Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2016 Oct 18;31(5):425–436. doi: 10.1007/s12250-016-3791-8

De novo transcriptome analysis of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) genes in latently infected Se301 cells

Zheng Fang 1, Jingxu Shao 1, Qingbei Weng 1,
PMCID: PMC8193413  PMID: 27770381

Abstract

Cells of the P8-Se301-C1 strain are Spodoptera exigua cell clones that each harbor a partial version of the S. exigua multiple nucleopolyhedrovirus (SeMNPV) genome and which are resistant to homologous SeMNPV infections. The cells produce no viral progeny, suggesting that the infection is a latent-like viral infection. To investigate the SeMNPV genes harbored in the P8-Se301-C1 cells, the de novo transcriptomes of P8-Se301-C1 cells and S. exigua Se301 cells were analyzed and compared. A total of 54,569,296 reads were obtained from the P8-Se301-C1 cells that yielded 112,565 final unigenes with a mean length of 1,093 nt. A total of 56,865,504 reads were obtained from the Se301 cells that yielded 102,996 final unigenes with a mean length of 1,082 nt. Ten SeMNPV gene transcripts (se5, se7, se8, se12, se43, se45, se89, se90, se124, and se126) were detected in the P8-Se301-C1 cells by RNA-Seq but not in the Se301 cells, which was verified by RTPCR. 5′/3′ RACE analyses showed that the 3′- or 5′-end sequences of the viral transcripts are aligned to the host gene sequences in P8-Se301-C1 cells, suggesting that the SeMNPV genes may integrate into and be transcribed with the host genes in the P8-Se301-C1 cells. Furthermore, six additional viral gene transcripts, se11, se42, se44, se88, se91, and se127 (incorporated into chimeric fusion transcripts in the P8-Se301-C1 cells), were detected in the RACE analyses. Taken together, sixteen SeMNPV transcripts were identified in the P8-Se301-C1 cell strain. This study provides information to develop the understanding of baculovirus latent infections and superinfection exclusion.

graphic file with name 12250_2016_3791_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material is available for this article at 10.1007/s12250-016-3791-8 and is accessible for authorized users.

Keywords: RNA-Seq, SeMNPV, baculovirus, latent infection, Spodoptera exigua

Electronic supplementary material

12250_2016_3791_MOESM1_ESM.pdf (3.1MB, pdf)

De novo transcriptome analysis of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) genes in latently infected Se301 cells

Footnotes

ORCID: 0000-0003-4244-573X

References

  1. Bonilla GR, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol. 2005;42:760–777. doi: 10.1016/j.jhep.2005.02.005. [DOI] [PubMed] [Google Scholar]
  2. Cai Y, Long Z, Qiu J, Yuan M, Li G, Yang K. An ac34 deletion mutant of Autographa californica nucleopolyhedrovirus exhibits delayed late gene expression and a lack of virulence in vivo. J Virol. 2012;86:10432–10443. doi: 10.1128/JVI.00779-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chao YC, Wood HA, Chang CY, Lee HJ, Shen WC, Lee HT. Differential expression of Hz-1 baculovirus genes during productive and persistent viral infections. J Virol. 1992;66:1442–1448. doi: 10.1128/jvi.66.3.1442-1448.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen B, Zhang YJ, He Z, Li W, Si F, Tang Y, He Q, Qiao L, Yan Z, Fu W, Che Y. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae) Parasit Vectors. 2014;7:314. doi: 10.1186/1756-3305-7-314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, Lee JH, Liu Q, Kim JS, Shin SW, Je YH. Analysis of genes expression of Spodoptera exigua larvae upon AcMNPV infection. PLoS One. 2012;7:e42462. doi: 10.1371/journal.pone.0042462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. de Jong J, Arif BM, Theilmann DA, Krell PJ. Autographa californica multiple nucleopolyhedrovirus me53 (ac140) is a nonessential gene required for efficient budded-virus production. J Virol. 2009;83:7440–7448. doi: 10.1128/JVI.02390-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. He W, You M, Vasseur L, Yang G, Xie M, Cui K, Bai J, Liu C, Li X, Xu X, Huang S. Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella. Genomics. 2012;99:169–177. doi: 10.1016/j.ygeno.2011.12.009. [DOI] [PubMed] [Google Scholar]
  8. IJkel W, van Strien EA, Heldens JG, Broer R, Zuidema D, Goldbach RW, Vlak JM. Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol. 1999;80:3289–3304. doi: 10.1099/0022-1317-80-12-3289. [DOI] [PubMed] [Google Scholar]
  9. Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol. 2015;15:89. doi: 10.1186/s12896-015-0207-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lee SS, Lehman IR. The interaction of herpes simplex type 1 virus origin-binding protein (UL9 protein) with Box I, the high affinity element of the viral origin of DNA replication. J Biol Chem. 1999;274:18613–18617. doi: 10.1074/jbc.274.26.18613. [DOI] [PubMed] [Google Scholar]
  11. Li L, Harwood SH, Rohrmann GF. Identification of additional genes that influence baculovirus late gene expression. Virology. 1999;255:9–19. doi: 10.1006/viro.1998.9546. [DOI] [PubMed] [Google Scholar]
  12. Li H, Jiang W, Zhang Z, Xing Y, Li F. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua. PLoS One. 2013;8:e65931. doi: 10.1371/journal.pone.0065931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lin G, Blissard GW. Analysis of an Autographa californica multicapsid nucleopolyhedrovirus lef-6-null virus: LEF-6 is not essential for viral replication but appears to accelerate late gene transcription. J Virol. 2002;76:5503–5514. doi: 10.1128/JVI.76.11.5503-5514.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Liu H, Wu W, Hou K, Chen J, Zhao Z. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Mol Genet Genomics. 2016;291:337–348. doi: 10.1007/s00438-015-1112-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mikhailov VS, Mikhailova AL, Iwanaga M, Gomi S, Maeda S. Bombyx mori nucleopolyhedrovirus encodes a DNAbinding protein capable of destabilizing duplex DNA. J Virol. 1998;72:3107–3116. doi: 10.1128/jvi.72.4.3107-3116.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minami M, Daimon Y, Mori K, Takashima H, Nakajima T, Itoh Y, Okanoue T. Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene. 2005;24:4340–4348. doi: 10.1038/sj.onc.1208628. [DOI] [PubMed] [Google Scholar]
  17. Murillo R, Hussey MS, Possee RD. Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture. J Gen Virol. 2011;92:1061–1070. doi: 10.1099/vir.0.028027-0. [DOI] [PubMed] [Google Scholar]
  18. Perng GC, Chokephaibulkit K, Thompson RL, Sawtell NM, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL. The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34.5 gene is not involved in spontaneous reactivation. J Virol. 1996;70:282–291. doi: 10.1128/jvi.70.1.282-291.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Qiu L, Hou L, Zhang B, Liu L, Li B, Deng P, Ma W, Wang X, Fabrick JA, Chen L, Lei C. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. J Invertebr Pathol. 2015;127:47–53. doi: 10.1016/j.jip.2015.02.009. [DOI] [PubMed] [Google Scholar]
  20. Saffert RT, Kalejta RF. Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol. 2007;81:9109–9120. doi: 10.1128/JVI.00827-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Slavokhotova AA, Shelenkov AA, Odintsova TI. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. Plant Mol Biol. 2015;89:203–214. doi: 10.1007/s11103-015-0346-6. [DOI] [PubMed] [Google Scholar]
  22. Sriram S, Gopinathan KP. The potential role of a late gene expression factor, lef2, from Bombyx mori nuclear polyhedrosis virus in very late gene transcription and DNA replication. Virology. 1998;251:108–122. doi: 10.1006/viro.1998.9404. [DOI] [PubMed] [Google Scholar]
  23. Sun L, Qiu G, Cui L, Ma C, Yuan H. Molecular characterization of a ryanodine receptor gene from Spodoptera exigua and its upregulation by chlorantraniliprole. Pestic Biochem Physiol. 2015;123:56–63. doi: 10.1016/j.pestbp.2015.03.002. [DOI] [PubMed] [Google Scholar]
  24. Tamori A, Yamanishi Y, Kawashima S, Kanehisa M, Enomoto M, Tanaka H, Kubo S, Shiomi S, Nishiguchi S. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res. 2005;11:5821–5826. doi: 10.1158/1078-0432.CCR-04-2055. [DOI] [PubMed] [Google Scholar]
  25. Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam] PLoS One. 2012;7:e36234. doi: 10.1371/journal.pone.0036234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. The UniProt Consortiums. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 2011;39:D214–219. doi: 10.1093/nar/gkq1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thompson RL, Sawtell NM. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol. 1997;71:5432–5440. doi: 10.1128/jvi.71.7.5432-5440.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Virto C, Navarro D, Tellez MM, Herrero S, Williams T, Murillo R, Caballero P. Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J Invertebr Pathol. 2014;122:22–27. doi: 10.1016/j.jip.2014.07.007. [DOI] [PubMed] [Google Scholar]
  29. Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol Biol. 2014;23:98–112. doi: 10.1111/imb.12067. [DOI] [PubMed] [Google Scholar]
  30. Wang Y, Wu W, Li Z, Yuan M, Feng G, Yu Q, Yang K, Pang Y. ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus. Virology. 2007;367:71–81. doi: 10.1016/j.virol.2007.05.017. [DOI] [PubMed] [Google Scholar]
  31. Weng Q, Yang K, Xiao W, Yuan M, Zhang W, Pang Y. Establishment of an insect cell clone that harbours a partial baculoviral genome and is resistant to homologous virus infection. J Gen Virol. 2009;90:2871–2876. doi: 10.1099/vir.0.013334-0. [DOI] [PubMed] [Google Scholar]
  32. Westenberg M, Uijtdewilligen P, Vlak JM. Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells. J Gen Virol. 2007;88:3302–3306. doi: 10.1099/vir.0.83240-0. [DOI] [PubMed] [Google Scholar]
  33. Xiao CL, Mai ZB, Lian XL, Zhong J, Jin JJ, He QY, G. Z. 2014. FANSe2: a robust and cost-efficient alignment tool for quantitative next-generation sequencing applications, p. e94250, PLoS One, vol. 9. [DOI] [PMC free article] [PubMed]
  34. Xu K, Sun F, Chai G, Wang Y, Shi L, Liu S, Xi Y. De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.) Front Plant Sci. 2015;6:749. doi: 10.3389/fpls.2015.00749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xu HJ, Yang ZN, Zhao JF, Tian CH, Ge JQ, Tang XD, Bao YY, Zhang CX. Bombyx mori nucleopolyhedrovirus ORF56 encodes an occlusion-derived virus protein and is not essential for budded virus production. J Gen Virol. 2008;89:1212–1219. doi: 10.1099/vir.0.83633-0. [DOI] [PubMed] [Google Scholar]
  36. Yang Y Smith SA. Optimizing de novo assembly of shortread RNA-seq data for phylogenomics. BioMed Central. 2013;14:328. doi: 10.1186/1471-2164-14-328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yu M, Carstens EB. Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3-P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3-P143 double knockout bacmid. J Gen Virol. 2012;93:383–388. doi: 10.1099/vir.0.036699-0. [DOI] [PubMed] [Google Scholar]
  38. Zhang G, Fedyunin I, Kirchner S, Xiao C, Valleriani A, Ignatova Z. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Res. 2012;40:e83. doi: 10.1093/nar/gks196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhao YJ, Zeng Y, Chen L, Dong Y, Wang W. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin. Insect Sci. 2014;21:687–698. doi: 10.1111/1744-7917.12068. [DOI] [PubMed] [Google Scholar]
  40. Zheng XL, Wang P, Cheng WJ, Wang XP, Lei CL. Projecting overwintering regions of the beet armyworm, Spodoptera exigua in China using the CLIMEX model. J Insect Sci. 2012;12:13. doi: 10.1673/031.012.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12250_2016_3791_MOESM1_ESM.pdf (3.1MB, pdf)

De novo transcriptome analysis of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) genes in latently infected Se301 cells


Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES