeLa cells (Figure 3—figure supplement 1B). The survival of the pEVOL transformant was 74% compared to the wild-type which lacked the plasmid, indicating that intracellular survival of Salmonella was not significantly affected by the presence of pEVOL. Taken together, these results indicate that the orthogonal tRNA/aaRS amber suppression system pEVOL has no negative consequences on Salmonella pathogenesis.

Engineered SifA rescues SIF formation

To determine whether the AzF-incorporated SifA could be translocated into host cells, we infected HeLa cells with the ΔsifA strain complemented with psifA52TAG (see Materials and methods). At 16 hr post-infection, cells were fixed with paraformaldehyde (PFA) and immuno-stained with anti-LAMP1 antibody to reveal the SIFs. As shown in Figure 3A, SifA-E52AzF was clearly secreted, SIFs were formed, and the SIFs resembled those observed in wild-type infected cells (Figure 3—figure supplement 2). These observations confirmed that SIFs were rescued by the expression of sifA52TAG using GCE. It also indicated that secreted engineered SifA-E52AzF was a fully functional virulence factor in Salmonella.

Figure 3. Functional complementation of SIF formation by SifA-E52AzF.

(A) HeLa cells were infected with a sifA null strain of Salmonella expressing SifA-E52AzF and incubated for 16 hr. Infected cells were fixed with 4% PFA and immuno-stained for Salmonella (yellow) and LAMP1 (red). Images were acquired by spinning-disk SIM. Cells infected with sifA harboring psifA52TAG bacteria were capable of forming SIFs that resembled those of wild-type infected cells. (B) SPAAC labeling of secreted SifA-E52AzF with BDP-DBCO. HeLa cells were infected with a sifA null strain expressing SifA-E52AzF in the presence of 1 mM AzF. AzF-tagged secreted SifA-E52AzF was labeled with BDP-DBCO (green). Host nuclei and Salmonella nucleoids were labeled with DAPI (blue) and images were acquired using spinning-disk SIM. (C) SifA-E52AzF labeling was absent in the absence of ncAA. HeLa cells were infected with the sifA null mutant of Salmonella expressing SifA-E52AzF in the absence of AzF for 12 hr. After 12 hr post infection, HeLa cells were incubated with 2.5 μM BDP-DBCO in DMEM with 10% FBS growth media for another 2 hr, followed by extenstive washing to remove excess dye as described in Methods. At 16 hr post-infection, cells were fixed. SifA was absent in the infected cells that lacked AzF. Images were acquired by confocal microscopy. See Figure 3—figure supplement 4 for statistical analysis for the average fraction of infected cells that contain LAMP1 positive SIFs and SIFs containing labeled SifA. (D) Colocalization of SifA with LAMP1. Salmonella secreted SifA-E52AzF in HeLa cells was labeled with BDP-DBCO (green). Cells were also immuno-stained for the endosomal membrane marker LAMP1 (red, middle panel). Images were acquired by confocal microscopy. From the merged image (right), it is evident that SifA is present within the SIFs. Statistical analysis is shown in Figure 3—figure supplement 5. The data are representative of at least three independent experiments. Scale bar, 10 µm (A–D).

Figure 3.

Figure 3—figure supplement 1. The amber suppression system (pEVOL) does not affect Salmonella pathogenesis.

Figure 3—figure supplement 1.

(A) Growth curves of wild-type Salmonella and its isogenic sifA mutant in LB media in the presence of pEVOL. The error bars represent the mean ± standard deviation (n = 3). (B) Survival assay of wild-type Salmonella and wild-type Salmonella transformed with pEVOL in HeLa cells. Strains of Salmonella wild-type and the wild-type transformant with pEVOL were grown in LB to late exponential phase and added to HeLa cells at an MOI of 100:1 for 30 min. At 2 hr and 16 hr post infection, cells were lysed, and the intracellular bacteria were enumerated. The percentage of survival of the transformant was normalized to wildtype (100%).
Figure 3—figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1A.
Figure 3—figure supplement 1—source data 2. Source data for Figure 3—figure supplement 1B.
Figure 3—figure supplement 2. A sifA null strain lacks SIFs.

Figure 3—figure supplement 2.

HeLa cells were infected with Salmonella for 16 hr, fixed and immuno-stained for LAMP1 (red), LPS (yellow), and DAPI (blue). As expected, the formation of SIFs was observed in cells infected with WT Salmonella (A), but not in cells infected with the sifA null strain (B). Images were acquired on a spinning-disk SIM, as described in Materials and methods (n = >10 independent experiments). Scale bar, 10 µm.
Figure 3—figure supplement 3. No off-target labeling of secreted effectors is observed within host cells.

Figure 3—figure supplement 3.

HeLa cells were infected with WT-Salmonella harboring SseJ-HA and pEVOL in the presence of AzF. At 10 hr post infection, excess AzF was washed out and replaced with fresh growth media without AzF for 2 hr. At 14 hr post infection, HeLa cells were incubated with 2.5 μM BDP-DBCO in DMEM with 10% FBS growth media for another 2 hr, followed by extenstive removal of excess dye with fresh growth media as described in Materials and methods. At 16 hr post-infection, cells were fixed and washed with PBS, then immunostained for SseJ (red). The absence of any noticeable fluorescence signal in the green channel (BDP-DBCO) indicated that there was virtually no off-target labeling of secreted effectors within host cells. The results presented in each panel were obtained in at least three independent experiments. Scale bar, 10 µm.
Figure 3—figure supplement 4. The average fraction of infected cells that contain LAMP1 positive SIFs and SIFs containing labeled SifA.

Figure 3—figure supplement 4.

The total number of LAMP1 positive cells was 85 for WT, 91 for sifA (psifA52TAG + pEVOL), and 70 for sifA (psifA52TAG + pEVOL) labeled with the click reaction. The error bars indicate the standard deviation across three data sets pooled from ROIs from independent infections.
Figure 3—figure supplement 4—source data 1. Source data for Figure 3—figure supplement 4.
Figure 3—figure supplement 5. The proportion of tubules with labeled SifA and its colocalization with LAMP1 (n = 27); n is the total number of cells analyzed.

Figure 3—figure supplement 5.

Error bars represent the standard deviation across three data sets pooled from separate infections.
Figure 3—figure supplement 5—source data 1. Source data for Figure 3—figure supplement 5.

Visualization of injected SifA into host cells by fluorescence imaging

Once we established that GCE-labeled SifA was functional (Figure 3A), the next step was to visualize secreted SifA-E52AzF labeled with BDP-DBCO via the SPAAC reaction in HeLa cells (Agard et al., 2004). After labeling, excess dye was washed out and cells were fixed with PFA and directly analyzed by spinning-disk Structured-illumination microscopy (SIM). SifA was secreted into the cytoplasm of HeLa cells and labeled with the fluorophore (Figure 3B,D and Figure 4). Intracellular fluorescent puncta were clearly observed in BDP-DBCO channels when SifA-E52AzF was expressed in the presence of AzF (D'Costa et al., 2019). In the absence of AzF, non-specific fluorescence signals were nearly absent (Figure 3C), further validating the specificity of our bio-orthogonal imaging of SifA in host cells.

Figure 4. Super-resolution imaging of GCE-labeled SifA.

(Ai) SifA colocalizes with SseJ. Spinning-disk SIM image of an infected HeLa cell, 16 hr after invasion, fixed with PFA and stained for SifA (green) and SseJ-HA (red). (Aii) Magnified view of SifA and SseJ in the boxed region at the far left (arrows indicate colocalization). (iii) Colocalization was analyzed by calculating Mander’s M1 coefficient (SifA colocalizing with SseJ) for the original dual-color image (x = y = 0) and for control images generated by translating the spectral channels with respect to each other in x and y directions. This analysis generated a colocalization map, with a peak intensity at x = y = 0, indicating true colocalization (n = 3 cells). (iv) Colocalization analysis of mock-infected cells (n = 3 cells) stained for SifA-E52AzF and SseJ-HA showed no peak intensity at x = y = 0, indicating no colocalization of anti-HA antibodies and SifA. Bars, 10 µm (i), 5 µm (ii). (B) SifA colocalizes with kinesin. (i) Spinning-disk SIM image of an infected HeLa cell fixed with PFA at 16 hr post-infection and stained for kinesin (red) and SifA (green). (ii) Magnified view of SifA and kinesin in the boxed region (arrows indicate colocalization). (iii and iv) Colocalization analysis was performed as described in (A). The same color map scaling was used for comparison. px, pixels. See Figure 4—figure supplement 1 for statistical analysis. Scale bar, 5 µm (i), 2 µm (ii). (C) Bioorthogonal fluorescence imaging of SseJ-Y10TCO-HA with tetrazine fluorophores versus immunofluorescence staining. HeLa cells expressing SseJ-Y10TCO-HA in the presence of TCO*Lys were labeled with BDP-Tz under physiological conditions, briefly washed, and subjected to anti-HA immunofluorescence staining. Images were acquired by confocal microscopy. The data are representative of at least three independent experiments. Scale bar, 10 µm.

Figure 4—source data 1. Source data for Figure 4(iii-iv)..
Figure 4—source data 2. Source data for Figure 4(iii-iv).

Figure 4.

Figure 4—figure supplement 1. The proportion of tubules with labeled SifA and its colocalization with SseJ (n = 33) and kinesin (n = 35); n is the total number of cells analyzed.

Figure 4—figure supplement 1.

Error bars represent the standard deviation across three data sets pooled from separate infections.
Figure 4—figure supplement 1—source data 1. Source data for Figure 4—figure supplement 1.
Figure 4—figure supplement 2. GA fixation preserves microtubules.

Figure 4—figure supplement 2.

(A) HeLa cells were infected with sifA mutants harboring pSifA52TAG and pEVOL-AzF. At 10 hr post infection, excess AzF was washed out and replaced with fresh growth media without AzF for 2 hr. At 14 hr post infection, HeLa cells were incubated with 2.5 μM BDP-DBCO in DMEM with 10% FBS growth media for another 2 hr, followed by extenstive removal of excess dye with fresh growth media as described in Materials and methods. At 16 hr post-infection, cells were extracted for 1 min using a microtubule-stabilizing buffer (MTSB). The buffer was exchanged with MTSB containing 0.2% GA, and cells were fixed for 10 min at room temperature. Excess GA was quenched for 7 min using 0.2% sodium borohydride in PBS. After several washes with PBS, cells were immunostained for microtubules (green). Scale bar, 10 µm. (B) Prior to immunostaining, GA-fixed HeLa cells were imaged for SifA labeled with BDP-DBCO using Spinning-disk SIM. Note the punctate labeling of SifA, indicating that while SseJ forms continuous filaments, SifA does not. The results presented in each panel were obtained in at least three independent experiments. Scale bar, 5 µm.
Figure 4—figure supplement 3. Functional complementation of SIFs by expression of fluorescent SifA-E52Hco.

Figure 4—figure supplement 3.

(A) HeLa cells were infected with the sifA null strain of Salmonella expressing SifA-E52Hco and SseJ-HA for 16 hr, fixed and immuno-stained for LAMP1 (green), SseJ (red). The SifA-E52Hco strain was capable of forming SIFs and colocalized with SseJ. Images were acquired on a spinning-disk SIM as described in Materials and methods. (B) Direct visualization of secreted SifA. HeLa cells were infected with a sifA null strain of Salmonella expressing SifA-E52Hco in the presence of 1 mM Hco and fixed 16 hr post infection with 4% PFA. Hco-tagged secreted SifA-E52Hco was directly imaged by two photon microscopy. Immuno-stained SseJ-HA was also imaged in the same cell. The data are representative of at least three independent experiments. Scale bar, 10 µm (A), 20 µm (B).

To establish that the fluorescence signal we observed in HeLa cells was specific to the secreted effector SifA, and not from a SPI-2 effector that contains a TAG codon (e.g. PipB, PipB2), we infected HeLa cells with wild-type Salmonella (containing HA-tagged SseJ) in the presence of pEVOL and ncAA. HeLa cells were treated with click dye to visualize any ncAA-incorporated effectors that were secreted. After labeling, excess dye was washed out and cells were fixed with 4% PFA and immuno-stained with anti-HA (SseJ) and anti-LPS antibodies (Salmonella) after 16 hr post-infection. SseJ was secreted into the host cytoplasm, and intracellular and non-specific fluorescence signals were virtually absent (Figure 3—figure supplement 3). This result established that the fluorescence signal was specific to SifA and not coming from other SPI-2 secreted proteins. Thus, using GCE, we could visualize SifA within SIFs for the first time, and AzF labeling can detect and visualize injected virulence factors of bacterial pathogens.

SifA co-localizes with LAMP1, the secreted effector SseJ and the host motor protein kinesin in SIFs

Once we established the optimal conditions for labeling SifA (Figure 3), we sought to interrogate the localization of SifA with respect to the SIFs using fluorescence imaging. Infected HeLa cells were labeled with the fluorophore BDP-DBCO in the presence of 1 mM AzF and prepared as before (Figure 3B) and SIFs were stained with fluorophore-conjugated anti-LAMP1 antibody for confocal fluorescence imaging (Figure 3D). It is evident from the merged image that SifA co-localizes with the lysosomal marker LAMP1 (Figure 3D), and firmly establishes the presence of SifA within the SIFs.

To further understand the localization of SifA with other components of the SIFs, we compared SifA and the secreted effector SseJ. We had previously demonstrated that a Salmonella strain expressing an SseJ-hemagglutinin (HA) fusion tag was competent for SPI-2-dependent SseJ secretion (Chakraborty et al., 2015; Gao et al., 2018); we used this strain to infect HeLa cells, and fixed and immunostained after 16 hr post-infection (Figure 4). In the super-resolution image, SseJ was readily observed as a mixture of regular, periodic clusters and as filamentous structures, as we reported (Gao et al., 2018). Secreted SifA-E52AzF was then labeled with BDP-DBCO in HeLa cells using the SPAAC reaction (Figure 4A). In vitro experiments had been unable to demonstrate an interaction with SifA and SseJ (Ohlson et al., 2008), although their opposing activities were essential for SIF formation (Gao et al., 2018; Brumell et al., 2002; Kolodziejek et al., 2019). Because of the close proximity of kinesin and SseJ observed previously (Gao et al., 2018), we hypothesized that SifA might also be co-localized with SseJ. We used spinning-disk SIM to examine the pattern of SifA and SseJ. They exhibited the same distribution pattern and appeared to be co-localized. In order to confirm their co-localization, we used modified Mander’s colocalization analysis (Manders et al., 1993) for dense protein patterns (see Materials and methods) and obtained strong evidence for positive co-localization (Figure 4Aiii). In contrast, a mock infection established the background for cells lacking SseJ-SifA interactions (Figure 4Aiv).

SifA has been reported to interact with the motor protein kinesin-1 via the adapter protein SKIP (Boucrot et al., 2005). Therefore, kinesin and SifA should also be co-localized. We performed spinning-disk SIM imaging and investigated the pattern of SifA and kinesin (Figure 4B). SifA was in close proximity to kinesin. We again employed the modified Mander’s co-localization analysis for dense protein patterns (Manders et al., 1993) and obtained additional evidence for positive co-localization (Figure 4Biii). A mock infection established a background level of SifA-kinesin interaction (Figure 4Biv). Since SseJ, SifA and kinesin were all co-localized, and SseJ was very sensitive to osmolality-induced pearling effects (Gao et al., 2018), these results confirmed that the motor protein kinesin exerts an indirect force on SseJ located on endosomal tubules via a SseJ-SifA-SKIP-kinesin protein complex. This is likely a weak interaction that can be easily disrupted by fixation (Gao et al., 2018).

SifA does not continuously decorate filaments

Previous studies of Salmonella secreted effectors have shown that structural preservation of the SIFs was sensitive to fixation conditions (Gao et al., 2018). At high osmolality (4% PFA), secreted SseJ formed uniform, periodic clusters inside host cells, whereas in low osmolality fixation (0.2% GA), the same SseJ formed continuous filamentous structures. Because microtubules were disrupted by high osmolality fixation, it was proposed that the clusters of SseJ observed in the PFA-fixed cells were not representative of native structures (Gao et al., 2018). As a result, we questioned whether SifA in the SIFs formed continuous filamentous structures after fixation. Interestingly, we observed punctate structures of SifA, even during low osmolality fixation when microtubules were well-preserved (Figure 4—figure supplement 2). Imaging SifA labeled with BDP-DBCO in live cells prior to fixation further confirmed that, unlike SseJ, SifA does not form continuous filamentous structures within the SIFs (Supplementary file 1). Thus, the stoichiometry of SifA to SseJ cannot be 1:1.

Genetically encoded fluorescent ncAA enables direct visualization of secreted SifA in host cells

The specificity and efficiency of intracellular protein labeling using SPAAC is influenced by the cellular properties of the particular fluorophore. Alternatively, one can apply GCE to introduce a relatively compact fluorescent ncAA (fncAA) site-specifically into the target effector protein SifA. We labeled SifA with the fncAA, 7-(Hydroxy-coumarin-4-yl) ethylglycine (Hco) by first infecting HeLa cells with the ΔsifA strain expressing SifA-E52Hco. After 16 hr post-infection, cells were fixed and immuno-stained with anti-LAMP1 antibody to reveal the SIFs. SIFs were also rescued by the expression of fully functional SifA-E52Hco using GCE (Figure 4—figure supplement 3). Secreted SifA in host cells was visualized using two-photon microscopy. In the figure (Figure 4—figure supplement 3B), it can be seen that SIFs were formed by secreted SifA in which Hco was incorporated site-specifically. Thus, without any click reactions, site-specific labeling of SifA with Hco directly localizes secreted effectors in host cells in vivo. This result further validates that SifA co-localizes with SseJ, and the presence of SifA within the SIFs.

GCE-labeling is superior to small protein tags and antibody staining

GCE-based bio-orthogonal labeling offers an effective way for direct labeling using fluorescent dyes of secreted effector proteins inside host cells. To directly compare the image quality of a secreted effector in HeLa cells, we compared SseJ that was labeled via a C-terminal HA epitope fusion with GCE-labeled SseJ, where an amber stop codon was introduced at the 10th position (psseJ-10TAG-HA). We then infected HeLa cells with Salmonella transformed with either psseJ-10TAG-HA, or secreted SseJ-F10TCO was labeled with BDP-Tz via the SPIEDAC reaction (Agard et al., 2004; Plass et al., 2012). After labeling, excess dye was washed out and cells were fixed and immuno-stained with anti-HA antibody to visualize the secreted SseJ. SseJ-F10TCO was secreted and labeled with BDP-Tz dye (Figure 4C, green). SseJ labeled via GCE (green) and HA (red) was compared side by side and also in the merged image. Clearly, they are co-localized, but the reduced background in the GCE image is readily apparent.

SsaP functions to control SPI-2 type III secretion

T3SSs switch from secreting apparatus components to effectors in a conserved process referred to as the substrate specificity switch. This step is crucial to decide the timing of effector secretion. In SPI-2, SsaP is predicted to be the substrate specificity switch, based on homology to other T3SSs as well as the location of ssaP relative to its homologue in the SPI-1 T3SS. To examine the role of SsaP in SPI-2 secretion, we created an ssaP deletion mutant, and then infected HeLa cells with the ssaP mutant that contained psseJ-HA. After 16 hr post-infection, cells were fixed and immuno-stained with anti-LAMP1 and anti-HA antibodies to reveal the secreted SseJ and the SIFs. We observed that the ssaP mutant was defective in SPI-2 secretion (Yu et al., 2018), as evident by the lack of SseJ secretion, and the absence of SIFs (Figure 5—figure supplement 1). As expected, the ssaP null mutant was unable to survive in HeLa cells (Figure 5—figure supplement 2), further evidence that SsaP was required for Salmonella virulence.

The outer pore of the injectisome is the translocon, SseB, and we can observe its presence by fluorescence immuno-staining (Chakraborty et al., 2015), or by western blot (Figure 2—figure supplement 1). Compared to the wild-type, the ssaP deletion mutant still expressed sseB, but it was no longer secreted. It was then of interest to examine the cellular localization of SsaP to determine whether it was localized to the T3SS basal body, which was shown to be mostly confined to the cell poles (Chakravortty et al., 2005;Chakraborty et al., 2015). We constructed N-terminal and C-terminal photoactivatable mCherry (PAmCherry) fusions in the ssaP null strain, placing the fusions at the lambda attachment site as previously (Liew et al., 2019). We then examined the ability of these fusions to support translocon secretion (Figure 2—figure supplement 1). A fusion of PAmCherry to the C-terminus of SsaP supported secretion of SseB translocons, but an N-terminal fusion did not. Furthermore, western blot analysis revealed that the C-terminal PAmCherry fusion was cleaved, thus preventing us from imaging SsaP (Figure 2—figure supplement 1B). To overcome this problem, we constructed six different SsaP-HA fusions, sandwiching the HA tag in likely internal loops of SsaP (ʎssaP-1-HA, ʎssaP-20-HA, ʎssaP-55-HA, ʎssaP-86-HA, ʎssaP-110-HA, and ʎssaP-124-HA). Three of the fusions were functional and restored SseB secretion (Figure 2—figure supplement 3).

Western blot analysis also suggested that SsaP-HA was secreted under SPI-2 inducing conditions in vitro (Figure 2—figure supplement 3). To examine whether SsaP was also secreted during infection, we infected HeLa cells with Salmonella containing the HA-tagged SsaP constructs (ʎssaP-55HA and ʎssaP-110HA) and immunostained with anti-HA antibody (Figure 5—figure supplement 3). Although SsaP was expressed at very low levels, there was evidence of its secretion into the HeLa cell cytosol. In order to verify this result, we labeled SsaP using GCE with the fluorogenic dye, SiR-Tz via the SPIEDAC click reaction, to minimize background signals. We determined that TCO*Lys-incorporated SsaP was functional by infecting HeLa cells with the ΔssaP strain complemented with pssaP65TAG-sseJ-HA. At 16 hr post-infection, cells were fixed with PFA and immuno-stained with anti-LAMP1 and anti-HA antibodies to reveal the SIFs and secreted SseJ. SseJ was clearly secreted, and SIFs were formed (Figure 5—figure supplement 1B–C). These observations confirmed that engineered SsaP rescued SPI-2 secretion (SseJ) and was functional, whereas an ssaP null strain failed to secrete SPI-2 effectors (Figure 5—figure supplement 1A).

Once we established that GCE-labeled SsaP was functional, the next step was to determine whether it was secreted during infection. SsaP-Y65TCO was labeled with SiR-Tz via the SPIEDAC reaction after infection of HeLa cells. Cells were fixed and immuno-stained as before and directly analyzed using spinning-disk SIM (Figure 5A). Intracellular fluorescent puncta were clearly observed in the SiR-Tz channel when SsaP-Y65TCO was expressed in the presence of TCO. When HeLa cells were infected with Salmonella containing wild-type ssaP (i.e. lacking the TAG codon) and TCO*Lys was added, non-specific fluorescence signals in the SiR-Tz channel were absent (Figure 5B), further validating the specificity, labeling and imaging in host cells of even the low-abundant SsaP. At earlier infection times (8 hr post infection), SsaP was mostly associated with bacteria (Figure 5—figure supplement 4), whereas at later times (16 hr), SsaP was secreted (Figure 5Ai, inset). As we observed with the SPI-2 injectisome (Liew et al., 2019; Chakraborty et al., 2015; Chakravortty et al., 2005), SsaP mostly localized to the poles, although not every pole where SsaP was located had an injectisome (Figure 5—figure supplement 4C). Thus, using GCE, we established that SsaP was secreted and we could visualize secreted SsaP within the SIFs for the first time.

Figure 5. SsaP is secreted during HeLa cell infection.

(A) SPIEDAC labeling of secreted SifA-Y65TCO with fluorogenic SiR-Tz. HeLa cells were infected with the ssaP null mutant of Salmonella expressing SsaP-Y65TCO in the presence of TCO*Lys for 12 hr. After 12 hr post infection, HeLa cells were incubated with 1.5 μM SiR-Tz in DMEM with 10% FBS growth media for another 2 hr, followed by extenstive wash out of excess dye with fresh growth media as described in Materials and methods. At 16 hr post-infection, cells were fixed. Cells were also immuno-stained for the endosomal membrane marker LAMP1 (green), LPS (Red) and DAPI (Blue) and imaged by spinning-disk SIM. From the merged image (right), it is evident that SsaP is present within the LAMP1-positive endosomes. A higher magnification spinning-disk SIM image of a SIF-positive HeLa cell from the boxed region (i) is shown on the right-most panel without the green channel displayed (i). It clearly shows secreted SsaP from Salmonella (boxed region). (B) SsaP was absent in infected cells that lacked ssaP. HeLa cells that were infected with an ssaP null mutant in the presence of TOC*Lys lack an SsaP signal. Note the absence of SIFs in the merged image (right) in the ssaP null strain. The data are representative of at least three independent experiments. Scale bar, 5 µm (A and i) and 10 µm (B).

Figure 5.

Figure 5—figure supplement 1. An ssaP null mutant is defective in SPI-2 secretion.

Figure 5—figure supplement 1.

(A) HeLa cells were infected with the ssaP null mutant for 16 hr, fixed and immuno-stained for LPS (green), SseJ (red) and DAPI (blue). In the absence of ssaP, SseJ is not secreted. (B) TCO*Lys-incorporated SsaP was functional. HeLa cells were infected with Salmonella complemented with pssaP65TAG-sseJ-HA, fixed and immunostained for LPS (red), LAMP1 (green) and DAPI (blue). SIF formation was observed in cells infected with Salmonella complemented with pssaP65TAG-sseJ-HA. (C) Engineered SsaP rescued SPI-2 secretion. HeLa cells were infected with Salmonella complemented with pssaP65TAG-sseJ-HA, fixed and immunostained for LPS (Green), SseJ (red), and DAPI (blue). SseJ (red) was secreted in the complemented strain, but not in the ssaP null strain (n = >10, independent experiments). Scale bar, 10 µm.
Figure 5—figure supplement 2. Survival of S. Typhimurium SsaP-55HA mutant in HeLa cells.

Figure 5—figure supplement 2.

Strains of Salmonella wild-type, ssaP null, ssaP/λssaP (complemented with ssaP integrated a λatt), and ssaP/ λssaP-55HA (ssaP with an HA tag at amino acid 55) were grown in LB to late exponential phase and added to HeLa cells at an MOI of 100:1 for 30 min. At 2 hr and 14 hr, cells were lysed and the intracellular bacteria were enumerated. The normalized fold changes were relative to those of the wildtype (set to 1). The error bars represent the mean ± standard deviation (n = 3).
Figure 5—figure supplement 3. SsaP is secreted.

Figure 5—figure supplement 3.

Strains of Salmonella containing ssaP/λssaP-55HA (left) ssaP/λssaP-110HA (middle and right) were grown in LB to late exponential phase and added to HeLa cells at an MOI of 100:1 for 30 min. The cells were fixed and immuno-stained for SsaP (red). A representative image at 14 hr post infection is shown. DAPI-stained DNA is in blue and GFP-expressing Salmonella are shown in green. The middle and right panels are of SsaP at different z positions.
Figure 5—figure supplement 4. SsaP was associated with bacteria and mostly localized to the poles during early infection times.

Figure 5—figure supplement 4.

(A) HeLa cells were infected with an ssaP null mutant of Salmonella expressing SsaP-YTCO*Lys in the presence of TCO*Lys. After 6 hr post infection, HeLa cells were incubated with 1.5 μM SiR-Tz in DMEM with 10% FBS for another 1 hr, followed by extenstive washing of excess dye with fresh growth media. At 8 hr post-infection, cells were fixed and immunostained for the endosomal membrane marker LAMP1 (green, left panel), LPS (red) and DAPI (blue). Scale bar, 5 µm. (B) Zoomed view of inset. Yellow arrow indicates polarly localized SsaP. Images were acquired on a spinning-disk SIM, as described in Materials and methods. Scale bar, 2 µm. (C) Not every pole where SsaP was located had an injectisome. Salmonella cells expressing SsaP-Y65TCO in the presence of TCO*Lys were labeled with SiR-Tz as described in Materials and methods. The same cells were immuno-stained for SseB using rabbit anti-SseB antibody (green) and imaged along with SiR fluorescence (magenta). The arrows indicate cells that have both SsaP and SseB. The data are representative of at least three independent experiments. Scale bar, 2 µm.
Figure 5—figure supplement 5. Schematic of endosomal tubule (SIF) formation.

Figure 5—figure supplement 5.

Upon entry into the host, Salmonella resides within an acidic vacuole. The histidine kinase EnvZ senses the acid pH of the Salmonella cytoplasm (Park et al., 2017) and drives OmpR-dependent up-regulation of the SsrA/B two-component system upon acidification. SPI-2 T3SS secreted effectors SseJ and SifA are present on the outer surface of the tubules and are co-localized with the motor protein kinesin. SseJ is indirectly force-dependent, whereas SifA is not.

Discussion

Intracellular pathogens such as Salmonella, Shigella, and Yersinia use T3SSs to deliver their virulence factors into the host. Extracellular pathogens (including: EPEC, EHEC, Pseudomonas aeruginosa) also employ these complex nanomachines to inject their virulence factors. The revolution in super-resolution imaging methods have enabled the visualization of virulence factors at unprecedented resolution (Singh and Kenney, 2021). However, certain limitations in labeling have prevented a more thorough analysis, as photoactivatable fusion proteins are unable to be translocated through the T3SS pore; the inherent ability of some fusion proteins to cluster can result in clustering artefacts and spurious analysis, and occasionally, the fusion protein is cleaved, as we observed with PAmCherry-SsaP. GCE circumvents all of these limitations, enabling the site-specific labeling of proteins of interest. It also provides an opportunity to visualize proteins that are not abundant, such as SsaP, through the use of newer, brighter fluorophores. Recent advances in understanding the context around the engineered TAG codon (Xu et al., 2016) also provides a rapid and relatively low risk ability to label any number of proteins. Thus, the approach, as we described herein will be widely accessible for researchers to visualize proteins of interest in pathogens, commensal bacteria, as well as eukaryotic hosts.

We used GCE to study SifA, a critical SPI-2 effector protein that modulates membrane trafficking inside host cells and SsaP, reported to be the substrate specificity switch. Both proteins had been refractive to labeling by other methods. Selective and site-specific labeling of SifA was achieved by genetic incorporation of bioorthogonal ncAAs (AzF and Hco) via GCE technology utilizing an orthogonal aminoacyl-tRNA synthetase/tRNA pairs, and an alternative codon (UAG, amber stop codon). Treatment of AzF-labeled SifA (SifA-E52AzF) with DBCO containing a fluorophore (BDP-DBCO) provided an alternative protein labeling strategy and enabled visualization of translocated SifA effector proteins over many hours after infection of the host. The ability of SifA-E52AzF to induce LAMP1-positive SIFs demonstrates that its function was not impaired by the ncAA tagging strategy and established the presence of SifA within the SIFs (Figure 3). What was lacking in previous studies (Ohlson et al., 2008; Gao et al., 2018; Rajashekar et al., 2008) was an understanding of where SifA was located with respect to the kinesin motor and the effector SseJ. GCE has overcome these limitations of SifA labeling, allowing its visualization for the first time after secretion by the T3SS, and with native levels of protein expression (Figure 3 and 4). Previous studies have shown that SifA interacts with kinesin through SKIP (Boucrot et al., 2005). In a sifA deletion strain, SIFs were absent (Figure 3—figure supplement 2) and SseJ remained associated with the SCV (Gao et al., 2018). Together with our observation that SifA colocalized with SseJ (Figure 4A) and kinesin (Figure 4B), we established that a SseJ-SifA-SKIP-kinesin protein complex is required for endosomal tubulation. In the case of SsaP, we were able to visualize it inside bacterial cells and discovered that after infection of HeLa cells by Salmonella, SsaP was secreted. SsaP was mostly localized to the poles, although the presence of SsaP did not ensure the presence of an injectisome at the same location.

The numerous challenges of using GCE include the selection of fluorophores, which should be carefully selected on the basis of their chemical properties, such as membrane permeability, retention and distribution, which all can affect labeling efficiency. Many of these challenges involved in the generation of fluorescently labeled effector proteins can be overcome by genetically encoding fluorescent amino acids directly. Using our effector protein labeling strategy (Figure 1), we also successfully demonstrated that SIFs containing SifA can be visualized by genetically encoding a single fluorescent amino acid (Hco) without the need for additional click chemical labeling procedures (Figure 4—figure supplement 3).

Earlier analysis of SseJ clusters provided evidence of a pearling effect, because endosomal tubulation is a force-driven, osmotically sensitive process. The pearling transition or instability is a sequential beading of tubular vesicles first observed in preparations of endoplasmic reticulum membranes that were shown to be sensitive to hypotonic shock (Dabora and Sheetz, 1988). Pearling can also be driven by high osmolality (Gao et al., 2018; Yanagisawa et al., 2008; Pullarkat et al., 2006; Derényi et al., 2002; Sanborn et al., 2013), as we observed previously (Gao et al., 2018). Kinesin was identified as the motor protein that supplies the force for tubulation, via its interaction with an SseJ-SifA-SKIP tubulating complex (Figure 4). The observation that SifA was not subject to pearling effects also implies that it is not directly force-dependent. These results lead to a model for membrane tubulation, as depicted in Figure 5—figure supplement 5. When Salmonella resides within the SCV, the sensor kinase EnvZ senses the acidic vacuolar environment and drives OmpR-dependent acidification of the bacterial cytoplasm to pH 5.6 (Chakraborty et al., 2015). Acidification triggers an up-regulation of the SsrA/B two-component system located on SPI-2. DNA binding by SsrB is acid-sensitive and increases by >50%, driving the expression of the SPI-2 T3SS structural genes and effectors (Liew et al., 2019; Kenney, 2019). The kinesin motor interacts with an SseJ-SifA-SKIP protein complex, pulling the vacuolar membrane along microtubules (Figure 5—figure supplement 5) and incorporating LAMP1-positive endosomes into the SIFs. Tubulation is a force-driven process through the concerted action of SseJ-SifA-SKIP-kinesin protein complexes, where force is provided by the motor protein kinesin.

In summary, we report that genetically encoded unnatural amino acids provide an alternative route to effector protein labeling methodology when conventional methods fail. In addition, we demonstrate the superior labeling and reduced background using GCE compared to immuno-staining (Figure 4C). We successfully visualized SifA by genetically encoding non-fluorescent, or fluorescent ncAAs without compromising its biological function. While some restrictions such as low ncAA incorporation efficiency and the photophysical limitations of the fluorophore might apply, it is evident that the approach is efficient enough to visualize and localize a secreted effector in host cells, even when it is not very abundant, as was the case with SsaP. Considering the simplicity of the approach and the bioconjugation reaction, we anticipate that straightforward extensions of the technology should provide new and exciting opportunities for imaging and investigation of other effector proteins during infection by bacterial pathogens.

Materials and methods

Reagents

4-Azido-L-phenylalanine (AzF), trans-Cyclooct-2-en – L - Lysine (TCO*Lys) and 7-(Hydroxy-coumarin-4-yl) ethylglycine (Hco) were obtained from MedChemExpress, SiChem GmbH and Bachem (Switzerland), respectively. BDP FL DBCO alkyne, SiR-tetrazine (SiR-Tz), and BDP-tetrazine (BDP-Tz) were purchased respectively from BroadPharm (San Diego, USA), Spirochrom (Switzerland), and Lumiprobe (USA). All the chemicals were purchased from Sigma-Aldrich unless otherwise noted. Chemicals and oligonucleotides obtained from commercial sources were used without further purification.

Plasmids and strains

Salmonella enterica serovar Typhimurium strain NCTC12023 was the wild-type strain, and various isogenic mutants are described in the text. The plasmid pEVOL, encoding an AzF-specific engineered pair of tyrosyl-tRNA synthetase/amber suppressor tRNA derived from Methanococcus jannaschii (Plasmid ID: 31186), was obtained from Addgene and used without modification. For complementation, a sifA null strain was used harboring psifA52TAG (copy number ~5) and pEVOL-pAzF or pEVOL-CouRS. Bacteria were grown overnight in LB broth at 37°C with shaking. The sifA gene along with its native promoter was amplified from Salmonella genomic DNA. An amber codon (TAG) was introduced at position E52 of SifA by site-directed mutagenesis. TAG-containing PCR fragments were subcloned into pWSK29 between SmaI and EcoRI restriction sites. Similarly, for the complementation of SsaP, a ssaP null strain harboring pssaP65TAG and pEVOL-PylRS-AF (a Methanosarcina mazei tRNAPylCUA/PylRSAF pair encoded in the plasmid pEVOL) was used. TAG was introduced at Y65 of SsaP ensuring a higher likelihood of labeling with AAT-TAG-ACT motif (Lammers et al., 2010). The sseJ gene along with its native promoter was amplified from Salmonella genomic DNA. An amber codon (TAG) was introduced at position Y10 of SseJ by site-directed mutagenesis ensuring the AAT-TAG-ACT motif (Xu et al., 2016). TAG-containing PCR fragments were subcloned into pWSK29 between XbaI and SacI restriction sites. Wilde-type Salmonella strain was used to harbor psseJ10TAG and pEVOL-PylRS-AF. The identity of each constructs was verified by sequencing. Chromosomal fusions of ssaP with the hemagglutinin (HA) tag and PAmCherry were constructed as described previously (Liew et al., 2019). pEVOL-pAzF was a gift from Peter Schultz (Addgene plasmid # 31186). pEVOL-CouRS was generously provided by Prof. Hyun Soo Lee at Sogang University, Seoul, Korea. pEVOL-PylRS-AF was generously provided by Prof. Edward Lemke at European Molecular Biology Laboratory (EMBL), Heidelberg, Germany. pEVOL containing ΔsifA 12023 or ΔssaP or wild-type Salmonella were obtained by transformation with pEVOL, followed by incubation at 37°C on LB plates in the presence of 25 μg/mL chloramphenicol. The pEVOL-containing strains were subsequently transformed with either psifA52TAG or pssaP65TAG or psseJ10TAG expression construct and incubated at 37°C on LB plates in the presence of 25 μg/mL chloramphenicol and 100 μg/mL ampicillin.

Expression of ncAA-bearing proteins in Salmonella

Overnight bacterial cultures of ΔsifA 12023 harboring psifA52TAG expression constructs and plasmid pEVOL-pAzF or pEVOL-CouRS were grown at 37°C in LB medium until OD600 reached 0.6, at which point LB media was replaced with MgM pH 5.6 media containing 1 mM AzF or 1 mM Hco. Bacteria were continuously grown at 34°C for another 30 min before induction in the presence of 0.2% arabinose, 25 μg/mL chloramphenicol and 100 μg/mL ampicillin, for 8 hr. Similarly, for in-vitro the expression of SsaP in MgM (pH 5.6), ΔssaP harboring pssaP65TAG expression constructs and pEVOL-PylRS-AF was used along with 1 mM TCO*Lys.

Mammalian cell culture

HeLa cells, human epithelial cell line (American Type Culture Collection; ATCC CCL-2) were used for Salmonella infections. The HeLa cell line was authenticated by ATCC (STR analysis) and the absence of mycoplasma contamination was confirmed using Hoechst DNA stain (indirect), agar culture (direct), a PCR-based assay and Lonza’s MycoAlert PLUS Mycoplasma detection kit. HeLa cells were maintained in high-glucose (4.5 g/L) Dulbecco’s modified Eagle’s medium (DMEM) containing glutamine and pyruvate (Thermo Fisher) and supplemented with 10% inactivated fetal bovine serum (FBS; Thermo Fisher) at 37°C and antibiotics (antibiotic-antimycotic final 5x stock; Thermo Fisher) in a humidified 5% CO2 incubator. Cells were gently trypsinized with Accutase (StemPro Accutase; ThermoFisher), and ~5×104 cells were seeded into 24-well plates with 12 mm sterile coverslips and grown 24 hr before infection.

HeLa cell infection and labeling of SifA, SsaP, and SseJ

ΔsifA strains harboring psifA52TAG and pEVOL-pAzF or pEVOL-CouRS were cultured overnight in standard LB broth in the presence of antibiotics. Overnight cultures were subcultured 1:30 in 3 mL LB for 5 to 6 hr OD600, ~2–3. Cultures were then diluted to an OD600 = 0.2. HeLa cells were infected with a multiplicity of infection (MOI) of 100:1 (bacteria/HeLa cell) and bacteria were internalized for 30 min. Extracellular bacteria remaining were removed by washing three times in Dulbecco’s phosphate-buffered saline (DPBS), followed by incubation with 100 μg/mL of gentamicin for 1 hr in DMEM with 10% FBS. The cells were again washed three times with DPBS and further incubated in DMEM with 10% FBS, 0.2% arabinose, 0.5 mM p-azido-L-phenylalanine or 0.25 mM 7-(Hydroxy-coumarin-4-yl) ethylglycine, and gentamicin (20 μg/mL) for the rest of the infection. After 10 hr post infection, media was exchanged with normal growth media without ncAAs and washed four times with fresh DMEM media. Similarly, for the labeling of secreted SsaP or SseJ, HeLa cells were infected with ΔssaP strains (harboring pssaP65TAG and pEVOL-PylRS-AF) or wild-type Salmonella (harboring psseJ10TAG-HA and pEVOL-PylRS-AF) in presence of 0.25 mM TCO*Lys. As a control, similar infections of HeLa cells were also carried out in the absence of unnatural amino acids. For fluorescent labeling of AzF-tagged SifA, TCO-tagged SsaP and SseJ in HeLa cells, 2.5 μM BDP-DBCO, 1.5 μM SiR-Tz, BDP-Tz in DMEM with 10% FBS growth media was added respectively to each well, and after 1 hr, cells were washed 4 × 30 min with fresh growth media. Cells were fixed for imaging at 16 hr post-infection as described below.

Immunostaining and confocal microscopy

Adherent HeLa cells were infected as described above and were fixed with either using 200 μl of methanol-free 4% PFA (EM grade; TaKaRa) in PBS for 10 min or 0.2% GA, washed thrice with PBS, and resuspended in 300 μl PBS. After several washes with PBS, cells were processed for immunostaining. Fixed HeLa cells were incubated with primary antibody solution (a PBS-based buffer containing 5% bovine serum albumin and 0.1% saponin). For secreted SseJ staining, rabbit anti-HA primary antibody (Sigma; H6908) was used (rabbit, 1:500 dilution). Rabbit monoclonal anti-KIF5B (Abcam catalog no. ab167429) was used for kinesin, and a monoclonal mouse anti-LPS (1:300 dilution) was used for Salmonella LPS. For LAMP1, a monoclonal mouse anti-LAMP1 primary antibody (Santa Cruz Biotechnology; clone H4A3, 0.4 g/mL) was used. After 1 hr, the primary antibody solution was removed, and cells were gently washed three times with PBS containing 0.1% Tween-20. Secondary antibody (goat anti-mouse 647 [Thermo Fisher, catalog no. A-21237], donkey anti-rabbit 555 [Invitrogen, catalog no. A-31572], goat anti-mouse 488 [Thermo Fisher, catalog no. A-28175], and donkey anti-rabbit 488 [catalog no. A-21206], 2 g/mL) diluted at 1:500 in PBS-BSA-saponin buffer was subsequently added for 1 hr at room temperature in the dark. After three washing steps DAPI, 600 nM in PBS was applied for 10 min to stain HeLa cell and Salmonella DNA. The cells were stored in PBS in the dark at 4°C. Confocal imaging was performed on an inverted Nikon A1R Module equipped with CFI Plan Apochromat VC 100XH, 1.4 numerical aperture objective lens using 405, 488, 561, and 647 nm Coherent lasers. Filter sets were selected to match the excitation and emission properties of the fluorophores. Infections were performed tens of times and hundreds of cells were imaged per infection, and the figures display representative images.

Confocal imaging of SsaP-labeled Salmonella was performed on a Leica TCS626 SP8 3X system (Leica Microsystems, Wetzlar Germany) equipped with a Leica HC PL 627 APO CS2 100×/1.4 oil immersion objective. A tunable (470–670 nm) pulsed white light laser 628 (Leica WLL) was used for excitation. Images were processed with the image analysis software, Imaris Pro 9.3.0. GraphPad Prism nine for MacOS, GraphPad Software, La Jolla California USA, www.graphpad.com was used to make all the graphs and statistical analysis.

Immunoblotting

Overnight cultures of wild-type Salmonella, ssaP, ʎssaP, ʎssaP-PAmCherry, ʎPAmCherry-ssaP, ʎssaP-1-HA, ʎssaP-20-HA, ʎssaP-55-HA, ʎssaP-86-HA, and ʎssaP-110-HA mutant strains were inoculated in LB for 12 hr. Cells were washed with LB-MES (pH 5.6) and inoculated in LB-MES (pH 5.6) for 8 hr. Cells were removed from the culture by centrifugation (6000 x g, 20 min, 4°C), and the supernatant was filtered through a 0.22 μm pore size binding filter (Millipore, Billerica, MA). From the supernatant, the secreted protein fraction was isolated by 10% trichloroacetic acid precipitation and washed three times with −20°C acetone, and then air dried. For whole cell fraction, cells were lysed in lysis buffer (0.1M NaCl, 0.05M Tris-HCl, pH 7.2). Total bacterial cells and precipitated secreted proteins were dissolved in SDS-PAGE loading buffer and separated by 12% SDS-PAGE, transferred to PVDF membrane (Millipore). The membrane was incubated with anti-SseB (1:5000) or anti-GroEL (1:5000) antibodies in PBS buffer with (0.05% Tween 20) followed by anti-rabbit secondary antibody (1:10,000, Santa Cruz Biotechnology).

For SsaP-HA detection, blots were incubated with a primary antibody directed against the HA epitope tag (1:1000) and a secondary antibody anti-mouse IgG antibody (1:10,000, Santa Cruz Biotechnology) conjugated to horseradish peroxidase (HRP). Secondary antibody was detected by SuperSignal Pico PLUS Chemiluminescent substrate (Thermofischer Scientific). For SsaP-PAmCherry, a polyclonal anti-mCherry primary antibody raised in rabbits (1:1000, abcam) was then added and incubated for 1 hr. After the incubation, the membrane was washed three times, and the primary antibody was detected with anti-rabbit immunoglobulin raised in goat. Blots were visualized with a Chemidoc imaging system (Bio-Rad).

Structured-illumination microscopy (SIM)

SIM imaging was performed on a CSU-W1 spinning disk confocal system attached to a Nikon Eclipse Ti-E inverted microscope combined with the Live-SR system (Roper Scientific), controlled by MetaMorph software (Molecular device), supplemented with a 100X oil 1.45 NA CFI Plan Apo Lambda oil immersion objective and sCMOS camera (Prime 95B, Photometrics). Excitation and band-pass filters were as follows: BDP DBCO dye was imaged using 488 nm excitation and emission of 525/30 nm, and Alexa Fluor 647 was imaged using 642 nm excitation and emission of 705/72 nm. The raw images were processed to superresolution images by using the Live-SR algorithm reported by York et al., 2013.

Two-photon imaging of SifA labeled with fluorescent ncAA (Hco) in HeLa Cell

Fluorescent images using two-photon microscopy were acquired using a Leica TCS SP5 X confocal microscope equipped with a Leica HC PL APO 100x/1.40 Oil immersion objective. Illumination was provided by a Ti-Sapphire IR laser (Chameleon Ultra II). The cells were excited at 730 nm (two-photon) to acquire Hco fluorescence images at 420–500 nm emission wavelength. The imaging setup was controlled by the Leica Application Suite-Advanced Fluorescence (LAS AF). Images were processed using Imaris 9.3.0.

Colocalization analysis

Colocalization between SifA and SseJ-HA were determined from Spinning-disk SIM images using a variation of Mander’s colocalization analysis (Gao et al., 2018; Manders et al., 1993) and Fiji (Schindelin et al., 2012). Using Otsu’s algorithm, maximum intensity projections of both spectral channels were first converted into a binary image. Co-localizing pixels were identified by multiplying the binary images. In order to segregate true co-localization and random overlap, one image channel (SseJ) was translated in x, y using a custom-written macro in Fiji (Gao et al., 2018). For each translation step, the M1 (SseJ co-localizing with SifA) and M2 (SifA co-localizing with SseJ) values of the two images were calculated. Co-localization maps were created using OriginPro 2017. One to three regions of interest (ROIs) per cell (3 cells) were analyzed. The M1 value for each ROI was normalized (division by maximum value), followed by averaging of all M1 values as described previously (Gao et al., 2018). Similar colocalization analysis was also carried between SifA and Kinesin.

Acknowledgements

This work was supported by a Texas STAR award and start-up funds from the University of Texas Medical branch, Galveston, TX to LJK. We thank Prof. Peter Schultz (Scripps Research Institute) for providing plasmid pEVOL-pAzF, Prof. Hyun Soo Lee (Sogang University, Seoul, Korea) for plasmid pEVOL-CouRS, Prof. Edward Lemke (European Molecular Biology Laboratory, Heidelberg, Germany) for plasmid pEVOL-PylRS-AF. We also thank Prof. Mike Heilemann and Dr. Christoph Spahn (Goethe University, Frankfurt, Germany) for the customized code for colocalization analysis and valuable comments on the work. We are extremely grateful for the superb expertise of the Mechanobiology Microscopy Core Facility, Science Communication Core and the Wet Lab Core.

Funding Statement

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Contributor Information

Linda J Kenney, Email: likenney@utmb.edu.

Petra Anne Levin, Washington University in St. Louis, United States.

Gisela Storz, National Institute of Child Health and Human Development, United States.

Funding Information

This paper was supported by the following grants:

  • Ministry of Education - Singapore MOE2018-T2-1-038 to Linda J Kenney.

  • University of Texas Medical Branch Texas STAR award to Linda J Kenney.

Additional information

Competing interests

No competing interests declared.

Author contributions

Designed the research, performed the experiments, analysed the data, wrote the paper.

performed the experiments.

performed the experiments.

designed the research, wrote the paper.

Additional files

Supplementary file 1. Supplemental file for Figure 4: Live cell imaging of secreted SifA labelled with BDP-DBCO dye during HeLa cell infection.
elife-67789-supp1.zip (1.1MB, zip)
Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data of Figure 4A-B, Figure 2-figure supplement 5, Figure 3-figure supplement 1, Figure 3-figure supplement 4, Figure 3-figure supplement 5, Figure 4-figure supplement 1 are included.

References

  1. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. Journal of the American Chemical Society. 2002;124:6063–6076. doi: 10.1021/ja017687n. [DOI] [PubMed] [Google Scholar]
  2. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. Journal of the American Chemical Society. 2004;126:15046–15047. doi: 10.1021/ja044996f. [DOI] [PubMed] [Google Scholar]
  3. Akeda Y, Galán JE. Chaperone release and unfolding of substrates in type III secretion. Nature. 2005;437:911–915. doi: 10.1038/nature03992. [DOI] [PubMed] [Google Scholar]
  4. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research. 2010;38:W529–W533. doi: 10.1093/nar/gkq399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergeron JRC, Fernández L, Wasney GA, Vuckovic M, Reffuveille F, Hancock REW, Strynadka NCJ. The Structure of a Type 3 Secretion System (T3SS) Ruler Protein Suggests a Molecular Mechanism for Needle Length Sensing. The Journal of Biological Chemistry. 2016;291:1676–1691. doi: 10.1074/jbc.M115.684423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beuzón CR, Méresse S, Unsworth KE, Ruíz-Albert J, Garvis S, Waterman SR, Ryder TA, Boucrot E, Holden DW. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. The EMBO Journal. 2000;19:3235–3249. doi: 10.1093/emboj/19.13.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boucrot E, Henry T, Borg JP, Gorvel JP, Méresse S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science. 2005;308:1174–1178. doi: 10.1126/science.1110225. [DOI] [PubMed] [Google Scholar]
  8. Brumell JH, Rosenberger CM, Gotto GT, Marcus SL, Finlay BB. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cellular Microbiology. 2001;3:75–84. doi: 10.1046/j.1462-5822.2001.00087.x. [DOI] [PubMed] [Google Scholar]
  9. Brumell JH, Goosney DL, Finlay BB. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic. 2002;3:407–415. doi: 10.1034/j.1600-0854.2002.30604.x. [DOI] [PubMed] [Google Scholar]
  10. Chakraborty S, Mizusaki H, Kenney LJ. A FRET-based DNA biosensor tracks OmpR-dependent acidification of Salmonella during macrophage infection. PLOS Biology. 2015;13:e1002116. doi: 10.1371/journal.pbio.1002116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chakravortty D, Rohde M, Jäger L, Deiwick J, Hensel M. Formation of a novel surface structure encoded by Salmonella Pathogenicity Island 2. The EMBO Journal. 2005;24:2043–2052. doi: 10.1038/sj.emboj.7600676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. Journal of the American Chemical Society. 2002;124:9026–9027. doi: 10.1021/ja027007w. [DOI] [PubMed] [Google Scholar]
  13. D'Costa VM, Coyaud E, Boddy KC, Laurent EMN, St-Germain J, Li T, Grinstein S, Raught B, Brumell JH. BioID screen of Salmonella type 3 secreted effectors reveals host factors involved in vacuole positioning and stability during infection. Nature Microbiology. 2019;4:2511–2522. doi: 10.1038/s41564-019-0580-9. [DOI] [PubMed] [Google Scholar]
  14. Dabora SL, Sheetz MP. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell. 1988;54:27–35. doi: 10.1016/0092-8674(88)90176-6. [DOI] [PubMed] [Google Scholar]
  15. Davis L, Chin JW. Designer proteins: applications of genetic code expansion in cell biology. Nature reviews. Molecular Cell Biology. 2012;13:168–182. doi: 10.1038/nrm3286. [DOI] [PubMed] [Google Scholar]
  16. Derényi I, Jülicher F, Prost J. Formation and interaction of membrane tubes. Physical Review Letters. 2002;88:238101. doi: 10.1103/PhysRevLett.88.238101. [DOI] [PubMed] [Google Scholar]
  17. Drecktrah D, Levine-Wilkinson S, Dam T, Winfree S, Knodler LA, Schroer TA, Steele-Mortimer O. Dynamic behavior of Salmonella-induced membrane tubules in epithelial cells. Traffic. 2008;9:2117–2129. doi: 10.1111/j.1600-0854.2008.00830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Enninga J, Mounier J, Sansonetti P, Tran Van Nhieu G. Secretion of type III effectors into host cells in real time. Nature Methods. 2005;2:959–965. doi: 10.1038/nmeth804. [DOI] [PubMed] [Google Scholar]
  19. Erhardt M, Namba K, Hughes KT. Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harbor Perspectives in Biology. 2010;2:a000299. doi: 10.1101/cshperspect.a000299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Galán JE, Waksman G. Protein-Injection Machines in Bacteria. Cell. 2018;172:1306–1318. doi: 10.1016/j.cell.2018.01.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gao Y, Spahn C, Heilemann M, Kenney LJ. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection. mBio. 2018;9:e01083–18. doi: 10.1128/mBio.01083-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Garcia-del Portillo F, Zwick MB, Leung KY, Finlay BB. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. PNAS. 1993;90:10544–10548. doi: 10.1073/pnas.90.22.10544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hancock SM, Uprety R, Deiters A, Chin JW. Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. Journal of the American Chemical Society. 2010;132:14819–14824. doi: 10.1021/ja104609m. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jennings E, Thurston TLM, Holden DW. Salmonella SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences. Cell Host & Microbe. 2017;22:217–231. doi: 10.1016/j.chom.2017.07.009. [DOI] [PubMed] [Google Scholar]
  25. Journet L, Agrain C, Broz P, Cornelis GR. The needle length of bacterial injectisomes is determined by a molecular ruler. Science. 2003;302:1757–1760. doi: 10.1126/science.1091422. [DOI] [PubMed] [Google Scholar]
  26. Kenney LJ. The role of acid stress in Salmonella pathogenesis. Current Opinion in Microbiology. 2019;47:45–51. doi: 10.1016/j.mib.2018.11.006. [DOI] [PubMed] [Google Scholar]
  27. Kipper K, Lundius EG, Ćurić V, Nikić I, Wiessler M, Lemke EA, Elf J. Application of Noncanonical Amino Acids for Protein Labeling in a Genomically Recoded Escherichia coli. ACS Synthetic Biology. 2017;6:233–255. doi: 10.1021/acssynbio.6b00138. [DOI] [PubMed] [Google Scholar]
  28. Knuff K, Finlay BB. What the SIF Is Happening-The Role of Intracellular Salmonella-Induced Filaments. Frontiers in Cellular and Infection Microbiology. 2017;7:335. doi: 10.3389/fcimb.2017.00335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ko W, Kim S, Lee S, Jo K, Lee HS. Genetically encoded FRET sensors using a fluorescent unnatural amino acid as a FRET donor. RSC Advances. 2016;6:78661–78668. doi: 10.1039/C6RA17375F. [DOI] [Google Scholar]
  30. Kolodziejek AM, Altura MA, Fan J, Petersen EM, Cook M, Brzovic PS, Miller SI. Salmonella translocated effectors recruit OSBP1 to the phagosome to promote vacuolar membrane integrity. Cell Reports. 2019;27:2147–2156. doi: 10.1016/j.celrep.2019.04.021. [DOI] [PubMed] [Google Scholar]
  31. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galán JE, Aizawa SI. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science. 1998;280:602–605. doi: 10.1126/science.280.5363.602. [DOI] [PubMed] [Google Scholar]
  32. Kubori T, Sukhan A, Aizawa SI, Galán JE. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. PNAS. 2000;97:10225–10230. doi: 10.1073/pnas.170128997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lammers M, Neumann H, Chin JW, James LC. Acetylation regulates cyclophilin A catalysis, immunosuppression and HIV isomerization. Nature Chemical Biology. 2010;6:3317. doi: 10.1038/nchembio.342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lang K, Chin JW. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chemical Reviews. 2014a;114:4764–4806. doi: 10.1021/cr400355w. [DOI] [PubMed] [Google Scholar]
  35. Lang K, Chin JW. Bioorthogonal reactions for labeling proteins. ACS Chemical Biology. 2014b;9:16–20. doi: 10.1021/cb4009292. [DOI] [PubMed] [Google Scholar]
  36. LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nature Reviews. Microbiology. 2015;13:191–205. doi: 10.1038/nrmicro3420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Liew ATF, Foo YH, Gao Y, Zangoui P, Singh MK, Gulvady R, Kenney LJ. Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SsrB regulates SPI-2. eLife. 2019;8:e45311. doi: 10.7554/eLife.45311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lin S, Zhang Z, Xu H, Li L, Chen S, Li J, Hao Z, Chen PR. Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. Journal of the American Chemical Society. 2011;133:20581–20587. doi: 10.1021/ja209008w. [DOI] [PubMed] [Google Scholar]
  39. Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, Allaoui A. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. Journal of Bacteriology. 2002;184:3433–3441. doi: 10.1128/JB.184.13.3433-3441.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Manders EMM, Verbeek FJ, Aten JA. Measurement of co-localization of objects in dual-colour confocal images. Journal of Microscopy. 1993;169:375–382. doi: 10.1111/j.1365-2818.1993.tb03313.x. [DOI] [PubMed] [Google Scholar]
  41. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM. Structural insights into the assembly of the type III secretion needle complex. Science. 2004;306:1040–1042. doi: 10.1126/science.1102610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Martin BR, Giepmans BN, Adams SR, Tsien RY. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nature Biotechnology. 2005;23:1308–1314. doi: 10.1038/nbt1136. [DOI] [PubMed] [Google Scholar]
  43. McGourty K, Thurston TL, Matthews SA, Pinaud L, Mota LJ, Holden DW. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science. 2012;338:963–967. doi: 10.1126/science.1227037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Muramoto K, Makishima S, Aizawa SI, Macnab RM. Effect of cellular level of FliK on flagellar hook and filament assembly in Salmonella typhimurium. Journal of Molecular Biology. 1998;277:871–882. doi: 10.1006/jmbi.1998.1659. [DOI] [PubMed] [Google Scholar]
  45. Nakamura Y, Gojobori T, Ikemura T. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Research. 2000;28:292. doi: 10.1093/nar/28.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ohlson MB, Huang Z, Alto NM, Blanc MP, Dixon JE, Chai J, Miller SI. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host & Microbe. 2008;4:434–446. doi: 10.1016/j.chom.2008.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pallen MJ, Gophna U. Bacterial flagella and Type III secretion: case studies in the evolution of complexity. Genome Dynamics. 2007;3:30–47. doi: 10.1159/000107602. [DOI] [PubMed] [Google Scholar]
  48. Park E, Lee HY, Woo J, Choi D, Dinesh-Kumar SP. Spatiotemporal Monitoring of Pseudomonas syringae Effectors via Type III Secretion Using Split Fluorescent Protein Fragments. The Plant Cell. 2017;29:1571–1584. doi: 10.1105/tpc.17.00047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Peng T, Hang HC. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living Cells. Journal of the American Chemical Society. 2016;138:14423–14433. doi: 10.1021/jacs.6b08733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Plass T, Milles S, Koehler C, Szymański J, Mueller R, Wiessler M, Schultz C, Lemke EA. Amino acids for Diels-Alder reactions in living cells. Angewandte Chemie. 2012;51:4166–4170. doi: 10.1002/anie.201108231. [DOI] [PubMed] [Google Scholar]
  51. Pullarkat PA, Dommersnes P, Fernández P, Joanny JF, Ott A. Osmotically driven shape transformations in axons. Physical Review Letters. 2006;96:048104. doi: 10.1103/PhysRevLett.96.048104. [DOI] [PubMed] [Google Scholar]
  52. Rajashekar R, Liebl D, Seitz A, Hensel M. Dynamic remodeling of the endosomal system during formation of Salmonella-induced filaments by intracellular Salmonella enterica. Traffic. 2008;9:2100–2116. doi: 10.1111/j.1600-0854.2008.00821.x. [DOI] [PubMed] [Google Scholar]
  53. Ruiz-Albert J, Yu XJ, Beuzón CR, Blakey AN, Galyov EE, Holden DW. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Molecular Microbiology. 2002;44:645–661. doi: 10.1046/j.1365-2958.2002.02912.x. [DOI] [PubMed] [Google Scholar]
  54. Sanborn J, Oglecka K, Kraut RS, Parikh AN. Transient pearling and vesiculation of membrane tubes under osmotic gradients. Faraday Discussions. 2013;161:167–176. doi: 10.1039/c2fd20116j. [DOI] [PubMed] [Google Scholar]
  55. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schnell U, Dijk F, Sjollema KA, Giepmans BN. Immunolabeling artifacts and the need for live-cell imaging. Nature Methods. 2012;9:152–158. doi: 10.1038/nmeth.1855. [DOI] [PubMed] [Google Scholar]
  57. Shibata S, Takahashi N, Chevance FF, Karlinsey JE, Hughes KT, Aizawa S. FliK regulates flagellar hook length as an internal ruler. Molecular Microbiology. 2007;64:1404–1415. doi: 10.1111/j.1365-2958.2007.05750.x. [DOI] [PubMed] [Google Scholar]
  58. Singh MK, Kenney LJ. Super-resolution imaging of bacterial pathogens and visualization of their secreted effectors. FEMS Microbiology Reviews. 2021;45:fuaa50. doi: 10.1093/femsre/fuaa050. [DOI] [PubMed] [Google Scholar]
  59. Steele-Mortimer O. The Salmonella-containing vacuole: moving with the times. Current Opinion in Microbiology. 2008;11:38–45. doi: 10.1016/j.mib.2008.01.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Molecular Microbiology. 1996;20:1–164. doi: 10.1111/j.1365-2958.1996.tb02497.x. [DOI] [PubMed] [Google Scholar]
  61. Uttamapinant C, Howe JD, Lang K, Beránek V, Davis L, Mahesh M, Barry NP, Chin JW. Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. Journal of the American Chemical Society. 2015;137:4602–4605. doi: 10.1021/ja512838z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Wee DH, Hughes KT. Molecular ruler determines needle length for the Salmonella Spi-1 injectisome. PNAS. 2015;112:4098–4103. doi: 10.1073/pnas.1423492112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Xu H, Wang Y, Lu J, Zhang B, Zhang Z, Si L, Wu L, Yao T, Zhang C, Xiao S, Zhang L, Xia Q, Zhou D. Re-exploration of the Codon Context Effect on Amber Codon-Guided Incorporation of Noncanonical Amino Acids in Escherichia coli by the Blue-White Screening Assay. Chembiochem : A European Journal of Chemical Biology. 2016;17:1250–1256. doi: 10.1002/cbic.201600117. [DOI] [PubMed] [Google Scholar]
  64. Yanagisawa M, Imai M, Taniguchi T. Shape deformation of ternary vesicles coupled with phase separation. Physical Review Letters. 2008;100:148102. doi: 10.1103/PhysRevLett.100.148102. [DOI] [PubMed] [Google Scholar]
  65. York AG, Chandris P, Nogare DD, Head J, Wawrzusin P, Fischer RS, Chitnis A, Shroff H. Instant super-resolution imaging in live cells and embryos via analog image processing. Nature Methods. 2013;10:1122–1126. doi: 10.1038/nmeth.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Young AM, Minson M, McQuate SE, Palmer AE. Optimized Fluorescence Complementation Platform for Visualizing Salmonella Effector Proteins Reveals Distinctly Different Intracellular Niches in Different Cell Types. ACS Infectious Diseases. 2017;3:575–584. doi: 10.1021/acsinfecdis.7b00052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Yu XJ, Grabe GJ, Liu M, Mota LJ, Holden DW. SsaV Interacts with SsaL to Control the Translocon-to-Effector Switch in the Salmonella SPI-2 Type Three Secretion System. mBio. 2018;9:e01149–18. doi: 10.1128/mBio.01149-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zhang M, Lin S, Song X, Liu J, Fu Y, Ge X, Fu X, Chang Z, Chen PR. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nature Chemical Biology. 2011;7:671–677. doi: 10.1038/nchembio.644. [DOI] [PubMed] [Google Scholar]

Decision letter

Editor: Petra Anne Levin1
Reviewed by: Kelly Hughes2

In the interests of transparency, eLife publishes the most substantive revision requests and the accompanying author responses.

Acceptance summary:

A tour-de-force, this study applies genomic expansion mediated protein labeling to investigate the mechanism of Salmonella-induced filament (SIF) formation in infected cells as catalyzed by secreted effectors of the Salmonella pathogenicity island 2 type 3 secretion system. Using this cutting edge approach, the authors demonstrate that a key factor, SsaP, controls the secretion-specificity switch from injectisome substrate secretion to translocon and effector secretion, clarifying the mechanism driving SIF formation.

Decision letter after peer review:

[Editors’ note: the authors submitted for reconsideration following the decision after peer review. What follows is the decision letter after the first round of review.]

Thank you for submitting your article "Labeling and visualization of Salmonella secreted effector SifA by genetic code expansion" for consideration by eLife. Your article has been reviewed by 3 peer reviewers, and the evaluation has been overseen by Petra Levin as the Reviewing Editor and Gisela Storz as the Senior Editor. We are sorry to be the bearer of unpleasant news, but we regret that we cannot recommend the study for publication in eLife at this time.

The Reviewing Editor has highlighted the concerns of all three reviewers as well as Dr. Storz. We have included the separate reviews below for your consideration. If you have any questions, please do not hesitate to contact us.

Summary of major concerns:

All three reviewers appreciate the application of unnatural amino acids to study Salmonella secretion in vitro and felt that it will be of interested to groups studying secretion mediated virulence in bacterial systems. Reviewer 3, in particular, was enthusiastic about development of this approach for analysis of bacterial pathogenesis.

At the same time, all reviewers agreed that while application of an established approach for analysis of pathogenesis in situ is a technical advance, the study did not break new ground with regard to our understanding of Salmonella pathogenesis. Overall, the reviewers, as well as Dr. Storz and myself, felt that the lack of experiments utilizing unnatural amino acids to address important questions in the field, muted the study's potential impact and thus its appeal to the broad readership of eLife. Resubmission is an option should you elect to apply the technique to answer previously intractable questions related to Salmonella virulence.

Reviewer #1:

The use of affinity and fluorescent protein tags on secreted effectors is often challenging due to the interference of these tags with protein folding and translocation. In this manuscript by Singh et al. authors demonstrate that bioorthogonal labeling using genetic incorporation of unnatural amino acids (UAA) can be used to overcome these challenges. Authors focused on a SifA, a T3SS effector of Salmonella, and visualized it in the host cell either by direct site-specific labeling with fluorescence UAA referred to as Hco or by indirect labeling with azide-containing UAA, AzF, that can be further visualized using Click-fluorophores. Using this approach, the authors demonstrated co-localization of secreted SifA with Salmonella-induced filaments (SIF) as well as phenotypic heterogeneity of SifA expression within a host cell.

The idea of using UAA labeling to overcome limitations of fusion proteins is not new, but the fact that this labeling works in situ (when Salmonella is inside the host cell vacuole) is exciting and could benefit host-pathogen interactions field. In my opinion, however, some of the manuscript conclusions, as well as broader applicability of this approach, require additional controls related to the labeling specificity and phenotypic consequences of synthetic tRNA/aaRS expression.

1. While TAG is relatively rare, there are still hundreds of TAG-containing genes, and the tRNA/aaRS expression would result in off-target incorporation of UAA.

a) how many genes in Salmonella contain TAG stop codon? Are there any effector proteins/virulence-related genes among them?

b) Figure 2A. A full fluorescence imaged gel containing stained lysates of pEVOL strains with either SifA WT and E52TAG need to be provided to demonstrate the extent of off-target labeling

c) Relevant to all experiments: Because other proteins can be labeled with UAA, the proper control is not cultures without UAA, but a WT SifA strain with pEVOL plasmid supplied with UAA. Only in such case, one can establish that fluorescence signal is specific to SifA and not other proteins (see related comment 3)

2. The potential of broader applicability of this approach to study host-microbe interaction is one of the selling points of the manuscript. However, it is unclear whether the synthetic system for tRNA/aaRS amber suppression (pEVOL) has negative consequences on virulence. For example, it is known that tRNA/aaRS expression is toxic in E. coli and results in growth defect and as well as other phenotypes. The effect of pEVOL plasmids on Salmonella on bacterial survival, virulence, timing of events is not established. All experiment are performed by comparing sifA- strain with sifA(52TAG) pEVOL strain, but the WT and WT pEVOL strains are not characterized. If pEVOL alters bacterial growth and survival, it will significantly limit the use of this approach for host-microbe interactions.

3. The conclusion of phenotypic heterogeneity of SPI-2 is not well-supported. The observed heterogeneity in fluorescence maybe not be physiologically relevant. It may arise as a result of the off-target labeling (see comment 1) or the use of the artificial two-plasmid system (pEVOL and p-sifA). The plasmid copy number varies among cells. In addition, the expression of tRNA/aaRS construct is driven by the leaky expression of arabinose inducible pBAD promoter. This promoter is metabolically regulated, and the expression heterogeneity is well-established in the literature.

Reviewer #2:

Due to previous difficulty in localizing the Salmonella secreted protein SifA during an infection, the authors employed a new approach by incorporating fluorescent or non-fluorescent unnatural amino acids in SifA via genetic code expansion. Utilizing this strategy, they were able to visualize SifA and showed that it co-localized with LAMP1, SseJ and kinesin on SIFs. In addition, they demonstrated that the T3SS SPI-2 is expressed heterogeneously (only ~16%) within the SCV (Salmonella containing vacuole).

1. Key figures in the paper (e.g. Figures 2 and 5) only show one or a few cells and no statistics were provided.

2. Previous studies have shown that SifA interacts with kinesin (e.g. Boucrot et al. 205 Science). As a result, demonstrating that SifA co-localizes with kinesin during an infection is confirmatory and provides a limited advance in our understanding of how SIFs form or function.

3. The authors previously demonstrated that ~30% of the bacterial cells express SPI-2 after acid exposure in vitro (Chakraborty et al. 2015 Plos Biol). Therefore, confirming that only a subpopulation expresses SPI-2 during an infection is also of limited significance.

Reviewer #3:

This is an interesting manuscript that nicely applies the application of nonsense codon suppressors that insert unnatural amino acids with reactive or fluorescent properties that allow tagging of bacterial proteins following injection into host cells. Although developed many years ago, the approach of inserting unnatural amino acids into proteins produced by pathogens to monitor their location and interactions within host cells is a wonderful addition to the toolkit for visualizing virulence factors, and will stimulate many other applications.

The authors make a strong argument for problems with previously used visualization methods, including use of bulky protein-tags or immunological approaches. Overall the concept, methodology, data, and images provide compelling evidence for the localization of SifA and the interactions of SifA with SseJ, SKIP, and kinesin in vivo without the use of approaches that are prone to artifacts.

I have a few questions and comments that are probably minor, but addressing these points will make the manuscript clearer.

1. UAA is an abbreviation for a nonsense codon. As the approach used to insert unnatural amino acids is based upon suppression of another nonsense codon, UAG, it is confusing to use "UAA" as an abbreviation for "unnatural amino acids". Something like u-AA or an alternative be better.

2. The initial sentences for two of the paragraphs of the Results section are redundant with the Introduction. Deletion of these redundancies would improve the readability of the manuscript. Lines 102-104 "Currently.… (See Introduction)."; and lines 123-125 "Intracellular.… (14-16)."

3. Note that an important point of this manuscript expressed on line 254 is that the results are based upon "native levels of protein expression". However, the proteins are expressed from the plasmid psifA52TAG, and the copy number of the plasmids are not indicated either in the text or in the Methods. As an important point of the manuscript, the reader should not have to go back to the original references to figure out the copy number of the plasmids or how the protein is expressed from the plasmid.

4. Isn't a caveat of the conclusion that this process is "bistable" dependent upon all of the Salmonella properly expressing SifA from the plasmid? Do you know that none of the Salmonella lost the plasmid during the subculture step described in line 322?

[Editors’ note: further revisions were suggested prior to acceptance, as described below.]

Thank you for submitting your article "Genetic code expansion enables visualization of Salmonella type three secretion system components and secreted effectors" for consideration by eLife. Your article has been reviewed by 2 peer reviewers, and the evaluation has been overseen by a Reviewing Editor and Gisela Storz as the Senior Editor. The following individual involved in review of your submission has agreed to reveal their identity: Kelly Hughes (Reviewer #2).

The reviewers have discussed their reviews with one another, and the Reviewing Editor has drafted this to help you prepare a revised submission.

Essential revisions:

In addition to the revisions for clarity suggested by reviewer 2, please pay special attention to the request for the addition of statistical analysis to figures containing micrographs and a higher resolution image for Figure S13 as requested by reviewer 1. The addition of statistical analysis was a primary request of previous reviewers and was not addressed in the revised manuscript. While the current reviewers appreciate that the selected images represent hundreds of data points, statistics are necessary to provide insight into specifically how well "representative images" reflect the entire data landscape. Statistical analysis of micrograph data is standard practice and should not be too onerous. Please see note regarding the explanation of statistical analysis at the end of this email under "Information to help as you revise your submission" for more details.

Reviewer #1:

The authors have done a good job of responding to the majority of the reviewers' comments.

1. I do not think the authors adequately responded to the request for statistical data made by previous reviewers.

2. The data in Figure S13 showing that SsaP was mostly localized to the poles during early infection times is low resolution and not particularly convincing. Please replace with a higher resolution image and include statistical data on the fraction of cells with polar localization.

Reviewer #2:

The manuscript investigates the characterization by super-resolution fluorescence microscopy Salmonella-induced filament formation following engulfment by host cells and the role of SsaP in the Salmonella pathogenicity island 2 (SPI2) secretion-specificity switch from injectisome structure and assembly components to translocon and effector protein secretion. This work focuses on the SifA and SseJ effectors, which catalyzes the formation of Salmonella induced filaments. This is significant because in all type III secretion (T3S) systems characterized, the SsaP homologs act as molecular rulers to measure either injectisome length in the injectisome T3S systems or hook length in the flagellar T3S systems. The size of SsaP strongly argues against it acting as a ruler. The SsaP homologs include an ~300 N-terminal domain, which includes the T3S signal for export and the conserved, ~100 amino acid T3S4 domain described by Agrain et al. 2005, which catalyzes the T3S-specificity switch. SsaP at 124 amino acids in length contains the conserved T3S4 domain and whether or not SsaP secretion is required for the T3S-specificity switch is not known. Regardless, SsaP is unique among the T3S-specificity switch homologs making it a subject of great interest with the potential for unique mechanisms of action.

Overall, this represents a real tour-de-force and a significant contribution in understanding the SPI-2 mechanism of SIF formation and the role of SsaP in the secretion-specificity switch. The authors addressed the three original reviewers' concerns fully.

The Results section "Engineering and selection of label positions" should be retitled. It's a logical discussion for the methods used in this study. The authors make very good arguments as to why, under SPI2 inducing conditions, ncAA labeling of SifA and SsaP should work, and later they show it does. I just can't think of the title I would rather see (not helpful).

The second chapter of the Results section covers the GCE labeling. Unfortunately, the SsaP-mCherry fusion was cleaved. It's not unusual for this to occur with fusion proteins, but it does make life more difficult. The TAG at position 52 of SsaP, logically chosen, was successfully labeled as was SifA. Figure 2 clearly shows successful labeling of both proteins.

The third chapter demonstrates only a slight detrimental effect of the pEVOL – this must be an amber suppression plasmid, but it's not defined – on Salmonella pathogenesis. In general, when one compares a WT to a plasmid expression system the better control is the plasmid vector only control.

The fourth chapter demonstrates the complementation of the sifA deletion by engineered SifA-E52AzF – nice. Figure 3 imaging is spectacular.

Chapter 5 describes the fluorescence imaging of SifA-E52AzF. With appropriate controls the authors could visualize SifA within the filaments. This demonstrates that AzF labeling can clearly detect and visualize secreted effector protein.

Chapter 6 describes co-localization studies. SifA co-localizes with LAMP1. SifA, SseJ and kinesin co-localize. The controls are well done.

The next chapter (7) demonstrates that unlike SseJ, which forms continuous filaments, SifA shows punctate labeling.

Chapter 8 confirms SifA labeling at E52 with Hco behaves similar to the same with Azf.

In Chapter 9 we see a comparison of GCE-based labeling to antibody labeling that shows that GCE-based labeling is superior.

In Chapter 10 we get to SsaP. As one would predict from loss of a secretion-specificity switch protein, loss of SsaP was defective in effector secretion. SseB translocon was not secreted in the absence of SsaP indicating the switch occurs after needle completion and before translocon assembly. C-terminal fusion of mCherry to SsaP resulted in a functional SsaP, whereas an N-terminal fusion did not. This is consistent with what is observed with similar fusions to other T3SS SsaP homologs – except the SsaP-mCherry fusion is not stable and the mCherry domain is cleaved. This was circumvented with HA-tag insertions that produced functional SsaP-HA tagged derivatives. To verify that HA-SsaP was secreted into the HeLa cell cytosol, SsaP was labeled at position 65 with TCO*Lys, shown to be functional. Figure 5 does suggest that SsaP is secreted. There are very few molecules of SsaP representing a significant achievement in visualization studies.

eLife. 2021 Jun 1;10:e67789. doi: 10.7554/eLife.67789.sa2

Author response


[Editors’ note: the authors resubmitted a revised version of the paper for consideration. What follows is the authors’ response to the first round of review.]

Summary of major concerns:

All three reviewers appreciate the application of unnatural amino acids to study Salmonella secretion in vitro and felt that it will be of interested to groups studying secretion mediated virulence in bacterial systems. Reviewer 3, in particular, was enthusiastic about development of this approach for analysis of bacterial pathogenesis.

At the same time, all reviewers agreed that while application of an established approach for analysis of pathogenesis in situ is a technical advance, the study did not break new ground with regard to our understanding of Salmonella pathogenesis. Overall, the reviewers, as well as Dr. Storz and myself, felt that the lack of experiments utilizing unnatural amino acids to address important questions in the field, muted the study's potential impact and thus its appeal to the broad readership of eLife. Resubmission is an option should you elect to apply the technique to answer previously intractable questions related to Salmonella virulence.

Reviewer #1:

[…] 1. While TAG is relatively rare, there are still hundreds of TAG-containing genes, and the tRNA/aaRS expression would result in off-target incorporation of UAA.

a) how many genes in Salmonella contain TAG stop codon? Are there any effector proteins/virulence-related genes among them?

We thank the reviewer for raising this excellent point that we had neglected to include in the manuscript. Salmonella Typhimurium (LT2) contains ~452 endogenous TAG stop codons out of 4696 genes. This means that 9.6% of its genome uses the TAG termination codon. Among them, there is one gene in the SPI-1 regulon (SopA) and 3 genes in SPI-2 (PipB, PipB2 and SspH2) that use TAG. Given this nearly 10%, one would anticipate a certain level of UAA (ncAA) incorporation at endogenous TAGs, which would lead to spurious dye labeling of other proteins in addition to the labeling of the protein of interest. However, given we are examining SifA under SPI-2 inducing conditions, we would expect that SPI-1 effectors to be present at very low (if any) concentrations. What about the other ancestral genes?

There are several important points to make in addressing this point:

1. It turns out that the position of the amino acid in the primary sequence and the neighboring base pairs in the mRNA influence the efficiency of amber suppression and thus ncAA incorporation [Chembiochem. 2016, 17, 1250-1256; Curr Opin Chem Biol. 2018, 46,146-155]; therefore, both the design of the TAG mutation, as well as its position is important. We have included sentences to this effect in the revised manuscript (see lines 143-165 and Figure 2).

2. It turns out that off-target labelling is really not a problem. Others engineered E. coli so that no other TAG codons were present except for one that was engineered in ompC, and surprisingly, off target labelling was not noticeably different in the engineered strain compared to a WT, non-recoded strain [ACS Synth Biol. 2017, 6, 233]. The authors speculated that either endogenous TAG codons are inefficiently decoded by the ncAA-pEVOL (in our case AzF-pEVOL), or the products are degraded. We basically see the same thing (see point 3). We now add a paragraph that deals with this issue (lines 155-159).

3. We evaluated the specificity of ncAA incorporation and labelling by constructing a GFP-fusion to SifA so that we could compare GFP fluorescence with fluorescence labelling at the 52-TAG position by Alexa 555. You can see in the first row of figures that the WT SifA-GFP is clearly visible, but when the 52-TAG-GFP construct is examined, in the absence of ncAA, there is no GFP (dark panel, right), because the stop codon truncates and no GFP is produced. In the second row, we add ncAA (AzF + pEVOL) to the WT SifA and examine Alexa555 and there is no labelling, because there is no position for labelling in the WT SifA construct. If off target labelling were significant, it would be visible in this field, but there is no signal and essentially no background. Similarly, with the 52-TAG-GFP construct, there is no background when there is no AzF added. Finally, when we examine 52-TAG-GFP and add AzF + pEVOL, (third row), there is a substantial GFP signal (as the amber is suppressed) and 52-TAG is labelled by AzF, as apparent by red fluorescence. Note that there is also really strong agreement with the red and the green fluorescence in the two panels. Thus, off target labelling does not contribute to the signal that we observe. This figure and a discussion about the findings are now included in the revised manuscript (lines 189-198, Figure 2—figure supplement 4).

4. Lastly, TAG stop codons are predominantly found in genes expressed at low levels [JBC 2014, 289, 30334-30342], so if present, they would be less visible.

b) Figure 2A. A full fluorescence imaged gel containing stained lysates of pEVOL strains with either SifA WT and E52TAG need to be provided to demonstrate the extent of off-target labeling

As mentioned above, off-target labelling was not an issue. Attempts to directly identify genomic off target incorporation of ncAAs did not provide evidence for their existence. Studies show no off-target incorporation in bacteria [ACS Synth. Biol. 2017, 6, 233; Biochemistry, 2017, 56,2161- 2165], nor in mammalian cells [J. Am. Chem. Soc. 2015,137,4602-4605], while others show incorporation into a small subset of TAG terminating genes that are only detectable in RF1 knockout strains [Nat. Chem. Biol. 2011, 7, 779-786; Science, 2013, 342, 357-360, 35; Sci. Rep. 2015, 5. 9699]. In figure 2A, SDS gels were run directly from the click reaction mixture without further washing the excess dye. We observed a few very low-level background fluorescence in figure 2A possibly because of a non-specific attachment of free dye molecules to cell proteins.

c) Relevant to all experiments: Because other proteins can be labeled with UAA, the proper control is not cultures without UAA, but a WT SifA strain with pEVOL plasmid supplied with UAA. Only in such case, one can establish that fluorescence signal is specific to SifA and not other proteins (see related comment 3)

We thank the reviewer for pointing out the missing information. To establish that the fluorescence signal observed in the host cell is specific to secreted SifA only, we infected HeLa cells with wild-type Salmonella in the presence of pEVOL and ncAA. To visualize if any ncAA incorporated effectors secreted into host cells, HeLa cells were treated with BDP dye as described in the methods. After labeling, excess dye was washed out and cells were fixed with 4% PFA and immunostained for SseJ after 16 h post-infection. The fluorescence microscopy image shows the absence of intracellular fluorescent signals in the green channel, and non-specific fluorescence signals were nearly absent. We have included this results in the revised manuscript (see line 228-240; SI Appendix Figure S7).

2. The potential of broader applicability of this approach to study host-microbe interaction is one of the selling points of the manuscript.

We agree! And we think it is even stronger now.

However, it is unclear whether the synthetic system for tRNA/aaRS amber suppression (pEVOL) has negative consequences on virulence. For example, it is known that tRNA/aaRS expression is toxic in E. coli and results in growth defect and as well as other phenotypes. The effect of pEVOL plasmids on Salmonella on bacterial survival, virulence, timing of events is not established. All experiment are performed by comparing sifA- strain with sifA(52TAG) pEVOL strain, but the WT and WT pEVOL strains are not characterized. If pEVOL alters bacterial growth and survival, it will significantly limit the use of this approach for host-microbe interactions.

The reviewer raises an excellent point here. Although high suppression efficiency was achieved with the amber stop codon, no significant adverse effects on bacterial growth could be observed in E. coli with 7–8% of genes terminating in TAG [Nat. Chem. Biol., 2017, 13, 446-450; ACS Synth Biol. 2017, 6, 233], nor did it change the growth rate in Synechococcus elongatus with 40% of genes terminating in TAG [Biochemistry, 2017, 56,2161- 2165]. Nonetheless, to examine the consequence of orthogonal amber suppression (pEVOL), we addressed this point in two ways, we first performed a simple growth curve comparing the WT strain +/- pEVOL (SI Appendix Figure S5A). Next, we examined the effect of pEVOL on virulence by infecting HeLa cells with WT +/-pEVOL and enumerating intracellular bacteria at 2 and 16h post-infection. The results indicated that there was a slight reduction in the intracellular replication (74% compared to no plasmid at 100%). Together, these results suggest that orthogonal tRNA/aaRS amber suppression (pEVOL) system has no negative consequences on the pathogenesis of Salmonella. (see lines 199-209 and SI Appendix, Figure S5A, B).

3. The conclusion of phenotypic heterogeneity of SPI-2 is not well-supported. The observed heterogeneity in fluorescence maybe not be physiologically relevant. It may arise as a result of the off-target labeling (see comment 1) or the use of the artificial two-plasmid system (pEVOL and p-sifA). The plasmid copy number varies among cells. In addition, the expression of tRNA/aaRS construct is driven by the leaky expression of arabinose inducible pBAD promoter. This promoter is metabolically regulated, and the expression heterogeneity is well-established in the literature.

We strongly disagree with the reviewer on this point of SPI-2 heterogeneity, however we do agree about the problems of using pBAD. Previous in vitro studies [Chakraborty et al. 2015 Plos. Biol.] from our lab have demonstrated the heterogeneity, but that is not the focus of this manuscript, so we have removed this section.

Reviewer #2:

Due to previous difficulty in localizing the Salmonella secreted protein SifA during an infection, the authors employed a new approach by incorporating fluorescent or non-fluorescent unnatural amino acids in SifA via genetic code expansion. Utilizing this strategy, they were able to visualize SifA and showed that it co-localized with LAMP1, SseJ and kinesin on SIFs. In addition, they demonstrated that the T3SS SPI-2 is expressed heterogeneously (only ~16%) within the SCV (Salmonella containing vacuole).

1. Key figures in the paper (e.g. Figures 2 and 5) only show one or a few cells and no statistics were provided.

Representative images are shown from many tens of infections we have performed. We now state: Infections were performed tens of times, hundreds of cells were imaged per infection and the figures display representative images in the Methods and reiterate this fact in the figure legends. Figure 5 is now Figure 4 in the revised manuscript and the number of cells used for analysis is in the legend.

2. Previous studies have shown that SifA interacts with kinesin (e.g. Boucrot et al. 205 Science). As a result, demonstrating that SifA co-localizes with kinesin during an infection is confirmatory and provides a limited advance in our understanding of how SIFs form or function.

It is disappointing to us that the reviewer failed to see the importance of the labelling and the application of the method. In my conversations with colleagues, many of them have tried (and failed!) to use GCE to site-specifically label their virulence factors in a number of pathogens. We succeeded in labeling SifA, which was intractable to labeling by other approaches. The focus of the manuscript was not on revealing new aspects of the Sifs, although we did discover that while SseJ is continuously labelled along the Sifs and subject to fixation artifacts [Gao et al., mBio 2018], SifA labelling is punctate, independent of the fixation method. This result means that SifA is not directly force-dependent and the stoichiometry is not 1:1 SifA to SseJ. However, the real point was to show that we could label a protein using GCE that we had been unable to label by other means. The revised manuscript further emphasizes the utility of the approach by labelling another protein (SsaP) that was also impossible to label by constructing fusion proteins, since the fusion protein was cleaved (see SI Appendix, Figure S1). We provide new information that demonstrates the importance of SsaP in virulence and show for the first time that it is secreted during infection (SI Appendix, Figure S1, S2, S10-11 and revised manuscript Figure 5).

3. The authors previously demonstrated that ~30% of the bacterial cells express SPI-2 after acid exposure in vitro (Chakraborty et al. 2015 Plos Biol). Therefore, confirming that only a subpopulation expresses SPI-2 during an infection is also of limited significance.

We respectfully disagree with the reviewer on this point, Chakraborty et al. 2015 only showed in vitro heterogeneity and we think it is important to establish the presence of cheaters in the vacuole. However, we eliminated this section based on the criticism

from the other reviewers (point #3, above).

Reviewer #3:

This is an interesting manuscript that nicely applies the application of nonsense codon suppressors that insert unnatural amino acids with reactive or fluorescent properties that allow tagging of bacterial proteins following injection into host cells. Although developed many years ago, the approach of inserting unnatural amino acids into proteins produced by pathogens to monitor their location and interactions within host cells is a wonderful addition to the toolkit for visualizing virulence factors, and will stimulate many other applications.

The authors make a strong argument for problems with previously used visualization methods, including use of bulky protein-tags or immunological approaches. Overall the concept, methodology, data, and images provide compelling evidence for the localization of SifA and the interactions of SifA with SseJ, SKIP, and kinesin in vivo without the use of approaches that are prone to artifacts.

I have a few questions and comments that are probably minor, but addressing these points will make the manuscript clearer.

1. UAA is an abbreviation for a nonsense codon. As the approach used to insert unnatural amino acids is based upon suppression of another nonsense codon, UAG, it is confusing to use "UAA" as an abbreviation for "unnatural amino acids". Something like u-AA or an alternative be better.

Ok. We have modified UAA to ncAA throughout the manuscript.

2. The initial sentences for two of the paragraphs of the Results section are redundant with the Introduction. Deletion of these redundancies would improve the readability of the manuscript. Lines 102-104 "Currently.… (See Introduction)."; and lines 123-125 "Intracellular.… (14-16)."

Done.

3. Note that an important point of this manuscript expressed on line 254 is that the results are based upon "native levels of protein expression". However, the proteins are expressed from the plasmid psifA52TAG, and the copy number of the plasmids are not indicated either in the text or in the Methods. As an important point of the manuscript, the reader should not have to go back to the original references to figure out the copy number of the plasmids or how the protein is expressed from the plasmid.

We now include this information in the Methods and note that sifA is expressed behind its native promoter.

4. Isn't a caveat of the conclusion that this process is "bistable" dependent upon all of the Salmonella properly expressing SifA from the plasmid? Do you know that none of the Salmonella lost the plasmid during the subculture step described in line 322?

This section has been removed as requested by Reviewers 1 and 2.

[Editors’ note: what follows is the authors’ response to the second round of review.]

Reviewer #1:

The authors have done a good job of responding to the majority of the reviewers' comments.

1. I do not think the authors adequately responded to the request for statistical data made by previous reviewers.

According to the suggestions and comments of current and previous reviewer, we now included extensive statistical analysis (see Figure 2—figure supplement 5, Figure 3—figure supplement 4, Figure 3—figure supplement 5 and Figure 4—figure supplement 1).

2. The data in Figure S13 showing that SsaP was mostly localized to the poles during early infection times is low resolution and not particularly convincing. Please replace with a higher resolution image and include statistical data on the fraction of cells with polar localization.

We have updated Figure S13 with high resolution image along with statistical data on the fraction of cells containing polarly localized SsaP (now Figure 2D and Figure 2—figure supplement 5).

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    Figure 2—figure supplement 5—source data 1. Source data for Figure 2—figure supplement 5.
    Figure 3—figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1A.
    Figure 3—figure supplement 1—source data 2. Source data for Figure 3—figure supplement 1B.
    Figure 3—figure supplement 4—source data 1. Source data for Figure 3—figure supplement 4.
    Figure 3—figure supplement 5—source data 1. Source data for Figure 3—figure supplement 5.
    Figure 4—source data 1. Source data for Figure 4(iii-iv)..
    Figure 4—source data 2. Source data for Figure 4(iii-iv).
    Figure 4—figure supplement 1—source data 1. Source data for Figure 4—figure supplement 1.
    Supplementary file 1. Supplemental file for Figure 4: Live cell imaging of secreted SifA labelled with BDP-DBCO dye during HeLa cell infection.
    elife-67789-supp1.zip (1.1MB, zip)
    Transparent reporting form

    Data Availability Statement

    All data generated or analysed during this study are included in the manuscript and supporting files. Source data of Figure 4A-B, Figure 2-figure supplement 5, Figure 3-figure supplement 1, Figure 3-figure supplement 4, Figure 3-figure supplement 5, Figure 4-figure supplement 1 are included.


    Articles from eLife are provided here courtesy of eLife Sciences Publications, Ltd

    RESOURCES