Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2016 Apr 6;31(2):168–175. doi: 10.1007/s12250-016-3734-4

Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies

Yange Niu 1,2, Ye Liu 3, Limin Yang 1, Hongren Qu 1, Jingyi Zhao 4, Rongliang Hu 3, Jing Li 1,5,, Wenjun Liu 1,2,
PMCID: PMC8193451  PMID: 27068655

Abstract

Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5–6 IU/mL in mice and 7–9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%–80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies.

graphic file with name 12250_2016_3734_Fig1_HTML.jpg

Keywords: rabies virus, multi-epitope-based vaccine, immunogenicity evaluation, Gp96

Footnotes

ORCID: 0000-0002-1590-7380

Contributor Information

Jing Li, Phone: +86-10-64807503, FAX: +86-10-64807503, Email: lj418@163.com.

Wenjun Liu, Phone: +86-10-64807497, FAX: +86-10-64807503, Email: liuwj@im.ac.cn.

References

  1. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10:787–796. doi: 10.1038/nri2868. [DOI] [PubMed] [Google Scholar]
  2. Bolhassani A, Rafati S. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines. 2008;7:1185–1199. doi: 10.1586/14760584.7.8.1185. [DOI] [PubMed] [Google Scholar]
  3. Cai K, Feng JN, Wang Q, Li T, Shi J, Hou XJ, Gao X, Liu H, Tu W, Xiao L, Wang H. Fine mapping and interaction analysis of a linear rabies virus neutralizing epitope. Microbes Infect. 2010;12:948–955. doi: 10.1016/j.micinf.2010.06.005. [DOI] [PubMed] [Google Scholar]
  4. Chen C, Li J, Bi Y, Jia X, Meng S, Sun L, Liu W. Gp96 enhances the immunogenicity of subunit vaccine of porcine reproductive and respiratory syndrome virus. Virus Res. 2012;167:162–172. doi: 10.1016/j.virusres.2012.04.011. [DOI] [PubMed] [Google Scholar]
  5. Cliquet F, Aubert M, Sagne L. Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantitation of rabies-neutralising antibody. J Immunol Methods. 1998;212:79–87. doi: 10.1016/s0022-1759(97)00212-3. [DOI] [PubMed] [Google Scholar]
  6. Commission of Chinese Veterinary Pharmacopoeia. Veterinary Pharmacopoeia of the People's Republic of China. 2010. pp. 163–168. [Google Scholar]
  7. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Degen WG, Jansen T, Schijns VE. Vaccine adjuvant technology: from mechanistic concepts to practical applications. Expert Rev Vaccines. 2003;2:327–335. doi: 10.1586/14760584.2.2.327. [DOI] [PubMed] [Google Scholar]
  9. Dey AK, Srivastava IK. Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines. 2011;10:227–251. doi: 10.1586/erv.10.142. [DOI] [PubMed] [Google Scholar]
  10. Dietzschold B, Gore M, Marchadier D, Niu HS, Bunschoten HM, Otvos L Jr, Wunner WH, Ertl HC, Osterhaus AD, Koprowski H. Structural and immunological characterization of a linear virus-neutralizing epitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine. J Virol. 1990;64:3804–3809. doi: 10.1128/jvi.64.8.3804-3809.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dietzschold B, Li J, Faber M, Schnell M. Concepts in the pathogenesis of rabies. Future Virol. 2008;3:481–490. doi: 10.2217/17460794.3.5.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol. 2007;5:505–517. doi: 10.1038/nrmicro1681. [DOI] [PubMed] [Google Scholar]
  13. Houimel M, Dellagi K. Peptide mimotopes of rabies virus glycoprotein with immunogenic activity. Vaccine. 2009;27:4648–4655. doi: 10.1016/j.vaccine.2009.05.055. [DOI] [PubMed] [Google Scholar]
  14. Kaur M, Garg R, Singh S, Bhatnagar R. Rabies vaccines: where do we stand, where are we heading? Expert Rev Vaccines. 2015;14:369–381. doi: 10.1586/14760584.2015.973403. [DOI] [PubMed] [Google Scholar]
  15. Koraka P, Bosch BJ, Cox M, Chubet R, Amerongen G, Lovgren-Bengtsson K, Martina BE, Roose J, Rottier PJ, Osterhaus AD. A recombinant rabies vaccine expressing the trimeric form of the glycoprotein confers enhanced immunogenicity and protection in outbred mice. Vaccine. 2014;32:4644–4650. doi: 10.1016/j.vaccine.2014.06.058. [DOI] [PubMed] [Google Scholar]
  16. Kundi M. New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev Vaccines. 2007;6:133–140. doi: 10.1586/14760584.6.2.133. [DOI] [PubMed] [Google Scholar]
  17. Li H, Nookala S, Re F. Aluminum Hydroxide Adjuvants Activate Caspase-1 and Induce IL-1 and IL-18 Release. J Immunol. 2007;178:5271–5276. doi: 10.4049/jimmunol.178.8.5271. [DOI] [PubMed] [Google Scholar]
  18. Li Y, Song H, Li J, Wang Y, Yan X, Zhao B, Zhang X, Wang S, Chen L, Qiu B, Meng S. Hansenula polymorpha expressed heat shock protein gp96 exerts potent T cell activation activity as an adjuvant. J Biotechnol. 2011;151:343–349. doi: 10.1016/j.jbiotec.2010.12.006. [DOI] [PubMed] [Google Scholar]
  19. Liu X, Yang Y, Sun Z, Chen J, Ai J, Dun C, Fu ZF, Niu X, Guo X. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge. PLoS One. 2014;9:e87105. doi: 10.1371/journal.pone.0087105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mansfield KL, Johnson N, Fooks AR. Identification of a conserved linear epitope at the N terminus of the rabies virus glycoprotein. J Gen Virol. 2004;85:3279–3283. doi: 10.1099/vir.0.80362-0. [DOI] [PubMed] [Google Scholar]
  21. Marissen WE, Kramer RA, Rice A, Weldon WC, Niezgoda M, Faber M, Slootstra JW, Meloen R C-v d, Horst M, Visser TJ, Jongeneelen M, Thijsse S, Throsby M, de Kruif J, Rupprecht CE, Dietzschold B, Goudsmit J, Bakker AB. Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: fine mapping and escape mutant analysis. J Virol. 2005;79:4672–4678. doi: 10.1128/JVI.79.8.4672-4678.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McCluskie MJ, Weeratna RD. Novel adjuvant systems. Curr Drug Targets Infect Disord. 2001;1:263–271. doi: 10.2174/1568005014605991. [DOI] [PubMed] [Google Scholar]
  23. Meloen RH, Langeveld JP, Schaaper WM, Slootstra JW. Synthetic peptide vaccines: unexpected fulfillment of discarded hope? Biologicals. 2001;29:233–236. doi: 10.1006/biol.2001.0298. [DOI] [PubMed] [Google Scholar]
  24. Ni Y, Tominaga Y, Honda Y, Morimoto K, Sakamoto S, Kawai A. Mapping and characterization of a sequential epitope on the rabies virus glycoprotein which is recognized by a neutralizing monoclonal antibody, RG719. Microbiol Immunol. 1995;39:693–702. doi: 10.1111/j.1348-0421.1995.tb03258.x. [DOI] [PubMed] [Google Scholar]
  25. Niederhauser S, Bruegger D, Zahno ML, Vogt HR, Peterhans E, Zanoni R, Bertoni G. A synthetic peptide encompassing the G5 antigenic region of the rabies virus induces high avidity but poorly neutralizing antibody in immunized animals. Vaccine. 2008;26:6749–6753. doi: 10.1016/j.vaccine.2008.10.020. [DOI] [PubMed] [Google Scholar]
  26. Pulmanausahakul R, Li J, Schnell MJ, Dietzschold B. The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-tocell spread. J Virol. 2008;82:2330–2338. doi: 10.1128/JVI.02327-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rupprecht CE, Gibbons RV. Clinical practice. Prophylaxis against rabies. N Engl J Med. 2004;351:2626–2635. doi: 10.1056/NEJMcp042140. [DOI] [PubMed] [Google Scholar]
  28. Takayama-Ito M, Inoue K, Shoji Y, Inoue S, Iijima T, Sakai T, Kurane I, Morimoto K. A highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoprotein. Virus Res. 2006;119:208–215. doi: 10.1016/j.virusres.2006.01.014. [DOI] [PubMed] [Google Scholar]
  29. Tao X, Han N, Guo Z, Tang Q, Rayner S, Liang G. Molecular characterization of China human rabies vaccine strains. Virol Sin. 2013;28:116–123. doi: 10.1007/s12250-013-3314-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Villarreal-Ramos B. Towards improved understanding of protective mechanisms induced by the BCG vaccine. Expert Rev Vaccines. 2009;8:1531–1534. doi: 10.1586/erv.09.109. [DOI] [PubMed] [Google Scholar]
  31. Wang S, Qiu L, Liu G, Li Y, Zhang X, Jin W, Gao GF, Kong X, Meng S. Heat shock protein gp96 enhances humoral and T cell responses, decreases Treg frequency and potentiates the anti-HBV activity in BALB/c and transgenic mice. Vaccine. 2011;29:6342–6351. doi: 10.1016/j.vaccine.2011.05.008. [DOI] [PubMed] [Google Scholar]
  32. World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2013. [Google Scholar]
  33. Xiao XX, Zhang Y, Liu JX, Wei QL, Yin XP. Immunoenhancement with flagellin as an adjuvant to whole-killed rabies vaccine in mice. Arch Virol. 2015;161:685–691. doi: 10.1007/s00705-015-2704-8. [DOI] [PubMed] [Google Scholar]
  34. Xue XH, Zheng XX, Wang HL, Ma JZ, Li L, Gai WW, Wang TC, Yang ST, Xia XZ. An inactivated recombinant rabies CVS-11 virus expressing two copies of the glycoprotein elicits a higher level of neutralizing antibodies and provides better protection in mice. Virus Genes. 2014;48:411–420. doi: 10.1007/s11262-014-1049-9. [DOI] [PubMed] [Google Scholar]
  35. Yang L, Cen J, Xue Q, Li J, Bi Y, Sun L, Liu W. Identification of rabies virus mimotopes screened from a phage display peptide library with purified dog anti-rabies virus serum IgG. Virus Res. 2013;174:47–51. doi: 10.1016/j.virusres.2013.02.013. [DOI] [PubMed] [Google Scholar]
  36. Yuan Z, Zhang S, Liu Y, Zhang F, Fooks AR, Li Q, Hu R. A recombinant pseudorabies virus expressing rabies virus glycoprotein: safety and immunogenicity in dogs. Vaccine. 2008;26:1314–1321. doi: 10.1016/j.vaccine.2007.12.050. [DOI] [PubMed] [Google Scholar]
  37. Zhang Y, Zhang S, Li W, Hu Y, Zhao J, Liu F, Lin H, Liu Y, Wang L, Xu S, Hu R, Shao H, Li L. A novel rabies vaccine based-on toll-like receptor 3 (TLR3) agonist PIKA adjuvant exhibiting excellent safety and efficacy in animal studies. Virology. 2016;489:165–172. doi: 10.1016/j.virol.2015.10.029. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES