Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2021 May;25(33):1–276. doi: 10.3310/hta25330

High-sensitivity troponin assays for early rule-out of acute myocardial infarction in people with acute chest pain: a systematic review and economic evaluation.

Marie Westwood, Bram Ramaekers, Sabine Grimm, Gill Worthy, Debra Fayter, Nigel Armstrong, Titas Buksnys, Janine Ross, Manuela Joore, Jos Kleijnen
PMCID: PMC8200931  PMID: 34061019

Abstract

BACKGROUND

Early diagnosis of acute myocardial infarction is important, but only 20% of emergency admissions for chest pain will actually have an acute myocardial infarction. High-sensitivity cardiac troponin assays may allow rapid rule out of myocardial infarction and avoid unnecessary hospital admissions.

OBJECTIVES

To assess the clinical effectiveness and cost-effectiveness of high-sensitivity cardiac troponin assays for the management of adults presenting with acute chest pain, in particular for the early rule-out of acute myocardial infarction.

METHODS

Sixteen databases were searched up to September 2019. Review methods followed published guidelines. Studies were assessed for quality using appropriate risk-of-bias tools. The bivariate model was used to estimate summary sensitivity and specificity for meta-analyses involving four or more studies; otherwise, random-effects logistic regression was used. The health economic analysis considered the long-term costs and quality-adjusted life-years associated with different troponin testing methods. The de novo model consisted of a decision tree and a state-transition cohort model. A lifetime time horizon (of 60 years) was used.

RESULTS

Thirty-seven studies (123 publications) were included in the review. The high-sensitivity cardiac troponin test strategies evaluated are defined by the combination of four factors (i.e. assay, number and timing of tests, and threshold concentration), resulting in a large number of possible combinations. Clinical opinion indicated a minimum clinically acceptable sensitivity of 97%. When considering single test strategies, only those using a threshold at or near to the limit of detection for the assay, in a sample taken at presentation, met the minimum clinically acceptable sensitivity criterion. The majority of the multiple test strategies that met this criterion comprised an initial rule-out step, based on high-sensitivity cardiac troponin levels in a sample taken on presentation and a minimum symptom duration, and a second stage for patients not meeting the initial rule-out criteria, based on presentation levels of high-sensitivity cardiac troponin and absolute change after 1, 2 or 3 hours. Two large cluster randomised controlled trials found that implementation of an early rule-out pathway for myocardial infarction reduced length of stay and rate of hospital admission without increasing cardiac events. In the base-case analysis, standard troponin testing was both the most effective and the most costly. Other testing strategies with a sensitivity of 100% (subject to uncertainty) were almost equally effective, resulting in the same life-year and quality-adjusted life-year gain at up to four decimal places. Comparisons based on the next best alternative showed that for willingness-to-pay values below £8455 per quality-adjusted life-year, the Access High Sensitivity Troponin I (Beckman Coulter, Brea, CA, USA) [(symptoms > 3 hours AND < 4 ng/l at 0 hours) OR (< 5 ng/l AND Δ < 5 ng/l at 0 to 2 hours)] would be cost-effective. For thresholds between £8455 and £20,190 per quality-adjusted life-year, the Elecsys® Troponin-T high sensitive (Roche, Basel, Switzerland) (< 12 ng/l at 0 hours AND Δ < 3 ng/l at 0 to 1 hours) would be cost-effective. For a threshold > £20,190 per quality-adjusted life-year, the Dimension Vista® High-Sensitivity Troponin I (Siemens Healthcare, Erlangen, Germany) (< 5 ng/l at 0 hours AND Δ < 2 ng/l at 0 to 1 hours) would be cost-effective.

CONCLUSIONS

High-sensitivity cardiac troponin testing may be cost-effective compared with standard troponin testing.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42019154716.

FUNDING

This project was funded by the National Institute for Health Research (NIHR) Evidence Synthesis programme and will be published in full in Health Technology Assessment; Vol. 25, No. 33. See the NIHR Journals Library website for further project information.

Plain language summary

Heart disease is a leading cause of death in the UK, with myocardial infarction (heart attack) accounting for approximately 4% of all deaths recorded in 2018. Many people attend hospital with chest pain and suspected myocardial infarction, and chest pain has been reported as the most common cause of hospital admissions in the UK, accounting for approximately 5% of all emergency admissions in 2017–18. It is important to diagnose people who are suspected of having a myocardial infarction as early as possible to ensure quick and effective treatment. However, only around 20% of emergency admissions for chest pain will actually have an myocardial infarction and there are many other possible causes of chest pain (e.g. gastro-oesophageal disorders, muscle pain, anxiety or stable ischaemic heart disease). Current practice for ruling out myocardial infarction includes blood tests taken when the patient is first seen in the emergency department and repeated after 3–6 hours or 10–12 hours, depending on the test used. Tests that can quickly tell which patients do not have myocardial infarction could therefore avoid unnecessary hospital admissions and anxiety for many people. We aimed to assess the clinical effectiveness and cost-effectiveness of high-sensitivity troponin tests, used as single tests or repeated over a short time, for the early rule out of myocardial infarction in people who present to hospital with chest pain. We found that high-sensitivity troponin tests can safely rule out myocardial infarction within the 4-hour NHS emergency department target. Health economic analyses indicated that high-sensitivity tests may be considered value for money compared with standard troponin tests, which require repeat testing at 10–12 hours.


Full text of this article can be found in Bookshelf.

References

  1. Chalkidou A, Erskine J, Radhakrishnan Kartha M, Langford T, Macmillan T, Keevil S. Review Report of DG15: Myocardial Infarction (Acute): Early Rule Out Using High-Sensitivity Troponin Tests (Elecsys Troponin T high-sensitive, ARCHITECT STAT High Sensitive Troponin-I and AccuTnI+3 Assays). London: King’s Technology Evaluation Centre, King’s College London; 2017.
  2. Westwood M, van Asselt T, Ramaekers B, Whiting P, Thokala P, Joore M, et al. High-sensitivity troponin assays for the early rule-out or diagnosis of acute myocardial infarction in people with acute chest pain: a systematic review and cost-effectiveness analysis. Health Technol Assess 2015;19(44). https://doi.org/10.3310/hta19440 doi: 10.3310/hta19440. [DOI] [PMC free article] [PubMed]
  3. Office for National Statistics. Deaths Registered in England and Wales: 2018. URL: www.ons.gov.uk/ons/publications/re-reference-tables.html?edition=tcm%3A77-276695 (accessed 22 August 2019).
  4. Goodacre S, Cross E, Arnold J, Angelini K, Capewell S, Nicholl J. The health care burden of acute chest pain. Heart 2005;91:229–30. https://doi.org/10.1136/hrt.2003.027599 doi: 10.1136/hrt.2003.027599. [DOI] [PMC free article] [PubMed]
  5. NHS Digital. Hospital Admitted Patient Care Activity, 2017–18. URL: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2017-18 (accessed 14 August 2019).
  6. Collinson PO, Rao AC, Canepa-Anson R, Joseph S. Impact of European Society of Cardiology/American College of Cardiology guidelines on diagnostic classification of patients with suspected acute coronary syndromes. Ann Clin Biochem 2003;40:156–60. https://doi.org/10.1258/000456303763046085 doi: 10.1258/000456303763046085. [DOI] [PubMed]
  7. Health and Social Care Information Centre. Hospital Episode Statistics, Admitted Patient Care – England 2011–12. URL: www.hscic.gov.uk/catalogue/PUB08288 (accessed 20 February 2020).
  8. NHS Digital. Hospital Accident and Emergency Activity, 2017–18. URL: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-accident--emergency-activity/2017-18 (accessed 14 August 2019).
  9. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J Am Coll Cardiol 2007;50:2173–95. https://doi.org/10.1016/j.jacc.2007.09.011 doi: 10.1016/j.jacc.2007.09.011. [DOI] [PubMed]
  10. Ebell MH, Flewelling D, Flynn CA. A systematic review of troponin T and I for diagnosing acute myocardial infarction. J Fam Pract 2000;49:550–6. [PubMed]
  11. National Institute for Health and Care Excellence. Chest Pain of Recent Onset: Assessment and Diagnosis of Recent Onset Chest Pain or Discomfort of Suspected Cardiac Origin. NICE CG95. URL: www.nice.org.uk/guidance/cg95 (accessed 29 January 2020).
  12. Scottish Intercollegiate Guidelines Network. SIGN 93. Acute Coronary Syndromes. A National Clinical Guideline. Edinburgh: SIGN; 2013.
  13. National Institute for Health and Care Excellence. Myocardial Infarction (Acute): Early Rule Out Using High-Sensitivity Troponin Tests (Elecsys Troponin T high-sensitive, ARCHITECT STAT High Sensitive Troponin-I and AccuTnI+3 Assays). Diagnostics Guidance [DG15]. URL: www.nice.org.uk/guidance/dg15 (accessed 29 January 2020).
  14. National Institute for Health and Care Excellence. Chest Pain of Recent Onset: Assessment and Diagnosis Of Recent Onset Chest Pain or Discomfort of Suspected Cardiac Origin. NICE Clinical Guideline 95. URL: www.nice.org.uk/nicemedia/live/12947/47938/47938.pdf (accessed 20 February 2020).
  15. Scottish Intercollegiate Guidelines Network. SIGN 148. Acute Coronary Syndromes. A National Clinical Guideline. Edinburgh: SIGN; 2016.
  16. Apple FS. A new season for cardiac troponin assays: it’s time to keep a scorecard. Clin Chem 2009;55:1303–6. https://doi.org/10.1373/clinchem.2009.128363 doi: 10.1373/clinchem.2009.128363. [DOI] [PubMed]
  17. Apple FS, Collinson PO, IFCC Task Force on Clinical Applications of Cardiac Biomarkers. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin Chem 2012;58:54–61. https://doi.org/10.1373/clinchem.2011.165795 doi: 10.1373/clinchem.2011.165795. [DOI] [PubMed]
  18. Abbott Laboratories. ARCHITECT: STAT High Sensitive Troponin-I. Package Insert. Abbott Park, IL: Abbott Laboratories; 2018.
  19. Abbott Laboratories. Alinity i: STAT High Sensitive Troponin-I Reagent Kit. Package Insert. Abbott Park, IL: Abbott Laboratories; 2018.
  20. Beckman Coulter Inc. ACCESS: hsTnI High Sensitivity Tropnin I. Instructions for Use. Brea, CA: Beckman Coulter; 2018.
  21. National Institute for Health and Care Excellence. High-Sensitivity Troponin for the Early Rule Out of Acute Myocardial Infarction. Final Scope – Guidance Update. URL: www.nice.org.uk/guidance/gid-dg10035/documents/final-scope-2 (accessed 21 January 20).
  22. Ortho Clinical Diagnostics. VITROS: Immunodiagnostic Products hs Troponin I Reagent Pack. Instructions for Use. Marlow: Ortho Clinical Diagnostics; 2019.
  23. Quidel. TriageTrue: High Sensitivity Troponin I Test. Package Insert. San Diego, CA: Quidel; 2019.
  24. Roche. Elecsys Troponin T hs: 18 Mins. Package Insert. Basel: Roche; 2019.
  25. Roche. Elecsys Troponin T hs: e801. Package Insert. Basel: Roche; 2019.
  26. Roche. Elecsys Troponin T hs STAT. Package Insert. Basel: Roche; 2019.
  27. Siemens. ADVIA Centaur: High-Sensitivity Tropinin I (TNIH). Package Insert. Erlangen: Siemens; 2018.
  28. Siemens Healthcare. Atellica IM: High-Sensitivity Tropinin I (TnIH). Package Insert. Erlangen: Siemens Healthcare; 2018.
  29. Siemens. Dimension EXL: High Sensitivity Tropinin I. Package Insert. Erlangen: Siemens; 2018.
  30. Siemens. Dimension Vista: High Sensitivity Tropinin I. Package Insert. Erlangen: Siemens; 2018.
  31. Apple FS, Ler R, Murakami MM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin Chem 2012;58:1574–81. https://doi.org/10.1373/clinchem.2012.192716 doi: 10.1373/clinchem.2012.192716. [DOI] [PubMed]
  32. National Institute for Health and Care Excellence. Myocardial Infarction with ST-Segment Elevation: The Acute Management of Myocardial Infarction with ST-Segment Elevation. NICE CG167. URL: www.nice.org.uk/guidance/cg167 (accessed 20 February 2020).
  33. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J 2016;37:267–315. https://doi.org/10.1093/eurheartj/ehv320 doi: 10.1093/eurheartj/ehv320. [DOI] [PubMed]
  34. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC guideline for the management of patients with non-st-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 2014;64:e139–e228. https://doi.org/10.1161/CIR.0000000000000134 doi: 10.1161/CIR.0000000000000134. [DOI] [PubMed]
  35. Tan JWC, Lam CSP, Kasim SS, Aw TC, Abanilla JM, Chang WT, et al. Asia-Pacific consensus statement on the optimal use of high-sensitivity troponin assays in acute coronary syndromes diagnosis: focus on hs-TnI. 2017;9:81–7. https://doi.org/10.1136/heartasia-2016-010818 doi: 10.1136/heartasia-2016-010818. [DOI] [PMC free article] [PubMed]
  36. National Institute for Health and Care Excellence. Unstable Angina and NSTEMI: Early Management. NICE CG94. URL: http://guidance.nice.org.uk/CG94/NICEGuidance/pdf/English (accessed 29 January 2020). [PubMed]
  37. National Institute for Health and Care Excellence. Myocardial Infarction: Cardiac Rehabilitation and Prevention of Further Cardiovascular Disease. NICE CG172. URL: www.nice.org.uk/guidance/cg172 (accessed 29 January 2020). [PubMed]
  38. National Institute for Health and Care Excellence. MI – Secondary Prevention: Secondary Prevention in Primary and Secondary Care for Patients Following a Myocardial Infarction. NICE CG48. URL: www.nice.org.uk/guidance/CG48/NICEGuidance (accessed 20 February 2020).
  39. Centre for Reviews and Dissemination. Systematic Reviews: CRD’s Guidance for Undertaking Reviews in Health Care. URL: www.york.ac.uk/inst/crd/SysRev/!SSL!/WebHelp/SysRev3.htm (accessed 29 January 2020).
  40. National Institute for Health and Care Excellence. Diagnostics Assessment Programme Manual. URL: www.nice.org.uk/media/A0B/97/DAPManualFINAL.pdf (accessed 28 August 2013). [PubMed]
  41. Cochrane Methods Screening and Diagnostic Tests. Handbook for DTA Reviews. URL: https://methods.cochrane.org/sdt/handbook-dta-reviews (accessed 14 August 2019).
  42. Canadian Agency for Drugs and Technologies in Health. CADTH Peer Review Checklist for Search Strategies. URL: www.cadth.ca/en/resources/finding-evidence-is (accessed 17 July 2013).
  43. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Eur Heart J 2012;33:2551–67. https://doi.org/10.1093/eurheartj/ehs184 doi: 10.1093/eurheartj/ehs184. [DOI] [PubMed]
  44. Eldridge S, Campbell M, Campbell M, Dahota A, Giraudeau B, Higgins J, et al. Revised Cochrane Risk of Bias Tool for Randomized Trials (RoB 2.0): Additional Considerations for Cluster-Randomized Trials. URL: www.riskofbias.info/welcome/rob-2-0-tool/archive-rob-2-0-cluster-randomized-trials-2016 (accessed 29 January 2020).
  45. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529–36. https://doi.org/10.7326/0003-4819-155-8-201110180-00009 doi: 10.7326/0003-4819-155-8-201110180-00009. [DOI] [PubMed]
  46. QUADAS-2C Group. Development of QUADAS-2C, A Quality Assessment Tool for Comparative Diagnostic Accuracy Studies: A Delphi Study Protocol. URL: https://osf.io/tmze9 (accessed 9 January 2020).
  47. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005;58:982–90. https://doi.org/10.1016/j.jclinepi.2005.02.022 doi: 10.1016/j.jclinepi.2005.02.022. [DOI] [PubMed]
  48. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 2007;8:239–51. https://doi.org/10.1093/biostatistics/kxl004 doi: 10.1093/biostatistics/kxl004. [DOI] [PubMed]
  49. Harbord RM, Whiting P, Sterne JA, Egger M, Deeks JJ, Shang A, Bachmann LM. An empirical comparison of methods for meta-analysis of diagnostic accuracy showed hierarchical models are necessary. J Clin Epidemiol 2008;61:1095–103. https://doi.org/10.1016/j.jclinepi.2007.09.013 doi: 10.1016/j.jclinepi.2007.09.013. [DOI] [PubMed]
  50. Riley RD, Abrams KR, Sutton AJ, Lambert PC, Thompson JR. Bivariate random-effects meta-analysis and the estimation of between-study correlation. BMC Med Res Methodol 2007;7:3. https://doi.org/10.1186/1471-2288-7-3 doi: 10.1186/1471-2288-7-3. [DOI] [PMC free article] [PubMed]
  51. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol 2006;6:31. https://doi.org/10.1186/1471-2288-6-31 doi: 10.1186/1471-2288-6-31. [DOI] [PMC free article] [PubMed]
  52. Velilla Moliner J, Gros Bañeres B, Povar Marco J, Santaló Bel M, Ordoñez Llanos J, Martín Martín A, et al. Diagnostic performance of high sensitive troponin in non-ST elevation acute coronary syndrome. Med Intensiva 2020;44:88–95. https://doi.org/10.1016/j.medin.2018.07.014 doi: 10.1016/j.medin.2018.07.014. [DOI] [PubMed]
  53. Aldous S, Mark Richards A, George PM, Cullen L, Parsonage WA, Flaws D, et al. Comparison of new point-of-care troponin assay with high sensitivity troponin in diagnosing myocardial infarction. Int J Cardiol 2014;177:182–6. https://doi.org/10.1016/j.ijcard.2014.09.026 doi: 10.1016/j.ijcard.2014.09.026. [DOI] [PubMed]
  54. Badertscher P, Boeddinghaus J, Twerenbold R, Nestelberger T, Wildi K, Wussler D, et al. Direct comparison of the 0/1h and 0/3h algorithms for early rule-out of acute myocardial infarction. Circulation 2018;137:2536–8. https://doi.org/10.1161/CIRCULATIONAHA.118.034260 doi: 10.1161/CIRCULATIONAHA.118.034260. [DOI] [PubMed]
  55. Badertscher P, Boeddinghaus J, Nestelberger T, Twerenbold R, Wildi K, Sabti Z, et al. Effect of acute coronary syndrome probability on diagnostic and prognostic performance of high-sensitivity cardiac troponin. Clin Chem 2018;64:515–25. https://doi.org/10.1373/clinchem.2017.279513 doi: 10.1373/clinchem.2017.279513. [DOI] [PubMed]
  56. Body R, Burrows G, Carley S, Cullen L, Than M, Jaffe AS, Lewis PS. High-sensitivity cardiac troponin t concentrations below the limit of detection to exclude acute myocardial infarction: a prospective evaluation. Clin Chem 2015;61:983–9. https://doi.org/10.1373/clinchem.2014.231530 doi: 10.1373/clinchem.2014.231530. [DOI] [PubMed]
  57. Boeddinghaus J, Reichlin T, Cullen L, Greenslade JH, Parsonage WA, Hammett C, et al. Two-hour algorithm for triage toward rule-out and rule-in of acute myocardial infarction by use of high-sensitivity cardiac troponin I. Clin Chem 2016;62:494–504. https://doi.org/10.1373/clinchem.2015.249508 doi: 10.1373/clinchem.2015.249508. [DOI] [PubMed]
  58. Boeddinghaus J, Nestelberger T, Twerenbold R, Wildi K, Badertscher P, Cupa J, et al. Direct comparison of 4 very early rule-out strategies for acute myocardial infarction using high-sensitivity cardiac troponin I. Circulation 2017;135:1597–611. https://doi.org/10.1161/CIRCULATIONAHA.116.025661 doi: 10.1161/CIRCULATIONAHA.116.025661. [DOI] [PubMed]
  59. Boeddinghaus J, Twerenbold R, Nestelberger T, Badertscher P, Wildi K, Puelacher C, et al. Clinical validation of a novel high-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem 2018;64:1347–60. https://doi.org/10.1373/clinchem.2018.286906 doi: 10.1373/clinchem.2018.286906. [DOI] [PubMed]
  60. Boeddinghaus J, Nestelberger T, Twerenbold R, Koechlin L, Meier M, Troester V, et al. High-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Clin Chem 2019;65:893–904. https://doi.org/10.1373/clinchem.2018.300061 doi: 10.1373/clinchem.2018.300061. [DOI] [PubMed]
  61. Bularga A, Lee KK, Stewart S, Ferry AV, Chapman AR, Marshall L, et al. High-sensitivity troponin and the application of risk stratification thresholds in patients with suspected acute coronary syndrome. Circulation 2019;140:1557–68. https://doi.org/10.1161/CIRCULATIONAHA.119.042866 doi: 10.1161/CIRCULATIONAHA.119.042866. [DOI] [PMC free article] [PubMed]
  62. Cappellini F, Falbo R, Saltafossi D, Avanzini F, Signorini S, Fania C, et al. Development of an algorithm for ruling-out non-ST elevation myocardial infarction in the emergency department using high sensitivity troponin T assay. Clin Chim Acta 2019;495:1–7. https://doi.org/10.1016/j.cca.2019.03.1625 doi: 10.1016/j.cca.2019.03.1625. [DOI] [PubMed]
  63. Carlton EW, Cullen L, Than M, Gamble J, Khattab A, Greaves K. A novel diagnostic protocol to identify patients suitable for discharge after a single high-sensitivity troponin. Heart 2015;101:1041–6. https://doi.org/10.1136/heartjnl-2014-307288 doi: 10.1136/heartjnl-2014-307288. [DOI] [PMC free article] [PubMed]
  64. Carlton EW, Khattab A, Greaves K. Identifying patients suitable for discharge after a single-presentation high-sensitivity troponin result: a comparison of five established risk scores and two high-sensitivity assays. Ann Emerg Med 2015;66:635–45.e1. https://doi.org/10.1016/j.annemergmed.2015.07.006 doi: 10.1016/j.annemergmed.2015.07.006. [DOI] [PubMed]
  65. Chapman AR, Anand A, Boeddinghaus J, Ferry AV, Sandeman D, Adamson PD, et al. Comparison of the efficacy and safety of early rule-out pathways for acute myocardial infarction. Circulation 2017;135:1586–96. https://doi.org/10.1161/CIRCULATIONAHA.116.025021 doi: 10.1161/CIRCULATIONAHA.116.025021. [DOI] [PMC free article] [PubMed]
  66. Chapman AR, Hesse K, Andrews J, Ken Lee K, Anand A, Shah ASV, et al. High-sensitivity cardiac troponin I and clinical risk scores in patients with suspected acute coronary syndrome. Circulation 2018;138:1654–65. https://doi.org/10.1161/CIRCULATIONAHA.118.036426 doi: 10.1161/CIRCULATIONAHA.118.036426. [DOI] [PMC free article] [PubMed]
  67. Chapman AR, Fujisawa T, Lee KK, Andrews JP, Anand A, Sandeman D, et al. Novel high-sensitivity cardiac troponin I assay in patients with suspected acute coronary syndrome. Heart 2019;105:616–22. https://doi.org/10.1136/heartjnl-2018-314093 doi: 10.1136/heartjnl-2018-314093. [DOI] [PMC free article] [PubMed]
  68. Cullen L, Aldous S, Than M, Greenslade JH, Tate JR, George PM, et al. Comparison of high sensitivity troponin T and I assays in the diagnosis of non-ST elevation acute myocardial infarction in emergency patients with chest pain. Clin Biochem 2014;47:321–6. https://doi.org/10.1016/j.clinbiochem.2013.11.019 doi: 10.1016/j.clinbiochem.2013.11.019. [DOI] [PubMed]
  69. Eggers KM, Aldous S, Greenslade JH, Johnston N, Lindahl B, Parsonage WA, et al. Two-hour diagnostic algorithms for early assessment of patients with acute chest pain – implications of lowering the cardiac troponin I cut-off to the 97.5th percentile. Clin Chim Acta 2015;445:19–24. https://doi.org/10.1016/j.cca.2015.03.002 doi: 10.1016/j.cca.2015.03.002. [DOI] [PubMed]
  70. Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J 2014;35:2303–11. https://doi.org/10.1093/eurheartj/ehu188 doi: 10.1093/eurheartj/ehu188. [DOI] [PubMed]
  71. Greenslade JH, Kavsak P, Parsonage W, Shortt C, Than M, Pickering JW, et al. Combining presentation high-sensitivity cardiac troponin I and glucose measurements to rule-out an acute myocardial infarction in patients presenting to emergency department with chest pain. Clin Biochem 2015;48:288–91. https://doi.org/10.1016/j.clinbiochem.2014.11.019 doi: 10.1016/j.clinbiochem.2014.11.019. [DOI] [PubMed]
  72. Huang H, Zhu S, Wang W, Yi H, Du X, Nie X, et al. Diagnosis of acute myocardial infarction in patients with renal insufficiency using high-sensitivity troponin T. Clin Chem Lab Med 2015;53:723–30. https://doi.org/10.1515/cclm-2014-0715 doi: 10.1515/cclm-2014-0715. [DOI] [PubMed]
  73. Guangquan L, Hualan H, Xin N, Yong H, Haolan S, Tongxing L, et al. Time from symptom onset influences high-sensitivity troponin T diagnostic accuracy for the diagnosis of acute myocardial infarction. Clin Chem Lab Med 2016;54:133–42. https://doi.org/10.1515/cclm-2014-0776 doi: 10.1515/cclm-2014-0776. [DOI] [PubMed]
  74. Jaeger C, Wildi K, Twerenbold R, Reichlin T, Rubini Gimenez M, Neuhaus JD, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am Heart J 2016;171:92–102.e5. https://doi.org/10.1016/j.ahj.2015.07.022 doi: 10.1016/j.ahj.2015.07.022. [DOI] [PubMed]
  75. Kaier TE, Twerenbold R, Puelacher C, Marjot J, Imambaccus N, Boeddinghaus J, et al. Direct comparison of cardiac myosin-binding protein C with cardiac troponins for the early diagnosis of acute myocardial infarction. Circulation 2017;136:1495–508. https://doi.org/10.1161/CIRCULATIONAHA.117.028084 doi: 10.1161/CIRCULATIONAHA.117.028084. [DOI] [PMC free article] [PubMed]
  76. Kavsak PA, Shortt C, Ma J, Clayton N, Sherbino J, Hill SA, et al. A laboratory score at presentation to rule-out serious cardiac outcomes or death in patients presenting with symptoms suggestive of acute coronary syndrome. Clin Chim Acta 2017;469:69–74. https://doi.org/10.1016/j.cca.2017.03.021 doi: 10.1016/j.cca.2017.03.021. [DOI] [PubMed]
  77. Kitamura M, Hata N, Takayama T, Hirayama A, Ogawa M, Yamashina A, et al. High-sensitivity cardiac troponin T for earlier diagnosis of acute myocardial infarction in patients with initially negative troponin T test – comparison between cardiac markers. J Cardiol 2013;62:336–42. https://doi.org/10.1016/j.jjcc.2013.06.005 doi: 10.1016/j.jjcc.2013.06.005. [DOI] [PubMed]
  78. Mahler SA, Stopyra JP, Apple FS, Riley RF, Russell GB, Hiestand BC, et al. Use of the HEART Pathway with high sensitivity cardiac troponins: a secondary analysis. Clin Biochem 2017;50:401–7. https://doi.org/10.1016/j.clinbiochem.2017.01.003 doi: 10.1016/j.clinbiochem.2017.01.003. [DOI] [PMC free article] [PubMed]
  79. Miller-Hodges E, Anand A, Shah ASV, Chapman AR, Gallacher P, Lee KK, et al. High-sensitivity cardiac troponin and the risk stratification of patients with renal impairment presenting with suspected acute coronary syndrome. Circulation 2018;137:425–35. https://doi.org/10.1161/CIRCULATIONAHA.117.030320 doi: 10.1161/CIRCULATIONAHA.117.030320. [DOI] [PMC free article] [PubMed]
  80. Mueller C, Giannitsis E, Christ M, Ordonez-Llanos J, Defilippi C, McCord J, et al. Multicenter evaluation of a 0-hour/1-hour algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T presented at the European Society of Cardiology annual meeting, September 2014, Barcelona, Spain. Ann Emerg Med 2016;68:76–87. https://doi.org/10.1016/j.annemergmed.2015.11.013 doi: 10.1016/j.annemergmed.2015.11.013. [DOI] [PubMed]
  81. Mueller-Hennessen M, Lindahl B, Giannitsis E, Biener M, Vafaie M, deFilippi CR, et al. Diagnostic and prognostic implications using age- and gender-specific cut-offs for high-sensitivity cardiac troponin T – Sub-analysis from the TRAPID-AMI study. Int J Cardiol 2016;209:26–33. https://doi.org/10.1016/j.ijcard.2016.01.213 doi: 10.1016/j.ijcard.2016.01.213. [DOI] [PubMed]
  82. Mueller-Hennessen M, Mueller C, Giannitsis E, Biener M, Vafaie M, DeFilippi CR, et al. Serial sampling of high-sensitivity cardiac troponin T may not be required for prediction of acute myocardial infarction diagnosis in chest pain patients with highly abnormal concentrations at presentation. Clin Chem 2017;63:542–51. https://doi.org/10.1373/clinchem.2016.258392 doi: 10.1373/clinchem.2016.258392. [DOI] [PubMed]
  83. Mueller-Hennessen M, Lindahl B, Giannitsis E, Vafaie M, Biener M, Haushofer AC, et al. Combined testing of copeptin and high-sensitivity cardiac troponin T at presentation in comparison to other algorithms for rapid rule-out of acute myocardial infarction. Int J Cardiol 2019;276:261–7. https://doi.org/10.1016/j.ijcard.2018.10.084 doi: 10.1016/j.ijcard.2018.10.084. [DOI] [PubMed]
  84. Neumann JT, Sörensen NA, Schwemer T, Ojeda F, Bourry R, Sciacca V, et al. Diagnosis of myocardial infarction using a high-sensitivity troponin I 1-hour algorithm. JAMA Cardiol 2016;1:397–404. https://doi.org/10.1001/jamacardio.2016.0695 doi: 10.1001/jamacardio.2016.0695. [DOI] [PubMed]
  85. Neumann JT, Sörensen NA, Ojeda F, Renné T, Schnabel RB, Zeller T, et al. Early diagnosis of acute myocardial infarction using high-sensitivity troponin I. PLOS ONE 2017;12:e0174288. https://doi.org/10.1371/journal.pone.0174288 doi: 10.1371/journal.pone.0174288. [DOI] [PMC free article] [PubMed]
  86. Neumann JT, Sörensen NA, Ojeda F, Schwemer T, Lehmacher J, Gönner S, et al. Immediate rule-out of acute myocardial infarction using electrocardiogram and baseline high-sensitivity troponin I. Clin Chem 2017;63:394–402. https://doi.org/10.1373/clinchem.2016.262659 doi: 10.1373/clinchem.2016.262659. [DOI] [PubMed]
  87. Nowak RM, Gandolfo CM, Jacobsen G, Christenson RH, Moyer M, Hudson M, McCord J. Ultrarapid rule-out for acute myocardial infarction using the generation 5 cardiac troponin T assay: results from the REACTION-US Study. Ann Emerg Med 2018;72:654–64. https://doi.org/10.1016/j.annemergmed.2018.06.021 doi: 10.1016/j.annemergmed.2018.06.021. [DOI] [PubMed]
  88. Parsonage WA, Greenslade JH, Hammett CJ, Lamanna A, Tate JR, Ungerer JP, et al. Validation of an accelerated high-sensitivity troponin T assay protocol in an Australian cohort with chest pain. Med J Aust 2014;200:161–5. https://doi.org/10.5694/mja13.10466 doi: 10.5694/mja13.10466. [DOI] [PubMed]
  89. Peacock WF, Baumann BM, Bruton D, Davis TE, Handy B, Jones CW, et al. Efficacy of high-sensitivity troponin T in identifying very-low-risk patients with possible acute coronary syndrome. JAMA Cardiol 2018;3:104–11. https://doi.org/10.1001/jamacardio.2017.4625 doi: 10.1001/jamacardio.2017.4625. [DOI] [PMC free article] [PubMed]
  90. Reichlin T, Cullen L, Parsonage WA, Greenslade J, Twerenbold R, Moehring B, et al. Two-hour algorithm for triage toward rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Am J Med 2015;128:369–79.e4. https://doi.org/10.1016/j.amjmed.2014.10.032 doi: 10.1016/j.amjmed.2014.10.032. [DOI] [PubMed]
  91. Reichlin T, Twerenbold R, Wildi K, Gimenez MR, Bergsma N, Haaf P, et al. Prospective validation of a 1-hour algorithm to rule-out and rule-in acute myocardial infarction using a high-sensitivity cardiac troponin T assay. CMAJ 2015;187:E243–E252. https://doi.org/10.1503/cmaj.141349 doi: 10.1503/cmaj.141349. [DOI] [PMC free article] [PubMed]
  92. Rubini Gimenez M, Twerenbold R, Jaeger C, Schindler C, Puelacher C, Wildi K, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am J Med 2015;128:861–70.e4. https://doi.org/10.1016/j.amjmed.2015.01.046 doi: 10.1016/j.amjmed.2015.01.046. [DOI] [PubMed]
  93. Rubini Gimenez M, Twerenbold R, Wildi K, Wagener M, Puelacher C, Hillinger P, et al. Direct comparison of safety and efficacy of 2 rule-out strategies for AMI: undetectable levels at presentation vs. combination of 1h-algorithm and undetectable levels at presentation. Eur Heart J 2015;36:173.
  94. Rubini Giménez M, Twerenbold R, Boeddinghaus J, Nestelberger T, Puelacher C, Hillinger P, et al. Clinical effect of sex-specific cutoff values of high-sensitivity cardiac troponin T in suspected myocardial infarction. JAMA Cardiol 2016;1:912–20. https://doi.org/10.1001/jamacardio.2016.2882 doi: 10.1001/jamacardio.2016.2882. [DOI] [PubMed]
  95. Sandoval Y, Smith SW, Thordsen SE, Bruen CA, Carlson MD, Dodd KW, et al. Diagnostic performance of high sensitivity compared with contemporary cardiac troponin I for the diagnosis of acute myocardial infarction. Clin Chem 2017;63:1594–604. https://doi.org/10.1373/clinchem.2017.272930 doi: 10.1373/clinchem.2017.272930. [DOI] [PubMed]
  96. Sandoval Y, Smith SW, Love SA, Sexter A, Schulz K, Apple FS. Single high-sensitivity cardiac troponin I to rule out acute myocardial infarction. Am J Med 2017;130:1076–83.e1. https://doi.org/10.1016/j.amjmed.2017.02.032 doi: 10.1016/j.amjmed.2017.02.032. [DOI] [PubMed]
  97. Kavsak PA, Wang X, Ko DT, MacRae AR, Jaffe AS. Short- and long-term risk stratification using a next-generation, high-sensitivity research cardiac troponin I (hs-cTnI) assay in an emergency department chest pain population. Clin Chem 2009;55:1809–15. https://doi.org/10.1373/clinchem.2009.127241 doi: 10.1373/clinchem.2009.127241. [DOI] [PMC free article] [PubMed]
  98. Shah AS, Anand A, Sandoval Y, Lee KK, Smith SW, Adamson PD, et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome: a cohort study. Lancet 2015;386:2481–8. https://doi.org/10.1016/S0140-6736(15)00391-8 doi: 10.1016/S0140-6736(15)00391-8. [DOI] [PMC free article] [PubMed]
  99. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chapman AR, et al. High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial. Lancet 2018;392:919–28. https://doi.org/10.1016/S0140-6736(18)31923-8 doi: 10.1016/S0140-6736(18)31923-8. [DOI] [PMC free article] [PubMed]
  100. Shiozaki M, Inoue K, Suwa S, Lee CC, Chikata Y, Ishiura J, et al. Utility of the 0-hour/1-hour high-sensitivity cardiac troponin T algorithm in Asian patients with suspected non-ST elevation myocardial infarction. Int J Cardiol 2017;249:32–5. https://doi.org/10.1016/j.ijcard.2017.09.009 doi: 10.1016/j.ijcard.2017.09.009. [DOI] [PubMed]
  101. Shortt C, Ma J, Clayton N, Sherbino J, Whitlock R, Pare G, et al. Rule-in and rule-out of myocardial infarction using cardiac troponin and glycemic biomarkers in patients with symptoms suggestive of acute coronary syndrome. Clin Chem 2017;63:403–14. https://doi.org/10.1373/clinchem.2016.261545 doi: 10.1373/clinchem.2016.261545. [DOI] [PubMed]
  102. Slagman A, von Recum J, Möckel M, Holert F, Meyer Zum Büschenfelde D, Müller C, Searle J. Diagnostic performance of a high-sensitive troponin T assay and a troponin T point of care assay in the clinical routine of an emergency department: a clinical cohort study. Int J Cardiol 2017;230:454–60. https://doi.org/10.1016/j.ijcard.2016.12.085 doi: 10.1016/j.ijcard.2016.12.085. [DOI] [PubMed]
  103. Twerenbold R, Rubini Gimenez M, Reichlin T, Boeddinghaus J, Nestelberger T, Badertscher T, et al. Performance of the ESC 0/1-hour algorithm for rapid rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin I in patients with impaired and normal renal function. Eur Heart J 2017;38:465–6. https://doi.org/10.1093/eurheartj/ehx502.P2328 doi: 10.1093/eurheartj/ehx502.P2328. [DOI]
  104. Twerenbold R, Neumann JT, Soerensen NA, Karakas M, Rubini Gimenez M, Boeddinghaus J, et al. Validation of the European society of cardiology 0/1-hour algorithm for rule-out and rule-in of acute myocardial infarction. Eur Heart J 2017;38:453. https://doi.org/10.1093/eurheartj/ehx502.2271 doi: 10.1093/eurheartj/ehx502.2271. [DOI]
  105. Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, et al. Effect of the FDA regulatory approach on the 0/1-h algorithm for rapid diagnosis of MI. J Am Coll Cardiol 2017;70:1532–4. https://doi.org/10.1016/j.jacc.2017.07.746 doi: 10.1016/j.jacc.2017.07.746. [DOI] [PubMed]
  106. Twerenbold R, Badertscher P, Boeddinghaus J, Nestelberger T, Wildi K, Puelacher C, et al. 0/1-hour triage algorithm for myocardial infarction in patients with renal dysfunction. Circulation 2018;137:436–51. https://doi.org/10.1161/CIRCULATIONAHA.117.028901 doi: 10.1161/CIRCULATIONAHA.117.028901. [DOI] [PMC free article] [PubMed]
  107. Twerenbold R, Boeddinghaus J, Nestelberger T, Rubini Gimenez M, Badertscher P, Puelacher C, et al. Direct comparison of three 0/1h-algorithms for rapid rule-out and rule-in of acute myocardial infarction using one ultra-sensitive and two high-sensitivity cardiac troponin assays. Eur Heart J 2018;39:147. https://doi.org/10.1093/eurheartj/ehy564.P828 doi: 10.1093/eurheartj/ehy564.P828. [DOI]
  108. Twerenbold R, Costabel JP, Nestelberger T, Campos R, Wussler D, Arbucci R, et al. Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. J Am Coll Cardiol 2019;74:483–94. https://doi.org/10.1016/j.jacc.2019.05.046 doi: 10.1016/j.jacc.2019.05.046. [DOI] [PubMed]
  109. van der Linden N, Wildi K, Twerenbold R, Pickering JW, Than M, Cullen L, et al. Combining high-sensitivity cardiac troponin I and cardiac troponin T in the early diagnosis of acute myocardial infarction. Circulation 2018;138:989–99. https://doi.org/10.1161/CIRCULATIONAHA.117.032003 doi: 10.1161/CIRCULATIONAHA.117.032003. [DOI] [PubMed]
  110. Venge P, van Lippen L, Blaschke S, Christ M, Geier F, Giannitsis E, et al. Equal clinical performance of a novel point-of-care cardiac troponin I (cTnI) assay with a commonly used high-sensitivity cTnI assay. Clin Chim Acta 2017;469:119–25. https://doi.org/10.1016/j.cca.2017.03.023 doi: 10.1016/j.cca.2017.03.023. [DOI] [PubMed]
  111. Wildi K, Nelles B, Twerenbold R, Rubini Giménez M, Reichlin T, Singeisen H, et al. Safety and efficacy of the 0 h/3 h protocol for rapid rule out of myocardial infarction. Am Heart J 2016;181:16–25. https://doi.org/10.1016/j.ahj.2016.07.013 doi: 10.1016/j.ahj.2016.07.013. [DOI] [PubMed]
  112. Wildi K, Cullen L, Twerenbold R, Greenslade JH, Parsonage W, Boeddinghaus J, et al. Direct comparison of 2 rule-out strategies for acute myocardial infarction: 2-h accelerated diagnostic protocol vs. 2-h algorithm. Clin Chem 2017;63:1227–36. https://doi.org/10.1373/clinchem.2016.268359 doi: 10.1373/clinchem.2016.268359. [DOI] [PubMed]
  113. Wildi K, Boeddinghaus J, Nestelberger T, Twerenbold R, Badertscher P, Wussler D, et al. Comparison of fourteen rule-out strategies for acute myocardial infarction. Int J Cardiol 2019;283:41–7. https://doi.org/10.1016/j.ijcard.2018.11.140 doi: 10.1016/j.ijcard.2018.11.140. [DOI] [PubMed]
  114. Body R, Mueller C, Giannitsis E, Christ M, Ordonez-Llanos J, de Filippi CR, et al. The use of very low concentrations of high-sensitivity troponin T to rule out acute myocardial infarction using a single blood test. Acad Emerg Med 2016;23:1004–13. https://doi.org/10.1111/acem.13012 doi: 10.1111/acem.13012. [DOI] [PubMed]
  115. Body R, Twerenbold R, Austin C, Boeddinghaus J, Almashali M, Nestelberger T, et al. Diagnostic accuracy of a high-sensitivity cardiac troponin assay with a single serum test in the emergency department. Clin Chem 2019;65:1006–14. https://doi.org/10.1373/clinchem.2018.294272 doi: 10.1373/clinchem.2018.294272. [DOI] [PubMed]
  116. Borna C, Kollberg K, Larsson D, Mokhtari A, Ekelund U. The objective CORE score allows early rule out in acute chest pain patients. Scand Cardiovasc J 2018;52:308–14. https://doi.org/10.1080/14017431.2018.1546891 doi: 10.1080/14017431.2018.1546891. [DOI] [PubMed]
  117. Lin Z, Lim SH, Chua SJT, Tai ES, Chan YH, Richards AM. High-sensitivity troponin T and long-term adverse cardiac events among patients presenting with suspected acute coronary syndrome in Singapore. Singapore Med J 2019;60:418–26. https://doi.org/10.11622/smedj.2019013 doi: 10.11622/smedj.2019013. [DOI] [PMC free article] [PubMed]
  118. Meller B, Cullen L, Parsonage WA, Greenslade JH, Aldous S, Reichlin T, et al. Accelerated diagnostic protocol using high-sensitivity cardiac troponin T in acute chest pain patients. Int J Cardiol 2015;184:208–15. https://doi.org/10.1016/j.ijcard.2015.02.006 doi: 10.1016/j.ijcard.2015.02.006. [DOI] [PubMed]
  119. Mokhtari A, Borna C, Gilje P, Tydén P, Lindahl B, Nilsson HJ, et al. A 1-h combination algorithm allows fast rule-out and rule-in of major adverse cardiac events. J Am Coll Cardiol 2016;67:1531–40. https://doi.org/10.1016/j.jacc.2016.01.059 doi: 10.1016/j.jacc.2016.01.059. [DOI] [PubMed]
  120. Mokhtari A, Lindahl B, Schiopu A, Yndigegn T, Khoshnood A, Gilje P, Ekelund U. A 0-hour/1-hour protocol for safe, early discharge of chest pain patients. Acad Emerg Med 2017;24:983–92. https://doi.org/10.1111/acem.13224 doi: 10.1111/acem.13224. [DOI] [PubMed]
  121. Mokhtari A, Lindahl B, Smith JG, Holzmann MJ, Khoshnood A, Ekelund U. Diagnostic accuracy of high-sensitivity cardiac troponin T at presentation combined with history and ECG for ruling out major adverse cardiac events. Ann Emerg Med 2016;68:649–58.e3. https://doi.org/10.1016/j.annemergmed.2016.06.008 doi: 10.1016/j.annemergmed.2016.06.008. [DOI] [PubMed]
  122. Body R, Nowak R, Lindahl B, Giannitsis E, Mueller C. The use of very low levels of high sensitivity troponin T to rule out acute myocardial infarction using a single blood test. Acad Emerg Med 2015;22:S55–S56. doi: 10.1111/acem.13012. [DOI] [PubMed]
  123. Boeddinghaus J, Nestelberger T, Twerenbold R, Rubini Gimenez M, Koechlin L, Troester V, et al. A novel high-sensitivity cardiac troponin I assay for early diagnosis of acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2019;8:75. https://doi.org/10.1093/eurheartj/ehz745.0065 doi: 10.1093/eurheartj/ehz745.0065. [DOI]
  124. Chang AM, Hollander JE, Ostlund RE, Diercks D, Rafique Z, Ziegler A, et al. Impact of delta rules on performance of a high-sensitivity cardiac troponin T assay for diagnosis of acute myocardial infarction. Eur Heart J 2018;39:1366–7. https://doi.org/10.1093/eurheartj/ehy566.P6455 doi: 10.1093/eurheartj/ehy566.P6455. [DOI]
  125. Dodd KW, Sandoval Y, Smith SW, Sexter A, Schulz K, Apple FS, et al. Diagnostic performance of high-sensitivity cardiac troponin I for ruling in and ruling out acute myocardial infarction. Acad Emerg Med 2019;26:S13.
  126. McCord J, Moyer M, Jacobsen G, Christenson R, Hudson M, Noll S, et al. Is the European society of cardiology 0- and 1-hour algorithm guidelines for rapid evaluation of acute myocardial infarction effective at 0 hour and 30 minutes. Ann Emerg Med 2017;70:S17. https://doi.org/10.1016/j.annemergmed.2017.07.066 doi: 10.1016/j.annemergmed.2017.07.066. [DOI]
  127. Nowak RM, Gandolfo C, Jacobsen G, Christenson R, Moyer M, Hudson M, et al. Rapid evaluation of acute myocardial infarction in a united states population using high sensitivity cardiac troponin T and a European society of cardiology 0/1-hour algorithm guideline. Acad Emerg Med 2018;25:S34.
  128. Nowak RM, Jacobsen G, McCord J, Apple FS, Christenson R, DeFilippi C, et al. High-sensitivity troponin I: two-hour evaluation for acute myocardial infarction in the united states. Acad Emerg Med 2019;26:S169.
  129. Nowak RM, McCord J, Christenson R, Jacobsen G, Apple FS, DeFilippi C, et al. High-sensitivity troponin I: one-hour evaluation for acute myocardial infarction in the united states. Acad Emerg Med 2019;26:S34.
  130. Parsonage W, Cullen L, Greenslade J, Aldous S, George P, Lamanna A, et al. A study comparing diagnostic accuracy of high sensitivity assays of troponin I and troponin T for myocardial infarction within two hours of presentation to the emergency room. Heart Lung Circ 2013;22:S207–S208. https://doi.org/10.1016/j.hlc.2013.05.494 doi: 10.1016/j.hlc.2013.05.494. [DOI]
  131. Parsonage W, Cullen L, Greenslade J, Tate J, Ungerer J, Hammett C, et al. Comparison of highly sensitive troponin I and T results in the diagnosis of acute myocardial infarction. J Am Coll Cardiol 2013;61:E228. https://doi.org/10.1016/S0735-1097(13)60229-6 doi: 10.1016/S0735-1097(13)60229-6. [DOI]
  132. Lindahl B, Jernberg T, Badertscher P, Boeddinghaus J, Eggers KM, Frick M, et al. An algorithm for rule-in and rule-out of acute myocardial infarction using a novel troponin I assay. Heart 2017;103:125–31. https://doi.org/10.1136/heartjnl-2016-309951 doi: 10.1136/heartjnl-2016-309951. [DOI] [PubMed]
  133. Santaló M, Martin A, Velilla J, Povar J, Temboury F, Balaguer J, et al. Using high-sensitivity troponin T: the importance of the proper gold standard. Am J Med 2013;126:709–17. https://doi.org/10.1016/j.amjmed.2013.03.003 doi: 10.1016/j.amjmed.2013.03.003. [DOI] [PubMed]
  134. Aldous S, Pemberton C, Richards AM, Troughton R, Than M. High-sensitivity troponin T for early rule-out of myocardial infarction in recent onset chest pain. Emerg Med J 2012;29:805–10. https://doi.org/10.1136/emermed-2011-200222 doi: 10.1136/emermed-2011-200222. [DOI] [PubMed]
  135. Sanchis J, Bardají A, Bosch X, Loma-Osorio P, Marín F, Sánchez PL, et al. Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. Am Heart J 2012;164:194–200.e1. https://doi.org/10.1016/j.ahj.2012.05.015 doi: 10.1016/j.ahj.2012.05.015. [DOI] [PubMed]
  136. Haaf P, Drexler B, Reichlin T, Twerenbold R, Reiter M, Meissner J, et al. High-sensitivity cardiac troponin in the distinction of acute myocardial infarction from acute cardiac noncoronary artery disease. Circulation 2012;126:31–40. https://doi.org/10.1161/CIRCULATIONAHA.112.100867 doi: 10.1161/CIRCULATIONAHA.112.100867. [DOI] [PubMed]
  137. Eggers KM, Venge P, Lindahl B. High-sensitive cardiac troponin T outperforms novel diagnostic biomarkers in patients with acute chest pain. Clin Chim Acta 2012;413:1135–40. https://doi.org/10.1016/j.cca.2012.03.011 doi: 10.1016/j.cca.2012.03.011. [DOI] [PubMed]
  138. Reiter M, Twerenbold R, Reichlin T, Benz B, Haaf P, Meissner J, et al. Early diagnosis of acute myocardial infarction in patients with pre-existing coronary artery disease using more sensitive cardiac troponin assays. Eur Heart J 2012;33:988–97. https://doi.org/10.1093/eurheartj/ehr376 doi: 10.1093/eurheartj/ehr376. [DOI] [PubMed]
  139. Aldous SJ, Richards M, Cullen L, Troughton R, Than M. Diagnostic and prognostic utility of early measurement with high-sensitivity troponin T assay in patients presenting with chest pain. CMAJ 2012;184:E260–8. https://doi.org/10.1503/cmaj.110773 doi: 10.1503/cmaj.110773. [DOI] [PMC free article] [PubMed]
  140. Potocki M, Reichlin T, Thalmann S, Zellweger C, Twerenbold R, Reiter M, et al. Diagnostic and prognostic impact of copeptin and high-sensitivity cardiac troponin T in patients with pre-existing coronary artery disease and suspected acute myocardial infarction. Heart 2012;98:558–65. https://doi.org/10.1136/heartjnl-2011-301269 doi: 10.1136/heartjnl-2011-301269. [DOI] [PubMed]
  141. Keller T, Zeller T, Ojeda F, Tzikas S, Lillpopp L, Sinning C, et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 2011;306:2684–93. https://doi.org/10.1001/jama.2011.1896 doi: 10.1001/jama.2011.1896. [DOI] [PubMed]
  142. Freund Y, Chenevier-Gobeaux C, Bonnet P, Claessens YE, Allo JC, Doumenc B, et al. High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction. Crit Care 2011;15:R147. https://doi.org/10.1186/cc10270 doi: 10.1186/cc10270. [DOI] [PMC free article] [PubMed]
  143. Aldous SJ, Richards AM, Cullen L, Than MP. Early dynamic change in high-sensitivity cardiac troponin T in the investigation of acute myocardial infarction. Clin Chem 2011;57:1154–60. https://doi.org/10.1373/clinchem.2010.161166 doi: 10.1373/clinchem.2010.161166. [DOI] [PubMed]
  144. Melki D, Lind S, Agewall S, Jernberg T. Diagnostic value of high sensitive troponin T in chest pain patients with no persistent ST-elevations. Scand Cardiovasc J 2011;45:198–204. https://doi.org/10.3109/14017431.2011.565792 doi: 10.3109/14017431.2011.565792. [DOI] [PubMed]
  145. Reichlin T, Irfan A, Twerenbold R, Reiter M, Hochholzer W, Burkhalter H, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011;124:136–45. https://doi.org/10.1161/CIRCULATIONAHA.111.023937 doi: 10.1161/CIRCULATIONAHA.111.023937. [DOI] [PubMed]
  146. Reiter M, Twerenbold R, Reichlin T, Haaf P, Peter F, Meissner J, et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J 2011;32:1379–89. https://doi.org/10.1093/eurheartj/ehr033 doi: 10.1093/eurheartj/ehr033. [DOI] [PubMed]
  147. Aldous SJ, Florkowski CM, Crozier IG, Elliott J, George P, Lainchbury JG, et al. Comparison of high sensitivity and contemporary troponin assays for the early detection of acute myocardial infarction in the emergency department. Ann Clin Biochem 2011;48:241–8. [Erratum published in Ann Clin Biochem 2012;49:208]. https://doi.org/10.1258/acb.2010.010219 doi: 10.1258/acb.2010.010219. [DOI] [PubMed]
  148. Kurz K, Giannitsis E, Becker M, Hess G, Zdunek D, Katus HA. Comparison of the new high sensitive cardiac troponin T with myoglobin, h-FABP and cTnT for early identification of myocardial necrosis in the acute coronary syndrome. Clin Res Cardiol 2011;100:209–15. https://doi.org/10.1007/s00392-010-0230-y doi: 10.1007/s00392-010-0230-y. [DOI] [PubMed]
  149. Hochholzer W, Reichlin T, Stelzig C, Hochholzer K, Meissner J, Breidthardt T, et al. Impact of soluble FMS-like tyrosine kinase-1 and placental growth factor serum levels for risk stratification and early diagnosis in patients with suspected acute myocardial infarction. Eur Heart J 2011;32:326–35. https://doi.org/10.1093/eurheartj/ehq429 doi: 10.1093/eurheartj/ehq429. [DOI] [PubMed]
  150. Christ M, Popp S, Pohlmann H, Poravas M, Umarov D, Bach R, Bertsch T. Implementation of high sensitivity cardiac troponin T measurement in the emergency department. Am J Med 2010;123:1134–42. https://doi.org/10.1016/j.amjmed.2010.07.015 doi: 10.1016/j.amjmed.2010.07.015. [DOI] [PubMed]
  151. Parsonage W, Cullen L, Greenslade J, Tate J, Ungerer J, Hammett C, et al. Comparison of highly sensitive troponin I and T results in the diagnosis of acute myocardial infarction. Presented at 62nd Annual Scientific Session of the American College of Cardiology and i2 Summit: Innovation in Intervention; 9–11 Mar 2013; San Francisco: CA. J Am Coll Cardiol 2013;61:E228.
  152. Collinson P, Gaze D, Thokala P, Goodacre S. To examine the diagnostic accuracy of highly sensitive troponin assays using diagnosis based on the universal definition of myocardial infarction in the unselected emergency room population. Presented at ESC Congress 2012; 25–29 Aug 2012; Munich: Germany. Eur Heart J 2012;33:622.
  153. Body R, Burrows G, Cook G, Carley SD, France M, Jarvis J, et al. High sensitivity troponin: validation and subsequent audit of a novel ‘rule out’ cut-off. Presented at College of Emergency Medicine Autumn Conference 2011; 21–23 Sept 2011; Gateshead: UK. Emerg Med J 2011;28:A1. https://doi.org/10.1136/emermed-2011-200617.1 doi: 10.1136/emermed-2011-200617.1. [DOI]
  154. Melki D, Lind S, Agewall S, Jernberg T. High sensitive troponin T rules out myocardial infarction 2 hours from admission in chest pain patients. Presented at American College of Cardiology’s 59th Annual Scientific Session and i2 Summit: Innovation in Intervention; 14–16 Mar 2010; Atlanta: GA. J Am Coll Cardiol 2010;55:A118.E1107. https://doi.org/10.1016/S0735-1097(10)61108-4 doi: 10.1016/S0735-1097(10)61108-4. [DOI]
  155. Aldous S, Florkowski C, George P, Than M, Crozier I. High sensitivity troponin assays predict major adverse events at 2 years and at levels below the 99th percentile. Presented at American College of Cardiology’s 59th Annual Scientific Session and i2 Summit: Innovation in Intervention; 14–16 Mar 2010; Atlanta: GA. J Am Coll Cardiol 2010;55:A97.E916. https://doi.org/10.1016/S0735-1097(10)60917-5 doi: 10.1016/S0735-1097(10)60917-5. [DOI]
  156. Cullen L, Mueller C, Parsonage WA, Wildi K, Greenslade JH, Twerenbold R, et al. Validation of high-sensitivity troponin I in a 2-hour diagnostic strategy to assess 30-day outcomes in emergency department patients with possible acute coronary syndrome. J Am Coll Cardiol 2013;62:1242–9. https://doi.org/10.1016/j.jacc.2013.02.078 doi: 10.1016/j.jacc.2013.02.078. [DOI] [PubMed]
  157. Sebbane M, Lefebvre S, Kuster N, Jreige R, Jacques E, Badiou S, et al. Early rule out of acute myocardial infarction in ED patients: value of combined high-sensitivity cardiac troponin T and ultrasensitive copeptin assays at admission. Am J Emerg Med 2013;31:1302–8. https://doi.org/10.1016/j.ajem.2013.04.033 doi: 10.1016/j.ajem.2013.04.033. [DOI] [PubMed]
  158. Irfan A, Reichlin T, Twerenbold R, Meister M, Moehring B, Wildi K, et al. Early diagnosis of myocardial infarction using absolute and relative changes in cardiac troponin concentrations. Am J Med 2013;126:781–8.e2. https://doi.org/10.1016/j.amjmed.2013.02.031 doi: 10.1016/j.amjmed.2013.02.031. [DOI] [PubMed]
  159. Collinson PO, Gaze DC, Thokala P, Goodacre S. Randomised Assessment of Treatment using Panel Assay of Cardiac markers – Contemporary Biomarker Evaluation (RATPAC CBE). Health Technol Assess 2013;17(15). https://doi.org/10.3310/hta17150 doi: 10.3310/hta17150. [DOI] [PMC free article] [PubMed]
  160. Reiter M, Twerenbold R, Reichlin T, Mueller M, Hoeller R, Moehring B, et al. Heart-type fatty acid-binding protein in the early diagnosis of acute myocardial infarction. Heart 2013;99:708–14. https://doi.org/10.1136/heartjnl-2012-303325 doi: 10.1136/heartjnl-2012-303325. [DOI] [PubMed]
  161. Body R, Carley S, McDowell G, Jaffe AS, France M, Cruickshank K, et al. Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol 2011;58:1332–9. https://doi.org/10.1016/j.jacc.2011.06.026 doi: 10.1016/j.jacc.2011.06.026. [DOI] [PubMed]
  162. Aldous SJ, Florkowski CM, Crozier IG, George P, Mackay R, Than M. High sensitivity troponin outperforms contemporary assays in predicting major adverse cardiac events up to two years in patients with chest pain. Ann Clin Biochem 2011;48:249–55. https://doi.org/10.1258/acb.2010.010220 doi: 10.1258/acb.2010.010220. [DOI] [PubMed]
  163. Keller T, Zeller T, Echevarria FO, Tzikas S, Baldus S, Bickel C, et al. High sensitive troponin I dynamic improves early diagnosis of acute myocardial infarction. Eur Heart J 2011;32:423.
  164. Collinson P, Gaze D, Thokala P, Goodacre S. To examine the diagnostic accuracy of highly sensitive troponin assays using diagnosis based on the universal definition of myocardial infarction in the unselected emergency room population. Eur Heart J 2012;33:622.
  165. Saenger AK, Korpi-Steiner NL, Bryant SC, Karon BS, Jaffe AS. Utilization of a high sensitive troponin T assay optimizes serial sampling in the diagnosis of acute myocardial infarction compared to multiple contemporary troponin assays. Circulation 2010;122:2.
  166. Freund Y, Chenevier-Gobeaux C, Goulet H, Claessens Y, Bonnet P, Allo J, et al. Comparison of high-sensitivity cardiac troponin concentrations versus conventional troponin for the diagnosis of myocardial infarction in the emergency department. Ann Emerg Med 2010;56:S130. https://doi.org/10.1016/j.annemergmed.2010.06.524 doi: 10.1016/j.annemergmed.2010.06.524. [DOI]
  167. Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 2009;361:858–67. https://doi.org/10.1056/NEJMoa0900428 doi: 10.1056/NEJMoa0900428. [DOI] [PubMed]
  168. Hoeller R, Rubini Giménez M, Reichlin T, Twerenbold R, Zellweger C, Moehring B, et al. Normal presenting levels of high-sensitivity troponin and myocardial infarction. Heart 2013;99:1567–72. https://doi.org/10.1136/heartjnl-2013-303643 doi: 10.1136/heartjnl-2013-303643. [DOI] [PubMed]
  169. Body R, Carley SD, McDowell G, Nuttall M, Wibberley C, France M, et al. Use of low level high sensitivity troponin to rule out acute myocardial infarction in the emergency department. Eur Heart J Suppl 2010;12:F111–F112.
  170. Boeddinghaus J, Twerenbold R, Nestelberger T, Koechlin L, Wussler D, Meier M, et al. Clinical use of a new high-sensitivity cardiac troponin I assay in patients with suspected myocardial infarction. Clin Chem 2019;65:1426–36. https://doi.org/10.1373/clinchem.2019.304725 doi: 10.1373/clinchem.2019.304725. [DOI] [PubMed]
  171. Nestelberger T, Boeddinghaus J, Greenslade J, Parsonage WA, Than M, Wussler D, et al. Two-hour algorithm for rapid triage of suspected acute myocardial infarction using a high-sensitivity cardiac troponin I assay. Clin Chem 2019;65:1437–47. https://doi.org/10.1373/clinchem.2019.305193 doi: 10.1373/clinchem.2019.305193. [DOI] [PubMed]
  172. Body R, Morris N, Reynard C, Collinson PO. Comparison of four decision aids for the early diagnosis of acute coronary syndromes in the emergency department. Emerg Med J 2020;37:8–13. https://doi.org/10.1136/emermed-2019-208898 doi: 10.1136/emermed-2019-208898. [DOI] [PubMed]
  173. Boeddinghaus J, Nestelberger T, Koechlin L, Wussler D, Lopez-Ayala P, Walter JE, et al. Early diagnosis of myocardial infarction with point-of-care high-sensitivity cardiac troponin I. J Am Coll Cardiol 2020;75:1111–24. https://doi.org/10.1016/j.jacc.2019.12.065 doi: 10.1016/j.jacc.2019.12.065. [DOI] [PubMed]
  174. Chapman AR, Sandeman D, Ferry AV, Stewart S, Strachan FE, Wereski R, et al. Risk stratification using high-sensitivity cardiac troponin T in patients with suspected acute coronary syndrome. J Am Coll Cardiol 2020;75:985–7. https://doi.org/10.1016/j.jacc.2019.12.036 doi: 10.1016/j.jacc.2019.12.036. [DOI] [PMC free article] [PubMed]
  175. Anand A, Lee K, Chapman AR, Ferry AV, Adamson PD, Strachan FE, et al. High-sensitivity cardiac troponin on presentation to rule out myocardial infarction. Unpublished. doi: 10.1161/CIRCULATIONAHA.120.052380. [DOI] [PMC free article] [PubMed]
  176. Sandoval Y, Nowak R, deFilippi CR, Christenson RH, Peacock WF, McCord J, et al. Myocardial infarction risk stratification with a single measurement of high-sensitivity troponin I. J Am Coll Cardiol 2019;74:271–82. https://doi.org/10.1016/j.jacc.2019.05.058 doi: 10.1016/j.jacc.2019.05.058. [DOI] [PubMed]
  177. Pourrajab F, Torkian Velashani F, Khanaghaei M, Hekmatimoghaddam S, Rahaie M, Zare-Khormizi MR. Comparison of miRNA signature versus conventional biomarkers before and after off-pump coronary artery bypass graft. J Pharm Biomed Anal 2017;134:11–17. https://doi.org/10.1016/j.jpba.2016.11.014 doi: 10.1016/j.jpba.2016.11.014. [DOI] [PubMed]
  178. Chopard R, Plastaras P, Jehl J, Descotes-Genon V, Seronde M-F, Janin S, et al. Abstract 12491: impact of positive thrombus retrieval during primary percutaneous coronary intervention with thrombectomy on infarct size and microvascular obstruction. Circulation 2011;124:A12491. doi: 10.1016/j.amjcard.2012.09.009. [DOI] [PubMed]
  179. Ayiku L, Levay P, Hudson T, Craven J, Barrett E, Finnegan A, Adams R. The medline UK filter: development and validation of a geographic search filter to retrieve research about the UK from OVID MEDLINE. Health Info Libr J 2017;34:200–16. https://doi.org/10.1111/hir.12187 doi: 10.1111/hir.12187. [DOI] [PubMed]
  180. Ayiku L, Levay P, Hudson T, Craven J, Finnegan A, Adams R, Barrett E. The Embase UK filter: validation of a geographic search filter to retrieve research about the UK from OVID Embase. Health Info Libr J 2019;36:121–33. https://doi.org/10.1111/hir.12252 doi: 10.1111/hir.12252. [DOI] [PubMed]
  181. Goodacre S, Bradburn M, Fitzgerald P, Cross E, Collinson P, Gray A, Hall AS. The RATPAC (Randomised Assessment of Treatment using Panel Assay of Cardiac markers) trial: a randomised controlled trial of point-of-care cardiac markers in the emergency department. Health Technol Assess 2011;15(23). https://doi.org/10.3310/hta15230 doi: 10.3310/hta15230. [DOI] [PubMed]
  182. Fitzgerald P, Goodacre SW, Cross E, Dixon S. Cost-effectiveness of point-of-care biomarker assessment for suspected myocardial infarction: the Randomized Assessment of Treatment using Panel Assay of Cardiac markers (RATPAC) trial. Acad Emerg Med 2011;18:488–95. https://doi.org/10.1111/j.1553-2712.2011.01068.x doi: 10.1111/j.1553-2712.2011.01068.x. [DOI] [PubMed]
  183. Vaidya A, Severens H, Bongaerts BWC, Cleutjens K, Hofstra L, van Dieijen-Visser M, et al. Use of high-sensitive troponin T assay for the early diagnosis of acute myocardial infarction in chest pain patients: an economic evaluation. Med Decis Making 2012;32:E84. doi: 10.1186/1471-2261-14-77. [DOI] [PMC free article] [PubMed]
  184. Thokala P, Goodacre SW, Collinson PO, Stevens JW, Mills NL, Newby DE, et al. Cost-effectiveness of presentation versus delayed troponin testing for acute myocardial infarction. Heart 2012;98:1498–503. https://doi.org/10.1136/heartjnl-2012-302188 doi: 10.1136/heartjnl-2012-302188. [DOI] [PubMed]
  185. Goodacre S, Thokala P, Carroll C, Stevens JW, Leaviss J, Al Khalaf M, et al. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol Assess 2013;17(1). https://doi.org/10.3310/hta17010 doi: 10.3310/hta17010. [DOI] [PMC free article] [PubMed]
  186. Canadian Agency for Drugs and Technologies in Health. High-Sensitivity Cardiac Troponin for the Rapid Diagnosis of Acute Coronary Syndrome in the Emergency Department: A Clinical and Cost-Effectiveness Evaluation. URL: www.cadth.ca/media/pdf/OP0511_Troponin_ScienceReport_e.pdf (accessed 20 February 2020). [PubMed]
  187. Mills NL, Churchhouse AM, Lee KK, Anand A, Gamble D, Shah AS, et al. Implementation of a sensitive troponin I assay and risk of recurrent myocardial infarction and death in patients with suspected acute coronary syndrome. JAMA 2011;305:1210–16. https://doi.org/10.1001/jama.2011.338 doi: 10.1001/jama.2011.338. [DOI] [PubMed]
  188. Polanczyk CA, Kuntz KM, Sacks DB, Johnson PA, Lee TH. Emergency department triage strategies for acute chest pain using creatine kinase-MB and troponin I assays: a cost-effectiveness analysis. Ann Intern Med 1999;131:909–18. https://doi.org/10.7326/0003-4819-131-12-199912210-00002 doi: 10.7326/0003-4819-131-12-199912210-00002. [DOI] [PubMed]
  189. Ward S, Lloyd Jones M, Pandor A, Holmes M, Ara R, Ryan A, et al. A systematic review and economic evaluation of statins for the prevention of coronary events. Health Technol Assess 2007;11(14). https://doi.org/10.3310/hta11140 doi: 10.3310/hta11140. [DOI] [PubMed]
  190. Oluboyede Y, Goodacre S, Wailoo A, ESCAPE Research Team. Cost effectiveness of chest pain unit care in the NHS. BMC Health Serv Res 2008;8:174. https://doi.org/10.1186/1472-6963-8-174 doi: 10.1186/1472-6963-8-174. [DOI] [PMC free article] [PubMed]
  191. Goodacre SW, Bradburn M, Cross E, Collinson P, Gray A, Hall AS, RATPAC Research Team. The Randomised Assessment of Treatment using Panel Assay of Cardiac markers (RATPAC) trial: a randomised controlled trial of point-of-care cardiac markers in the emergency department. Heart 2011;97:190–6. https://doi.org/10.1136/hrt.2010.203166 doi: 10.1136/hrt.2010.203166. [DOI] [PubMed]
  192. Ambavane A, Lindahl B, Giannitsis E, Roiz J, Mendivil J, Frankenstein L, et al. Economic evaluation of the one-hour rule-out and rule-in algorithm for acute myocardial infarction using the high-sensitivity cardiac troponin T assay in the emergency department. PLOS ONE 2017;12:e0187662. https://doi.org/10.1371/journal.pone.0187662 doi: 10.1371/journal.pone.0187662. [DOI] [PMC free article] [PubMed]
  193. Gamble JHP, Hutchinson T, Eayrs KE, Orr WP. A rapid chest pain assessment pathway including high-sensitivity troponin T testing reduces length of stay. Heart 2013;99:A18. https://doi.org/10.1136/heartjnl-2013-304019.22 doi: 10.1136/heartjnl-2013-304019.22. [DOI]
  194. Tamimi W, Alajlan A, Alsolamy S, Julicher P. A queuing model analysis to evaluate the impact of high-sensitive troponin I on emergency department management metrics. Clin Chem 2016;62:S30.
  195. Davies T, De Silva K, Haslam D, Fluck D, Williams M, Jacques A, et al. Current utilisation of high-sensitivity troponin; does it improve our accuracy in diagnosing acute myocardial infarction? Heart 2015;101:A6–A7. https://doi.org/10.1136/heartjnl-2015-308066.10 doi: 10.1136/heartjnl-2015-308066.10. [DOI]
  196. Twerenbold R, Jaeger C, Rubini Gimenez M, Wildi K, Reichlin T, Nestelberger T, et al. Impact of high-sensitivity cardiac troponin on use of coronary angiography, cardiac stress testing, and time to discharge in suspected acute myocardial infarction. Eur Heart J 2016;37:3324–32. https://doi.org/10.1093/eurheartj/ehw232 doi: 10.1093/eurheartj/ehw232. [DOI] [PMC free article] [PubMed]
  197. Vaidya A, Severens JL, Bongaerts BW, Cleutjens KB, Nelemans PJ, Hofstra L, et al. High-sensitive troponin T assay for the diagnosis of acute myocardial infarction: an economic evaluation. BMC Cardiovasc Disord 2014;14:77. https://doi.org/10.1186/1471-2261-14-77 doi: 10.1186/1471-2261-14-77. [DOI] [PMC free article] [PubMed]
  198. Kaambwa B, Ratcliffe J, Horsfall M, Astley C, Karnon J, Coates P, et al. Cost effectiveness of high-sensitivity troponin compared to conventional troponin among patients presenting with undifferentiated chest pain: a trial based analysis. Int J Cardiol 2017;238:144–50. https://doi.org/10.1016/j.ijcard.2017.02.141 doi: 10.1016/j.ijcard.2017.02.141. [DOI] [PubMed]
  199. Shortt C, Xie F, Whitlock R, Ma J, Clayton N, Sherbino J, et al. Economic considerations of early rule-in/rule-out algorithms for the diagnosis of myocardial infarction in the emergency department using cardiac troponin and glycemic biomarkers. Clin Chem 2017;63:593–602. https://doi.org/10.1373/clinchem.2016.261776 doi: 10.1373/clinchem.2016.261776. [DOI] [PubMed]
  200. Department of Health and Social Care (DHSC). The NHS Plan: A Plan for Investment, A Plan for Reform. London: DHSC; 2000.
  201. Lipinski MJ, Baker NC, Escárcega RO, Torguson R, Chen F, Aldous SJ, et al. Comparison of conventional and high-sensitivity troponin in patients with chest pain: a collaborative meta-analysis. Am Heart J 2015;169:6–16.e6. https://doi.org/10.1016/j.ahj.2014.10.007 doi: 10.1016/j.ahj.2014.10.007. [DOI] [PubMed]
  202. Healthcare Quality Improvement Programme. Myocardial Ischaemia National Audit Project: 2019 Summary Report (2017/18 Data). URL: www.nicor.org.uk/wp-content/uploads/2019/09/MINAP-2019-Summary-Report-final.pdf (accessed 6 February 2020).
  203. Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, et al. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med 2000;342:1163–70. https://doi.org/10.1056/NEJM200004203421603 doi: 10.1056/NEJM200004203421603. [DOI] [PubMed]
  204. Office for National Statistics. Interim Life Tables, England & Wales, 1980–82 to 2010–12. URL: www.ons.gov.uk/ons/rel/lifetables/interim-life-tables/2010-2012/rft-ew.xls (accessed 20 February 2020).
  205. British Heart Foundation. Heart Statistics: Morbidity, Incidence. URL: www.bhf.org.uk/research/heart-statistics/morbidity/incidence.aspx (accessed 20 February 2020).
  206. Smolina K, Wright FL, Rayner M, Goldacre MJ. Long-term survival and recurrence after acute myocardial infarction in England, 2004 to 2010. Circ Cardiovasc Qual Outcomes 2012;5:532–40. https://doi.org/10.1161/CIRCOUTCOMES.111.964700 doi: 10.1161/CIRCOUTCOMES.111.964700. [DOI] [PubMed]
  207. Allen LA, O’Donnell CJ, Camargo CA, Giugliano RP, Lloyd-Jones DM. Comparison of long-term mortality across the spectrum of acute coronary syndromes. Am Heart J 2006;151:1065–71. https://doi.org/10.1016/j.ahj.2005.05.019 doi: 10.1016/j.ahj.2005.05.019. [DOI] [PubMed]
  208. Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 1998;280:1690–1. https://doi.org/10.1001/jama.280.19.1690 doi: 10.1001/jama.280.19.1690. [DOI] [PubMed]
  209. Danese MD, Gleeson M, Kutikova L, Griffiths RI, Azough A, Khunti K, et al. Estimating the economic burden of cardiovascular events in patients receiving lipid-modifying therapy in the UK. BMJ Open 2016;6:e011805. https://doi.org/10.1136/bmjopen-2016-011805 doi: 10.1136/bmjopen-2016-011805. [DOI] [PMC free article] [PubMed]
  210. NHS Improvement. NHS Reference Costs 2017–2018. URL: https://improvement.nhs.uk/resources/reference-costs/ (accessed 19 February 2020).
  211. Walker S, Asaria M, Manca A, Palmer S, Gale CP, Shah AD, et al. Long-term healthcare use and costs in patients with stable coronary artery disease: a population-based cohort using linked health records (CALIBER). Eur Heart J Qual Care Clin Outcomes 2016;2:125–40. https://doi.org/10.1093/ehjqcco/qcw003 doi: 10.1093/ehjqcco/qcw003. [DOI] [PMC free article] [PubMed]
  212. Personal Social Services Research Unit. Unit Costs of Health and Social Care 2018. URL: www.pssru.ac.uk/project-pages/unit-costs/unit-costs-2018/ (accessed 19 February 2020).
  213. Cottens D, Maeremans J, McCutcheon K, Lamers S, Roux L, Duponselle J, et al. Prognostic value of the high-sensitivity troponin T assay after percutaneous intervention of chronic total occlusions. J Cardiovasc Med 2018;19:366–72. https://doi.org/10.2459/JCM.0000000000000660 doi: 10.2459/JCM.0000000000000660. [DOI] [PubMed]
  214. Neumann JT, Twerenbold R, Ojeda F, Sörensen NA, Chapman AR, Shah ASV, et al. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med 2019;380:2529–40. https://doi.org/10.1056/NEJMoa1803377 doi: 10.1056/NEJMoa1803377. [DOI] [PubMed]
  215. Chew DP, Lambrakis K, Blyth A, Seshadri A, Edmonds MJR, Briffa T, et al. A randomized trial of a 1-hour troponin T protocol in suspected acute coronary syndromes: the Rapid Assessment of Possible ACS In the emergency Department with high sensitivity Troponin T (RAPID-TnT) study. Circulation 2019;140:1543–56. https://doi.org/10.1161/CIRCULATIONAHA.119.042891 doi: 10.1161/CIRCULATIONAHA.119.042891. [DOI] [PubMed]
  216. Whiting P, Westwood M, Beynon R, Burke M, Sterne JA, Glanville J. Inclusion of methodological filters in searches for diagnostic test accuracy studies misses relevant studies. J Clin Epidemiol 2011;64:602–7. https://doi.org/10.1016/j.jclinepi.2010.07.006 doi: 10.1016/j.jclinepi.2010.07.006. [DOI] [PubMed]
  217. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 2005;58:882–93. https://doi.org/10.1016/j.jclinepi.2005.01.016 doi: 10.1016/j.jclinepi.2005.01.016. [DOI] [PubMed]
  218. Lee C-C, Huang S-S, Yeo YH, Hou Y-T, Park JY, Inoue K, et al. High-sensitivity-cardiac troponin for accelerated diagnosis of acute myocardial infarction: a systematic review and meta-analysis. Am J Emerg Med 2020;38:1402–7. https://doi.org/10.1016/j.ajem.2019.11.035 doi: 10.1016/j.ajem.2019.11.035. [DOI] [PubMed]
  219. Backus BE, Six AJ, Kelder JC, Bosschaert MA, Mast EG, Mosterd A, et al. A prospective validation of the HEART score for chest pain patients at the emergency department. Int J Cardiol 2013;168:2153–8. https://doi.org/10.1016/j.ijcard.2013.01.255 doi: 10.1016/j.ijcard.2013.01.255. [DOI] [PubMed]
  220. Van Den Berg P, Body R. The HEART score for early rule out of acute coronary syndromes in the emergency department: a systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care 2018;7:111–19. https://doi.org/10.1177/2048872617710788 doi: 10.1177/2048872617710788. [DOI] [PubMed]
  221. Laureano-Phillips J, Robinson RD, Aryal S, Blair S, Wilson D, Boyd K, et al. HEART score risk stratification of low-risk chest pain patients in the emergency department: a systematic review and meta-analysis. Ann Emerg Med 2019;74:187–203. https://doi.org/10.1016/j.annemergmed.2018.12.010 doi: 10.1016/j.annemergmed.2018.12.010. [DOI] [PubMed]
  222. Anderson F, FitaGerald G. Methods and Formulas Used to Calculate the GRACE Risk Scores for Patients Presenting to Hospital with an Acute Coronary Syndrome. URL: www.outcomes-umassmed.org/grace/files/GRACE_RiskModel_Coefficients.pdf (accessed 12 February 2020).
  223. Antman EM, Cohen M, Bernink PJ, McCabe CH, Horacek T, Papuchis G, et al. The TIMI risk score for unstable angina/non-ST elevation MI: a method for prognostication and therapeutic decision making. JAMA 2000;284:835–42. https://doi.org/10.1001/jama.284.7.835 doi: 10.1001/jama.284.7.835. [DOI] [PubMed]
  224. Than M, Flaws D, Sanders S, Doust J, Glasziou P, Kline J, et al. Development and validation of the emergency department assessment of chest pain score and 2 h accelerated diagnostic protocol. Emerg Med Australas 2014;26:34–44. https://doi.org/10.1111/1742-6723.12164 doi: 10.1111/1742-6723.12164. [DOI] [PubMed]
  225. Mehta SR, Granger CB, Boden WE, Steg PG, Bassand JP, Faxon DP, et al. Early versus delayed invasive intervention in acute coronary syndromes. N Engl J Med 2009;360:2165–75. https://doi.org/10.1056/NEJMoa0807986 doi: 10.1056/NEJMoa0807986. [DOI] [PubMed]
  226. Kimenai DM, Janssen EBNJ, Eggers KM, Lindahl B, den Ruijter HM, Bekers O, et al. Sex-specific versus overall clinical decision limits for cardiac troponin I and T for the diagnosis of acute myocardial infarction: a systematic review. Clin Chem 2018;64:1034–43. https://doi.org/10.1373/clinchem.2018.286781 doi: 10.1373/clinchem.2018.286781. [DOI] [PubMed]
  227. Cannon CP, Battler A, Brindis RG, Cox JL, Ellis SG, Every NR, et al. American College of Cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. A report of the American College of Cardiology Task Force on Clinical Data Standards (Acute Coronary Syndromes Writing Committee). J Am Coll Cardiol 2001;38:2114–30. https://doi.org/10.1016/S0735-1097(01)01702-8 doi: 10.1016/S0735-1097(01)01702-8. [DOI] [PubMed]
  228. Apple FS, Jesse RL, Newby LK, Wu AH, Christenson RH, Cannon CP, et al. National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: analytical issues for biochemical markers of acute coronary syndromes. Clin Chem 2007;53:547–51. https://doi.org/10.1373/clinchem.2006.084715 doi: 10.1373/clinchem.2006.084715. [DOI] [PubMed]
  229. Worster A, Kavsak P. High-STEACS Algorithm missed fewer patients with acute MI than the ESC Pathway in the ED. Ann Intern Med 2017;167:JC34. https://doi.org/10.7326/ACPJC-2017-167-6-034 doi: 10.7326/ACPJC-2017-167-6-034. [DOI] [PubMed]
  230. Giannitsis E, Becker M, Kurz K, Hess G, Zdunek D, Katus HA. High-sensitivity cardiac troponin T for early prediction of evolving non-ST-segment elevation myocardial infarction in patients with suspected acute coronary syndrome and negative troponin results on admission. Clin Chem 2010;56:642–50. https://doi.org/10.1373/clinchem.2009.134460 doi: 10.1373/clinchem.2009.134460. [DOI] [PubMed]
  231. Aguirre P, Reyes G, Blanchet J, Nacke L, Coronel ML, Macín SM, et al. [The value in daily practice of high sensitive troponin T for myocardial infarction diagnosis.] Insuf Card 2014;9:2–7.
  232. Badertscher P, Boeddinghaus J, Twerenbold R, Nestelberger T, Wussler D, Puelacher C, et al. Direct comparison of the 0/1h- and 0/3h-algorithm for early rule-out of acute myocardial infarction. Eur Heart J 2018;39:354. https://doi.org/10.1093/eurheartj/ehy565.P1735 doi: 10.1093/eurheartj/ehy565.P1735. [DOI]
  233. Bandstein N, Ljung R, Johansson M, Holzmann MJ. Undetectable high-sensitivity cardiac troponin T level in the emergency department and risk of myocardial infarction. J Am Coll Cardiol 2014;63:2569–78. https://doi.org/10.1016/j.jacc.2014.03.017 doi: 10.1016/j.jacc.2014.03.017. [DOI] [PubMed]
  234. Biener M, Mueller M, Vafaie M, Jaffe AS, Widera C, Katus HA, Giannitsis E. Diagnostic performance of rising, falling, or rising and falling kinetic changes of high-sensitivity cardiac troponin T in an unselected emergency department population. Eur Heart J Acute Cardiovasc Care 2013;2:314–22. https://doi.org/10.1177/2048872613498517 doi: 10.1177/2048872613498517. [DOI] [PMC free article] [PubMed]
  235. Borna C, Thelin J, Ohlin B, Erlinge D, Ekelund U. High-sensitivity troponin T as a diagnostic tool for acute coronary syndrome in the real world: an observational study. Eur J Emerg Med 2014;21:181–8. https://doi.org/10.1097/MEJ.0b013e328362a71b doi: 10.1097/MEJ.0b013e328362a71b. [DOI] [PubMed]
  236. Burgio MA, Marino G. [cTnT-hs in the early diagnosis of acute myocardial infarction: evaluation of rapid rule-out (0-1 h) in an emergency department population.] Riv Ital della Medicina di Lab 2018;14:208–15. https://doi.org/10.1007/s13631-018-00214-3 doi: 10.1007/s13631-018-00214-3. [DOI]
  237. Burgio MA, Marino G, Di Maria D. [Troponin cTnT-hs: a matter of gender and age? Evaluation of differentiated cut-offs by gender and age in an emergency department population.] Riv Ital della Medicina di Lab 2018;14:41–9. https://doi.org/10.1007/s13631-018-0184-z doi: 10.1007/s13631-018-0184-z. [DOI]
  238. Canadian Institutes of Health Research McMaster University. Optimum Troponin Cutoffs for ACS in the ED (ROMI-3). URL: https://ClinicalTrials.gov/show/ NCT01994577 (accessed 20 February 2020).
  239. Cortes MM, Lambardi F, Ariznavarreta P, Resi S, Arbucci R, Borda M, et al. [Usefulness of the HEART Score with High-Sensitivity Troponin T for the evaluation of patients with chest pain.] Rev Argent Cardiol 2018;86:15–24. https://doi.org/10.7775/rac.v86.i5.13326 doi: 10.7775/rac.v86.i5.13326. [DOI]
  240. Costabel JP, Conde D, Lambardi F, Barboza AC, Cobo AL, Aragon M, et al. Evaluation of a new diagnostic algorithm for acute coronary syndrome using high-sensitivity troponin T assay. Rev Argent Cardiol 2014;82:298–303.
  241. Costabel JP, Ariznavarreta P, Lambardi F, Arbucci R, Vergara JM, Katib C, et al. Results of the first patients with suspected acute coronary syndrome evaluated with the 1-hour algorithm proposed by the European Society of Cardiology. Rev Argent Cardiol 2019;87:193–8. https://doi.org/10.7775/rac.v87.i4.11881 doi: 10.7775/rac.v87.i4.11881. [DOI]
  242. Croce A, Brunati P, Colzani C, Terramocci R, Favero S, Bordoni G, Galli C. A Rational adoption of the high sensitive assay for cardiac troponin I in diagnostic routine. Dis Markers 2017;2017:4523096. https://doi.org/10.1155/2017/4523096 doi: 10.1155/2017/4523096. [DOI] [PMC free article] [PubMed]
  243. Cullen L, Parsonage WA, Greenslade J, Lamanna A, Hammett CJ, Than M, et al. Delta troponin for the early diagnosis of AMI in emergency patients with chest pain. Int J Cardiol 2013;168:2602–8. https://doi.org/10.1016/j.ijcard.2013.03.044 doi: 10.1016/j.ijcard.2013.03.044. [DOI] [PubMed]
  244. Cullen L, Parsonage W, Greenslade J, Aldous S, George P, Lamanna A, et al. Use of sex-specific cut-offs with highly sensitive troponin I assay values for the diagnosis of acute myocardial infarction in emergency patients with chest pain. Eur Heart J 2013;34:735–6. https://doi.org/10.1093/eurheartj/eht309.P4056 doi: 10.1093/eurheartj/eht309.P4056. [DOI]
  245. Cullen L, Greenslade J, Than M, Tate J, Ungerer JP, Pretorius C, et al. Performance of risk stratification for acute coronary syndrome with two-hour sensitive troponin assay results. Heart Lung Circ 2014;23:428–34. https://doi.org/10.1016/j.hlc.2013.11.003 doi: 10.1016/j.hlc.2013.11.003. [DOI] [PubMed]
  246. Cullen L, Greenslade JH, Than M, Brown AF, Hammett CJ, Lamanna A, et al. The new Vancouver Chest Pain Rule using troponin as the only biomarker: an external validation study. Am J Emerg Med 2014;32:129–34. https://doi.org/10.1016/j.ajem.2013.10.021 doi: 10.1016/j.ajem.2013.10.021. [DOI] [PubMed]
  247. Dadkhah S, Almuwaqqat Z, Sulaiman S, Husein H, Nguyen Q, Ali S, Taskesen T. Sensitive troponin I and stress testing in the emergency department for the early management of chest pain using 2-hour protocol. Crit Pathw Cardiol 2017;16:89–92. https://doi.org/10.1097/HPC.0000000000000115 doi: 10.1097/HPC.0000000000000115. [DOI] [PubMed]
  248. Druey S, Wildi K, Twerenbold R, Jaeger C, Reichlin T, Haaf P, et al. Early rule-out and rule-in of myocardial infarction using sensitive cardiac Troponin I. Int J Cardiol 2015;195:163–70. https://doi.org/10.1016/j.ijcard.2015.05.079 doi: 10.1016/j.ijcard.2015.05.079. [DOI] [PubMed]
  249. Ferencik M, Mayrhofer T, Lu MT, Woodard PK, Truong QA, Peacock WF, et al. High-sensitivity cardiac troponin I as a Gatekeeper for coronary computed tomography angiography and stress testing in patients with acute chest pain. Clin Chem 2017;63:1724–33. https://doi.org/10.1373/clinchem.2017.275552 doi: 10.1373/clinchem.2017.275552. [DOI] [PMC free article] [PubMed]
  250. Gandolfo CM, Nowak R, Hudson MP, Moyer M, Christenson R, Cook B, et al. Baseline high sensitivity troponin t value below the level of detection to rule-out acute myocardial infarction in the United States. Circulation 2017;136.
  251. Gandolfo CM, McCord J, Hudson MP, Moyer M, Christenson R, Cook B, et al. Rapid evaluation of acute myocardial infarction using a change in high-sensitivity cardiac troponin T over 1 hour. Circulation 2017;136.
  252. Goorden SM, van Engelen RA, Wong LS, van der Ploeg T, Verdel GJ, Buijs MM. A novel troponin I rule-out value below the upper reference limit for acute myocardial infarction. Heart 2016;102:1721–7. https://doi.org/10.1136/heartjnl-2015-308667 doi: 10.1136/heartjnl-2015-308667. [DOI] [PubMed]
  253. Greenslade JH, Nayer R, Parsonage W, Doig S, Young J, Pickering JW, et al. Validating the Manchester Acute Coronary Syndromes (MACS) and Troponin-only Manchester Acute Coronary Syndromes (T-MACS) rules for the prediction of acute myocardial infarction in patients presenting to the emergency department with chest pain. Emerg Med J 2017;34:517–23. https://doi.org/10.1136/emermed-2016-206366 doi: 10.1136/emermed-2016-206366. [DOI] [PubMed]
  254. Greenslade JH, Carlton EW, Van Hise C, Cho E, Hawkins T, Parsonage WA, et al. Diagnostic accuracy of a new high-sensitivity troponin I assay and five accelerated diagnostic pathways for ruling out acute myocardial infarction and acute coronary syndrome. Ann Emerg Med 2018;71:439–51.e3. https://doi.org/10.1016/j.annemergmed.2017.10.030 doi: 10.1016/j.annemergmed.2017.10.030. [DOI] [PubMed]
  255. Gunsolus I, Sandoval Y, Smith SW, Sexter A, Schulz K, Herzog CA, Apple FS. Renal dysfunction influences the diagnostic and prognostic performance of high-sensitivity cardiac troponin I. J Am Soc Nephrol 2018;29:636–43. https://doi.org/10.1681/ASN.2017030341 doi: 10.1681/ASN.2017030341. [DOI] [PMC free article] [PubMed]
  256. Ichise T, Tada H, Sakata K, Kawashiri MA, Yamagishi M, Hayashi K. Impact of aging on high-sensitivity cardiac troponin T in patients suspected of acute myocardial infarction. Intern Med 2017;56:2097–102. https://doi.org/10.2169/internalmedicine.8510-16 doi: 10.2169/internalmedicine.8510-16. [DOI] [PMC free article] [PubMed]
  257. Invernizzi L, Doka M, Cappellini F, Signorelli S, Falbo R, Ronzoni G, et al. [Effectiveness of highly sensitive troponin T assay for early diagnosis of acute myocardial infarction (AMI).] Biochim Clin 2013;37:36–9.
  258. Isiksacan N, Biyik I, Erturk M, Koser M, Karakurt H, Ozalp B, et al. Comparison of high sensitive and conventional troponin assays in diagnosis of acute myocardial infarction. Turk Biyokim Derg 2017;42:77–85. https://doi.org/10.1515/tjb-2016-0270 doi: 10.1515/tjb-2016-0270. [DOI]
  259. Isiksacan N, Biyik I, Opan S, Caglar FNT, Erturk M, Yazan S, et al. Effect of age and gender differences on high-sensitive troponin T measurement in the diagnosis of acute myocardial infarction. J Lab Med 2019;43:35–40. https://doi.org/10.1515/labmed-2018-0326 doi: 10.1515/labmed-2018-0326. [DOI]
  260. Poole Hospital NHS Foundation Trust. Triage Rule-out Using Sensitive Troponin (TRUST): Study of Early Risk-Stratification of Suspected Cardiac Chest Pain and Initiation of 1-hour High-Sensitivity Troponin Testing in Very Low and Low-Risk Emergency Department Patients. URL: http://isrctn.com/ISRCTN21109279 (accessed 20 February 2020).
  261. Kavsak PA, Worster A, Hill SA, Jaffe AS. Evaluation of the Siemens ADVIA Centaur high-sensitivity cardiac troponin I assay in serum. Clin Chim Acta 2018;487:216–21. https://doi.org/10.1016/j.cca.2018.10.012 doi: 10.1016/j.cca.2018.10.012. [DOI] [PubMed]
  262. Kavsak PA, Worster A, Shortt C, Ma J, Clayton N, Sherbino J, et al. High-sensitivity cardiac troponin concentrations at emergency department presentation in females and males with an acute cardiac outcome. Ann Clin Biochem 2018;55:604–7. https://doi.org/10.1177/0004563217743997 doi: 10.1177/0004563217743997. [DOI] [PubMed]
  263. Kavsak PA, Worster A, Shortt C, Ma J, Clayton N, Sherbino J, et al. Performance of high-sensitivity cardiac troponin in the emergency department for myocardial infarction and a composite cardiac outcome across different estimated glomerular filtration rates. Clin Chim Acta 2018;479:166–70. https://doi.org/10.1016/j.cca.2018.01.034 doi: 10.1016/j.cca.2018.01.034. [DOI] [PubMed]
  264. Kaysak PA, Clark L, Jaffe AS. Effect of repeat measurements of high sensitivity cardiac troponin on the same sample using the European Society of Cardiology 0-hour/1-hour or 2-hour algorithms for early rule-out and rule-in for myocardial infarction. Clin Chem 2017;63:1163–5. https://doi.org/10.1373/clinchem.2017.272914 doi: 10.1373/clinchem.2017.272914. [DOI] [PubMed]
  265. Kellens S, Verbrugge FH, Vanmechelen M, Grieten L, Van Lierde J, Dens J, et al. Point-of-care heart-type fatty acid binding protein versus high-sensitivity troponin T testing in emergency patients at high risk for acute coronary syndrome. Eur Heart J Acute Cardiovasc Care 2016;5:177–84. https://doi.org/10.1177/2048872615570221 doi: 10.1177/2048872615570221. [DOI] [PubMed]
  266. Korley FK, Schulman SP, Sokoll LJ, DeFilippis AP, Stolbach AI, Bayram JD, et al. Troponin elevations only detected with a high-sensitivity assay: clinical correlations and prognostic significance. Acad Emerg Med 2014;21:727–35. https://doi.org/10.1111/acem.12417 doi: 10.1111/acem.12417. [DOI] [PubMed]
  267. Kovács F, Kocsis I, Varga M, Sárváry E, Bicsák G. [Automated measurement of biomarkers for the diagnosis of acute myocardial infarction.] Orv Hetil 2015;156:964–71. https://doi.org/10.1556/650.2015.30145 doi: 10.1556/650.2015.30145. [DOI] [PubMed]
  268. Lin Y, Zhang G, Feng G, Li Y, Zhu J, Zhou Z, et al. 1/3 hours rule in and rule out algorithm for NSTEMI using a high-sensitivity cardiac troponin I at emergency department in Chinese population. Clin Chem 2018;64:S49.
  269. Ljung L, Lindahl B, Eggers KM, Frick M, Linder R, Löfmark HB, et al. A rule-out strategy based on high-sensitivity troponin and HEART score reduces hospital admissions. Ann Emerg Med 2019;73:491–9. https://doi.org/10.1016/j.annemergmed.2018.11.039 doi: 10.1016/j.annemergmed.2018.11.039. [DOI] [PubMed]
  270. McCord J, Cabrera R, Lindahl B, Giannitsis E, Evans K, Nowak R, et al. Prognostic utility of a modified HEART score in chest pain patients in the emergency department. Circ Cardiovasc Qual Outcomes 2017;10:e003101. https://doi.org/10.1161/CIRCOUTCOMES.116.003101 doi: 10.1161/CIRCOUTCOMES.116.003101. [DOI] [PubMed]
  271. McRae AD, Innes G, Graham M, Lang E, Andruchow JE, Ji Y, et al. Undetectable concentrations of a food and drug administration-approved high-sensitivity cardiac troponin T assay to rule out acute myocardial infarction at emergency department arrival. Acad Emerg Med 2017;24:1267–77. https://doi.org/10.1111/acem.13229 doi: 10.1111/acem.13229. [DOI] [PMC free article] [PubMed]
  272. McRae AD, Innes G, Graham M, Lang E, Andruchow JE, Yang H, et al. Comparative evaluation of 2-hour rapid diagnostic algorithms for acute myocardial infarction using high-sensitivity cardiac troponin T. Can J Cardiol 2017;33:1006–12. https://doi.org/10.1016/j.cjca.2017.04.010 doi: 10.1016/j.cjca.2017.04.010. [DOI] [PubMed]
  273. McRae A, Graham M, Abedin T, Ji Y, Yang H, Wang D, et al. Sex-specific, high-sensitivity cardiac troponin T cut-off concentrations for ruling out acute myocardial infarction with a single measurement. CJEM 2019;21:26–33. https://doi.org/10.1017/cem.2018.435 doi: 10.1017/cem.2018.435. [DOI] [PubMed]
  274. Mohsen M, Shawky A. The diagnostic utility of high-sensitivity cardiac troponin T in acute coronary syndrome. Egypt Heart J 2016;68:1–9. https://doi.org/10.1016/j.ehj.2014.12.003 doi: 10.1016/j.ehj.2014.12.003. [DOI]
  275. Mueller T, Egger M, Peer E, Jani E, Dieplinger B. Evaluation of sex-specific cut-off values of high-sensitivity cardiac troponin I and T assays in an emergency department setting – results from the Linz Troponin (LITROP) study. Clin Chim Acta 2018;487:66–74. https://doi.org/10.1016/j.cca.2018.09.026 doi: 10.1016/j.cca.2018.09.026. [DOI] [PubMed]
  276. Nacke L, Blanchet J, Reyes G, Aguirre P, Zoni R, Perna ER, et al. [Effectiveness of different cutoff points of high-sensitivity troponin T to diagnose myocardial infarction.] Rev de la Fed Argentina de Cardiol 2014;43:141–5.
  277. Nasuruddin DN, Muzaini NH, Zaini IZ, Nawi AM, Hassan HHC, Choor CK, et al. Clinical comparison of two high sensitive troponin-I assays in patients suspected of acute myocardial infarction in the emergency department. Int J Cardiol 2017;249:S17–S18. https://doi.org/10.1016/j.ijcard.2017.09.073 doi: 10.1016/j.ijcard.2017.09.073. [DOI]
  278. Nejatian A, Omstedt Å, Höijer J, Hansson LO, Djärv T, Eggers KM, Svensson P. Outcomes in Patients with chest pain discharged after evaluation using a high-sensitivity troponin T assay. J Am Coll Cardiol 2017;69:2622–30. https://doi.org/10.1016/j.jacc.2017.03.586 doi: 10.1016/j.jacc.2017.03.586. [DOI] [PubMed]
  279. Nestelberger T, Wildi K, Boeddinghaus J, Twerenbold R, Reichlin T, Gimenez MR, et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0 h/1 h-algorithm for the early diagnosis of acute myocardial infarction. Int J Cardiol 2016;207:238–45. https://doi.org/10.1016/j.ijcard.2016.01.112 doi: 10.1016/j.ijcard.2016.01.112. [DOI] [PubMed]
  280. Nestelberger T, Boeddinghaus J, Wussler D, Twerenbold R, Badertscher P, Wildi K, et al. Predicting major adverse events in patients with acute myocardial infarction. J Am Coll Cardiol 2019;74:842–54. https://doi.org/10.1016/j.jacc.2019.06.025 doi: 10.1016/j.jacc.2019.06.025. [DOI] [PubMed]
  281. Neumann JT, Sörensen NA, Rübsamen N, Ojeda F, Schock A, Seddighizadeh P, et al. Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. Int J Cardiol 2019;283:35–40. https://doi.org/10.1016/j.ijcard.2018.12.001 doi: 10.1016/j.ijcard.2018.12.001. [DOI] [PubMed]
  282. Nowak R, Mueller C, Giannitsis E, Christ M, Ordonez-Llanos J, DeFilippi C, et al. High sensitivity cardiac troponin T in patients not having an acute coronary syndrome: results from the TRAPID-AMI study. Biomarkers 2017;22:709–14. https://doi.org/10.1080/1354750X.2017.1334154 doi: 10.1080/1354750X.2017.1334154. [DOI] [PubMed]
  283. Papendick C, Blyth A, Seshadri A, Edmonds MJR, Briffa T, Cullen L, et al. A randomized trial of a 1-hour troponin T protocol in suspected acute coronary syndromes: design of the Rapid Assessment of Possible ACS In the emergency Department with high sensitivity Troponin T (RAPID-TnT) study. Am Heart J 2017;190:25–33. https://doi.org/10.1016/j.ahj.2017.05.004 doi: 10.1016/j.ahj.2017.05.004. [DOI] [PubMed]
  284. Peitsmeyer P, Schwemer T, Schluter M, Ojeda F, Wildi K, Zeller T, et al. Validated staged algorithm using high-sensitivity assayed cardiac troponin I to diagnose non-ST-segment elevation myocardial infarction in patients with acute chest pain. Circulation 2013;128.
  285. Peitsmeyer P, Schwemer T, Schlueter M, Ojeda F, Zeller T, Sinning C, et al. Gender-specific diagnosis of acute myocardial infarction using high-sensitivity assayed cardiac troponin I. Eur Heart J 2013;34:646. https://doi.org/10.1093/eurheartj/eht309.3512 doi: 10.1093/eurheartj/eht309.3512. [DOI]
  286. Pettersson A, Ljung L, Johansson C, Heilborn U, Jernberg T, Frick M, et al. Experiences of a one-hour algorithm in chest pain patients with a nonelevated troponin T at presentation. Crit Pathw Cardiol 2018;17:6–12. https://doi.org/10.1097/HPC.0000000000000138 doi: 10.1097/HPC.0000000000000138. [DOI] [PMC free article] [PubMed]
  287. Pickering JW, Young JM, George P, Aldous S, Cullen L, Greenslade JH, et al. The utility of presentation and 4-hour high sensitivity troponin I to rule-out acute myocardial infarction in the emergency department. Clin Biochem 2015;48:1219–24. https://doi.org/10.1016/j.clinbiochem.2015.07.033 doi: 10.1016/j.clinbiochem.2015.07.033. [DOI] [PubMed]
  288. Pickering JW, Greenslade JH, Cullen L, Flaws D, Parsonage W, Aldous S, et al. Assessment of the European Society of Cardiology 0-hour/1-hour algorithm to rule-out and rule-in acute myocardial infarction. Circulation 2016;134:1532–41. https://doi.org/10.1161/CIRCULATIONAHA.116.022677 doi: 10.1161/CIRCULATIONAHA.116.022677. [DOI] [PubMed]
  289. Pickering JW, Greenslade JH, Cullen L, Flaws D, Parsonage W, George P, et al. Validation of presentation and 3-h high-sensitivity troponin to rule-in and rule-out acute myocardial infarction. Heart 2016;102:1270–8. https://doi.org/10.1136/heartjnl-2015-308505 doi: 10.1136/heartjnl-2015-308505. [DOI] [PubMed]
  290. Pickering JW, Young JM, George PM, Watson AS, Aldous SJ, Troughton RW, et al. Validity of a novel point-of-care troponin assay for single-test rule-out of acute myocardial infarction. JAMA Cardiol 2018;3:1108–12. https://doi.org/10.1001/jamacardio.2018.3368 doi: 10.1001/jamacardio.2018.3368. [DOI] [PMC free article] [PubMed]
  291. Reddy LL, Shah SA, Dherai AJ, Ponde CK, Ashavaid TF. Troponin T and heart type fatty acid binding protein (H-FABP) as biomarkers in patients presenting with chest pain. 2016;31:87–92. https://doi.org/10.1007/s12291-015-0492-2 doi: 10.1007/s12291-015-0492-2. [DOI] [PMC free article] [PubMed]
  292. Reichlin T, Twerenbold R, Maushart C, Reiter M, Moehring B, Schaub N, et al. Risk stratification in patients with unstable angina using absolute serial changes of 3 high-sensitive troponin assays. Am Heart J 2013;165:371–8.e3. https://doi.org/10.1016/j.ahj.2012.11.010 doi: 10.1016/j.ahj.2012.11.010. [DOI] [PubMed]
  293. Renstroum R, Tjora HL, Steiro OT, Omland T, Bjoerneklett RO, Nygaard OK, et al. Combining the European Society of Cardiology troponin algorithms and HEART Score for ruling out acute coronary syndrome in unselected patients presenting with acute chest pain: the WESTCOR study. Eur Heart J 2018;39:355–6. https://doi.org/10.1093/eurheartj/ehy565.P1739 doi: 10.1093/eurheartj/ehy565.P1739. [DOI]
  294. Riedlinger D, Möckel M, Müller C, Holert F, Searle J, von Recum J, Slagman A. High-sensitivity cardiac troponin T for diagnosis of NSTEMI in the elderly emergency department patient: a clinical cohort study. Biomarkers 2018;23:551–7. https://doi.org/10.1080/1354750X.2018.1460763 doi: 10.1080/1354750X.2018.1460763. [DOI] [PubMed]
  295. Sandoval Y, Smith SW, Shah AS, Anand A, Chapman AR, Love SA, et al. Rapid rule-out of acute myocardial injury using a single high-sensitivity cardiac troponin I measurement. Clin Chem 2017;63:369–76. https://doi.org/10.1373/clinchem.2016.264523 doi: 10.1373/clinchem.2016.264523. [DOI] [PubMed]
  296. Santi L, Farina G, Gramenzi A, Trevisani F, Baccini M, Bernardi M, Cavazza M. The HEART score with high-sensitive troponin T at presentation: ruling out patients with chest pain in the emergency room. Intern Emerg Med 2017;12:357–64. https://doi.org/10.1007/s11739-016-1461-3 doi: 10.1007/s11739-016-1461-3. [DOI] [PubMed]
  297. Schoenenberger AW, Stallone F, Walz B, Bergner M, Twerenbold R, Reichlin T, et al. Incremental value of heart-type fatty acid-binding protein in suspected acute myocardial infarction early after symptom onset. Eur Heart J Acute Cardiovasc Care 2016;5:185–92. https://doi.org/10.1177/2048872615571256 doi: 10.1177/2048872615571256. [DOI] [PubMed]
  298. Schofer N, Brunner FJ, Schlüter M, Ojeda F, Zeller T, Baldus S, et al. Gender-specific diagnostic performance of a new high-sensitivity cardiac troponin I assay for detection of acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 2017;6:60–8. https://doi.org/10.1177/2048872615626660 doi: 10.1177/2048872615626660. [DOI] [PubMed]
  299. Schønemann-Lund M, Schoos MM, Iversen K, Hansen SI, Thode J, Clemmensen P, Steffensen R. Retrospective evaluation of two fast-track strategies to rule out acute coronary syndrome in a real-life chest pain population. J Emerg Med 2015;49:833–42. https://doi.org/10.1016/j.jemermed.2015.06.026 doi: 10.1016/j.jemermed.2015.06.026. [DOI] [PubMed]
  300. Shah AS, Griffiths M, Lee KK, McAllister DA, Hunter AL, Ferry AV, et al. High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: prospective cohort study. BMJ 2015;350:g7873. https://doi.org/10.1136/bmj.g7873 doi: 10.1136/bmj.g7873. [DOI] [PMC free article] [PubMed]
  301. Shortt C, Phan K, Hill SA, Worster A, Kavsak PA. An approach to rule-out an acute cardiovascular event or death in emergency department patients using outcome-based cutoffs for high-sensitivity cardiac troponin assays and glucose. Clin Biochem 2015;48:282–7. https://doi.org/10.1016/j.clinbiochem.2014.11.010 doi: 10.1016/j.clinbiochem.2014.11.010. [DOI] [PubMed]
  302. Stallone F, Schoenenberger AW, Puelacher C, Rubini Gimenez M, Walz B, Naduvilekoot Devasia A, et al. Incremental value of copeptin in suspected acute myocardial infarction very early after symptom onset. Eur Heart J Acute Cardiovasc Care 2016;5:407–15. https://doi.org/10.1177/2048872616641289 doi: 10.1177/2048872616641289. [DOI] [PubMed]
  303. Stoyanov KM, Hund H, Biener M, Gandowitz J, Riedle C, Löhr J, et al. RAPID-CPU: a prospective study on implementation of the ESC 0/1-hour algorithm and safety of discharge after rule-out of myocardial infarction. Eur Heart J Acute Cardiovasc Care 2020;9:39–51. https://doi.org/10.1177/2048872619861911 doi: 10.1177/2048872619861911. [DOI] [PMC free article] [PubMed]
  304. Su Q, Guo Y, Liu H, Qin Y, Zhang J, Yuan X, Zhao X. Diagnostic role of high-sensitivity cardiac troponin T in acute myocardial infarction and cardiac noncoronary artery disease. Arch Med Res 2015;46:193–8. https://doi.org/10.1016/j.arcmed.2015.03.005 doi: 10.1016/j.arcmed.2015.03.005. [DOI] [PubMed]
  305. Suh D, Keller DI, Hof D, von Eckardstein A, Gawinecka J. Rule-out of non-ST elevation myocardial infarction by five point of care cardiac troponin assays according to the 0 h/3 h algorithm of the European Society of Cardiology. Clin Chem Lab Med 2018;56:649–57. https://doi.org/10.1515/cclm-2017-0486 doi: 10.1515/cclm-2017-0486. [DOI] [PubMed]
  306. Teggert A, Twerenbold R. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Ann Clin Biochem 2015;52:720. https://doi.org/10.1177/0004563215605692 doi: 10.1177/0004563215605692. [DOI] [PubMed]
  307. Than M, Aldous S, Lord SJ, Goodacre S, Frampton CM, Troughton R, et al. A 2-hour diagnostic protocol for possible cardiac chest pain in the emergency department: a randomized clinical trial. JAMA Intern Med 2014;174:51–8. https://doi.org/10.1001/jamainternmed.2013.11362 doi: 10.1001/jamainternmed.2013.11362. [DOI] [PubMed]
  308. Than MP, Pickering JW, Aldous SJ, Cullen L, Frampton CM, Peacock WF, et al. Effectiveness of EDACS versus ADAPT accelerated diagnostic pathways for chest pain: a pragmatic randomized controlled trial embedded within practice. Ann Emerg Med 2016;68:93–102.e1. https://doi.org/10.1016/j.annemergmed.2016.01.001 doi: 10.1016/j.annemergmed.2016.01.001. [DOI] [PubMed]
  309. Thelin J, Borna C, Erlinge D, Öhlin B. The combination of high sensitivity troponin T and copeptin facilitates early rule-out of ACS: a prospective observational study. BMC Cardiovasc Disord 2013;13:42. https://doi.org/10.1186/1471-2261-13-42 doi: 10.1186/1471-2261-13-42. [DOI] [PMC free article] [PubMed]
  310. Thet EM, Murphy J, Crilley J. Outcome of integration of new centaur (Siemen’s) high-sensitivity troponin i assay with heart score chest pain pathway to maximise early discharge from emergency department (ED). Heart 2019;105:A136–A137. https://doi.org/10.1136/heartjnl-2019-BCS.160 doi: 10.1136/heartjnl-2019-BCS.160. [DOI]
  311. Twerenbold R, Meller B, Rubini M, Wildi K, Mueller M, Reichlin T, et al. One-hour rule-out and rule-in of acute myocardial infarction using siemens sensitive cardiac troponin I ultra. Eur Heart J 2013;34(Suppl. 1):74. https://doi.org/10.1093/eurheartj/eht307.P434 doi: 10.1093/eurheartj/eht307.P434. [DOI]
  312. Twerenbold R, Reichlin T, Rubini-Gimenez M, Mueller M, Wildi K, Haaf P, et al. One-hour rule-out and rule-in of acute myocardial infarction using Siemens high-sensitivity cardiac troponin T. Eur Heart J 2013;34:71. https://doi.org/10.1093/eurheartj/eht307.P424 doi: 10.1093/eurheartj/eht307.P424. [DOI]
  313. Twerenbold R, Neumann JT, Sörensen NA, Ojeda F, Karakas M, Boeddinghaus J, et al. Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. J Am Coll Cardiol 2018;72:620–32. https://doi.org/10.1016/j.jacc.2018.05.040 doi: 10.1016/j.jacc.2018.05.040. [DOI] [PubMed]
  314. Vigen R, Kutscher P, Fernandez F, Yu A, Bertulfo B, Hashim IA, et al. Evaluation of a novel rule-out myocardial infarction protocol incorporating high-sensitivity troponin T in a US hospital. Circulation 2018;138:2061–3. https://doi.org/10.1161/CIRCULATIONAHA.118.033861 doi: 10.1161/CIRCULATIONAHA.118.033861. [DOI] [PubMed]
  315. Wang G, Wang J, Wu S, Zheng W, Zhang H, Ma J, et al. Clinical impact of using a more sensitive troponin assay in patients with acute chest pain. Clin Cardiol 2019;42:561–7. https://doi.org/10.1002/clc.23177 doi: 10.1002/clc.23177. [DOI] [PMC free article] [PubMed]
  316. Wildi K, Singeisen H, Twerenbold R, Badertscher P, Wussler D, Klinkenberg LJJ, et al. Circadian rhythm of cardiac troponin I and its clinical impact on the diagnostic accuracy for acute myocardial infarction. Int J Cardiol 2018;270:14–20. https://doi.org/10.1016/j.ijcard.2018.05.136 doi: 10.1016/j.ijcard.2018.05.136. [DOI] [PubMed]
  317. Yip TP, Pascoe HM, Lane SE. Impact of high-sensitivity cardiac troponin I assays on patients presenting to an emergency department with suspected acute coronary syndrome. Med J Aust 2014;201:158–61. https://doi.org/10.5694/mja13.00117 doi: 10.5694/mja13.00117. [DOI] [PubMed]
  318. Yokoyama H, Higuma T, Endo T, Nishizaki F, Hanada K, Yokota T, et al. ‘30-minute-delta’ of high-sensitivity troponin I improves diagnostic performance in acute myocardial infarction. J Cardiol 2018;71:144–8. https://doi.org/10.1016/j.jjcc.2017.08.003 doi: 10.1016/j.jjcc.2017.08.003. [DOI] [PubMed]

RESOURCES