Abstract
Phytoplankton viruses are important components of aquatic ecosystems. However, their prevalence and genetic diversity in marine and freshwater systems are largely under estimated owing to the immense size of water bodies and limitations in virus discovery techniques. In this study, we conducted a 1-year survey of phytoplankton virus communities by collecting surface water monthly from an inland lake (East Lake) in China between May 2012 and April 2013. We examined four phytoplankton viruses, i.e., myoviruses, podoviruses, siphoviruses, and phycodnaviruses, and seven sets of primers were used to target conserved genes within these four species. In this year-long investigation, a total of 358 different virus-related sequences from four virus families were obtained. All virus families were detected in all months, except for cyanopodoviruses, which were only identified during eight of the 12 months surveyed. Moreover, virus abundance and diversity changed dynamically over time. Phylogenetic analysis revealed that the majority of viral sequences from East Lake, China displayed distinct clustering patterns compared with published sequences. These results supported the existence of a highly diverse and unique phytoplankton virus community in East Lake, China.
Keywords: cyanophage, phycodnavirus, genetic diversity, dynamics, East Lake
Footnotes
ORCID: 0000-0001-8089-163X
References
- Baudoux AC, Noordeloos AAM, Veldhuis MJW, Brussaard CPD. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Microb Ecol. 2006;44:207–217. doi: 10.3354/ame044207. [DOI] [Google Scholar]
- Bergh O, Borsheim KY, Bratbak G, Heldal M. High Abundance of Viruses Found in Aquatic Environments. Nature. 1989;340:467–468. doi: 10.1038/340467a0. [DOI] [PubMed] [Google Scholar]
- Chen F, Suttle CA. Amplification of DNA-Polymerase Gene Fragments from Viruses Infecting Microalgae. Appl Environ Microbiol. 1995;61:1274–1278. doi: 10.1128/aem.61.4.1274-1278.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen F, Wang K, Huang SJ, Cai HY, Zhao MR, Jiao NZ, Wommack KE. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ Microbiol. 2009;11:2884–2892. doi: 10.1111/j.1462-2920.2009.02033.x. [DOI] [PubMed] [Google Scholar]
- Clasen JL, Brigden SM, Payet JP, Suttle CA. Evidence that viral abundance across oceans and lakes is driven by different biological factors. Freshw Biol. 2008;53:1090–1100. doi: 10.1111/j.1365-2427.2008.01992.x. [DOI] [Google Scholar]
- Clasen JL, Hanson CA, Ibrahim Y, Weihe C, Marston MF, Martiny JBH. Diversity and temporal dynamics of Southern California coastal marine cyanophage isolates. Aquat Microb Ecol. 2013;69:17–31. doi: 10.3354/ame01613. [DOI] [Google Scholar]
- Dunigan DD, Fitzgerald LA, Van Etten JL. Phycodnaviruses: A peek at genetic diversity. Virus Res. 2006;117:119–132. doi: 10.1016/j.virusres.2006.01.024. [DOI] [PubMed] [Google Scholar]
- Farnell-Jackson EA, Ward AK. Seasonal patterns of viruses, bacteria and dissolved organic carbon in a riverine wetland. Freshw Biol. 2003;48:841–851. doi: 10.1046/j.1365-2427.2003.01052.x. [DOI] [Google Scholar]
- Fitzgerald LA, Graves MV, Li X, Feldblyum T, Hartigan J, Van Etten JL. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology. 2007;358:459–471. doi: 10.1016/j.virol.2006.08.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzgerald LA, Wu PK, Gurnon JR, Biffinger JC, Ringeisen BR, Van Etten JL. Isolation of the phycodnavirus PBCV-1 by biological laser printing. J Virol Methods. 2010;167:223–225. doi: 10.1016/j.jviromet.2010.04.005. [DOI] [PubMed] [Google Scholar]
- Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–548. doi: 10.1038/21119. [DOI] [PubMed] [Google Scholar]
- Gao EB, Gui JF, Zhang QY. A Novel Cyanophage with a Cyanobacterial Nonbleaching Protein A Gene in the Genome. J Virol. 2012;86:236–245. doi: 10.1128/JVI.06282-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ge X, Wu Y, Wang M, Wang J, Wu L, Yang X, Zhang Y, Shi Z. Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China. Virol Sin. 2013;28:280–290. doi: 10.1007/s12250-013-3365-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gimenes MV, Zanotto PMD, Suttle CA, da Cunha HB, Mehnert DU. Phylodynamics and movement of Phycodnaviruses among aquatic environments. ISME J. 2012;6:237–247. doi: 10.1038/ismej.2011.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–558. doi: 10.1111/j.1462-2920.2011.02667.x. [DOI] [PubMed] [Google Scholar]
- Huang SJ, Wilhelm SW, Jiao NAZ, Chen F. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences. ISME J. 2010;4:1243–1251. doi: 10.1038/ismej.2010.56. [DOI] [PubMed] [Google Scholar]
- Jiang S, Steward G, Jellison R, Chu W, Choi S. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol. 2004;47:9–17. doi: 10.1007/s00248-003-1023-x. [DOI] [PubMed] [Google Scholar]
- Kumar S, Nei M, Dudley J, Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008;9:299–306. doi: 10.1093/bib/bbn017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labonte JM, Reid KE, Suttle CA. Phylogenetic Analysis Indicates Evolutionary Diversity and Environmental Segregation of Marine Podovirus DNA Polymerase Gene Sequences. Appl Environ Microbiol. 2009;75:3634–3640. doi: 10.1128/AEM.02317-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Larsen JB, Larsen A, Bratbak G, Sandaa RA. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol. 2008;74:3048–3057. doi: 10.1128/AEM.02548-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu YM, Yuan XP, Zhang QY. Spatial distribution and morphologic diversity of virioplankton in Lake Donghu, China. Acta Oecol. 2006;29:328–334. doi: 10.1016/j.actao.2005.12.002. [DOI] [Google Scholar]
- Mann NH. Phages of the marine cyanobacterial picophytoplankton. Fems Microbiol Rev. 2003;27:17–34. doi: 10.1016/S0168-6445(03)00016-0. [DOI] [PubMed] [Google Scholar]
- Nagasaki K, Tomaru Y, Nakanishi K, Hata N, Katanozaka N, Yamaguchi M. Dynamics of Heterocapsa circularisquama (Dinophyceae) and its viruses in Ago Bay, Japan. Aquat Microb Ecol. 2004;34:219–226. doi: 10.3354/ame034219. [DOI] [Google Scholar]
- Parvathi A, Zhong X, Jacquet S. Dynamics of various viral groups infecting autotrophic plankton in Lake Geneva. Adv Oceanogr Limnol. 2012;3:171–191. doi: 10.1080/19475721.2012.738157. [DOI] [Google Scholar]
- Proctor LM, Fuhrman JA. Viral Mortality of Marine-Bacteria and Cyanobacteria. Nature. 1990;343:60–62. doi: 10.1038/343060a0. [DOI] [Google Scholar]
- Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci U S A. 2012;109:2037–2042. doi: 10.1073/pnas.1115467109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt HF, Sakowski EG, Williamson SJ, Polson SW, Wommack KE. Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton. ISME J. 2014;8:103–114. doi: 10.1038/ismej.2013.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Short SM, Short CM. Diversity of algal viruses in various North American freshwater environments. Aquat Microb Ecol. 2008;51:13–21. doi: 10.3354/ame01183. [DOI] [Google Scholar]
- Sullivan MB, Coleman ML, Quinlivan V, Rosenkrantz JE, Defrancesco AS, Tan G, Fu R, Lee JA, Waterbury JB, Bielawski JP, Chisholm SW. Portal protein diversity and phage ecology. Environ Microbiol. 2008;10:2810–2823. doi: 10.1111/j.1462-2920.2008.01702.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. Plos Biology. 2005;3:790–806. doi: 10.1371/journal.pbio.0030144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele P D, Francesco AS, Kern SE, Thompson LR, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne MS, Henn MR, Chisholm SW. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–3056. doi: 10.1111/j.1462-2920.2010.02280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan MB, Krastins B, Hughes JL, Kelly L, Chase M, Sarracino D, Chisholm SW. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'. Environ Microbiol. 2009;11:2935–2951. doi: 10.1111/j.1462-2920.2009.02081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suttle CA. The Significance of Viruses to Mortality in Aquatic Microbial Communities. Microb Ecol. 1994;28:237–243. doi: 10.1007/BF00166813. [DOI] [PubMed] [Google Scholar]
- Suttle CA. 2000. In: Ecological, evolutionary, and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae. Hurst CJ(ed), San Diego: Academic Press, pp. 247–296.
- Suttle CA. Viruses in the sea. Nature. 2005;437:356–361. doi: 10.1038/nature04160. [DOI] [PubMed] [Google Scholar]
- Suttle CA. Marine viruses - major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–812. doi: 10.1038/nrmicro1750. [DOI] [PubMed] [Google Scholar]
- Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–1328. doi: 10.4319/lo.2000.45.6.1320. [DOI] [Google Scholar]
- Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–483. doi: 10.1038/nprot.2009.10. [DOI] [PubMed] [Google Scholar]
- Vrede K, Stensdotter U, Lindstrom ES. Viral and bacterioplankton dynamics in two lakes with different humic contents. Microb Ecol. 2003;46:406–415. doi: 10.1007/s00248-003-2009-4. [DOI] [PubMed] [Google Scholar]
- Wang GH, Murase J, Asakawa S, Kimura M. Unique viral capsid assembly protein gene (g20) of cyanophages in the floodwater of a Japanese paddy field. Biol Fert Soils. 2010;46:93–102. doi: 10.1007/s00374-009-0410-y. [DOI] [Google Scholar]
- Weinbauer MG, Christaki U, Nedoma A, Simek K. Comparing the effects of resource enrichment and grazing on viral production in a meso-eutrophic reservoir. Aquat Microb Ecol. 2003;31:137–144. doi: 10.3354/ame031137. [DOI] [Google Scholar]
- Wilhelm SW, Smith REH. Bacterial carbon production in Lake Erie is influenced by viruses and solar radiation. Can J Fish Aquat Sci. 2000;57:317–326. doi: 10.1139/f99-202. [DOI] [Google Scholar]
- Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade- Offs between Competition and Defense Specialists among Unicellular Planktonic Organisms: the "Killing the Winner" Hypothesis Revisited. Microbiol Mol Biol Rev. 2010;74:42–57. doi: 10.1128/MMBR.00034-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wommack KE, Colwell RR. Virioplankton: Viruses in aquatic ecosystems. Microbiology and Molecular Biology Rev. 2000;64:69–144. doi: 10.1128/MMBR.64.1.69-114.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia H, Wang M, Ge X, Wu Y, Yang X, Zhang Y, Li T, Shi Z. Study of the dynamics of Microcystis aeruginosa and its cyanophage in East Lake using quantitative PCR. Virol Sin. 2013;28:309–311. doi: 10.1007/s12250-013-3368-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida T, Nagasaki K, Takashima Y, Shirai Y, Tomaru Y, Takao Y, Sakamoto S, Hiroishi S, Ogata H. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol. 2008;190:1762–1772. doi: 10.1128/JB.01534-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang YZ, Adams B, Sun LW, Burbank DE, Van Etten JL. Intron conservation in the DNA polymerase gene encoded by Chlorella viruses. Virology. 2001;285:313–321. doi: 10.1006/viro.2001.0935. [DOI] [PubMed] [Google Scholar]
- Zheng CY, Wang GH, Liu JJ, Song CC, Gao HX, Liu XB. Characterization of the Major Capsid Genes (g23) of T4-Type Bacteriophages in the Wetlands of Northeast China. Microb Ecol. 2013;65:616–625. doi: 10.1007/s00248-012-0158-z. [DOI] [PubMed] [Google Scholar]
- Zhong X, Berdjeb L, Jacquet S. Temporal dynamics and structure of picocyanobacteria and cyanomyoviruses in two large and deep peri-alpine lakes. Fems Microbiol Ecol. 2013;86:312–326. doi: 10.1111/1574-6941.12166. [DOI] [PubMed] [Google Scholar]
- Zhong X, Jacquet S. Prevalence of Viral Photosynthetic and Capsid Protein Genes from Cyanophages in Two Large and Deep Perialpine Lakes. Appl Environ Microbiol. 2013;79:7169–7178. doi: 10.1128/AEM.01914-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong X, Jacquet S. Contrasting diversity of phycodnavirus signature genes in two large and deep western European lakes. Environ Microbiol. 2014;16:759–773. doi: 10.1111/1462-2920.12201. [DOI] [PubMed] [Google Scholar]
- Zhou Y, Lin J, Li N, Hu Z, Deng F. Characterization and genomic analysis of a plaque purified strain of cyanophage PP. Virol Sin. 2013;28:272–279. doi: 10.1007/s12250-013-3363-0. [DOI] [PMC free article] [PubMed] [Google Scholar]