Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 May 27;10(21):e00262-21. doi: 10.1128/MRA.00262-21

Metagenomes, Metatranscriptomes, and Metagenome-Assembled Genomes from Chesapeake and Delaware Bay (USA) Water Samples

Mir Alvee Ahmed a, Shen Jean Lim a,*, Barbara J Campbell a,
Editor: Irene L G Newtonb
PMCID: PMC8201625  PMID: 34042480

ABSTRACT

Here, we present 36 metagenomes, 59 metatranscriptomes, and 373 metagenome-assembled genomes (MAGs) from Chesapeake and Delaware Bay water samples. This data set will be useful for studying microbial biogeochemical cycling in estuaries.

ANNOUNCEMENT

Estuaries are productive aquatic environments harboring diverse flora, fauna, and microbial communities important for global carbon and nutrient cycling (1, 2). Omics analyses of estuary-associated bacteria will reveal associations between bacterial communities, functional composition, and environmental variation. Three cruises and two cruises along longitudinal transects of the Delaware Bay (DEBay) and Chesapeake Bay (CPBay), two geographically close estuaries with contrasting environmental gradients, were completed in 2014 and 2015, respectively, aboard R/V Sharp. Surface (∼1.5 m below the seafloor [mbsf]) water samples were collected using a rosette sampler with associated conductivity-temperature-depth (CTD) profiles. The sampling scheme (3), environmental measurements, and bacterial production measurements (47) were described previously (47) and archived (https://www.bco-dmo.org/dataset/565451).

Cells were separated as large- and small-cell-size fractions by passing water samples through 0.8- and 0.22-μm-pore-size filters. Nucleic acids were extracted from size-fractionated cells using the Allprep DNA/RNA minikit (Qiagen, Valencia, CA, USA) (3). A total of 36 (12 from CPBay and 24 from DEBay) metagenomic and 59 (24 from CPBay and 35 from DEBay) metatranscriptomic libraries were prepared using the TruSeq library preparation kit (Illumina) and sequenced by the Joint Genome Institute on the Illumina HiSeq 2000 platform at 2 × 150 bp, as described previously (3). Two DEBay metagenomes (DEBay_Spr_30_<0.8_DNA and DEBay_Sum_22_D_<0.8_DNA) were also sequenced in-house with the Nanopore rapid sequencing kit (Oxford Nanopore Technologies, Kidlington, Oxfordshire, UK) on a MinION flow cell (R9.4 nanopores) with a MinION Mk1B sequencer. MinKNOW was used for basecalling (8). Sequencing statistics are in Table 1 (metagenomes) and online at https://doi.org/10.6084/m9.figshare.14173664 (metatranscriptomes).

TABLE 1.

Accession numbers and characteristics of metagenomes from the Chesapeake and Delaware Bay water samples

Metagenome NCBI BioSample no. Collection date (yr-mo-day), time No. of raw reads No. of paired reads No. of contigs Total length (bp) N50 (bp)
CPBay_Spr_0.1_0.8_DNA SAMN06266052 2015-4-11, 8:54 281,517,088 270,649,460 38,004 64,955,483 1,606
CPBay_Spr_15_0.2_DNA SAMN06264353 2015-4-13, 7:00 120,796,538 106,995,332 67,010 175,958,607 3,173
CPBay_Spr_15_0.8_DNA SAMN06266053 2015-4-13, 7:00 48,340,218 45,866,608 102,184 307,564,961 4,092
CPBay_Spr_31_0.2_DNA SAMN06264351 2015-4-16, 7:25 74,037,960 72,685,680 95,167 260,760,381 3,425
CPBay_Spr_31_0.8_DNA SAMN06264995 2015-4-16, 7:25 173,012,398 158,595,630 147,394 376,160,656 3,055
CPBay_Sum_0.6_0.2_DNA SAMN06266060 2015-8-17, 10:50 141,437,090 123,369,312 244,783 609,304,882 2,860
CPBay_Sum_0.6_0.8_DNA SAMN06265975 2015-8-17, 10:50 306,249,226 288,883,072 165,685 439,027,102 3,214
CPBay_Sum_15_0.2_DNA SAMN06265905 2015-8-20, 10:54 52,780,740 50,636,990 86,423 198,558,572 2,459
CPBay_Sum_15_0.8_DNA SAMN06266062 2015-8-20, 10:54 37,888,140 36,283,452 94,006 245,336,553 3,092
CPBay_Sum_20_0.8_DNA SAMN06264994 2015-8-21, 10:58 49,252,868 46,975,502 96,381 226,955,816 2,597
CPBay_Sum_27_0.2_DNA SAMN06265909 2015-8-22, 12:05 51,275,568 49,528,260 89,461 204,236,447 2,450
CPBay_Sum_27_0.8_DNA SAMN06265908 2015-8-22, 12:05 44,125,638 42,165,180 104,303 252,367,039 2,714
DEBay_Fall_0.3_<0.8_DNA SAMN06267360 2014-11-1, 10:58 52,987,214 49,649,484 80,360 186,561,286 2,537
DEBay_Fall_0.3_>0.8_DNA SAMN06343911 2014-11-1, 10:58 53,877,142 45,891,604 15,941 27,685,441 1,684
DEBay_Fall_15_<0.8_DNA SAMN06343912 2014-11-2, 10:53 60,854,638 57,122,564 77,305 181,237,773 2,621
DEBay_Fall_15_>0.8_DNA SAMN06343913 2014-11-2, 10:53 51,898,766 48,359,082 100,334 255,186,815 2,991
DEBay_Fall_30_<0.8_DNA SAMN06343914 2014-11-2, 11:00 43,142,140 41,842,196 99,481 216,180,152 2,284
DEBay_Fall_30_>0.8_DNA SAMN06267361 2014-11-3, 11:00 55,485,148 52,093,204 84,654 198,454,970 2,562
DEBay_Spr_0.19_<0.8_DNA SAMN06343915 2014-3-19, 7:15 202,927,872 185,316,006 12,660 22,762,283 1,744
DEBay_Spr_0.19_>0.8_DNA SAMN06343916 2014-3-19, 7:15 49,126,458 46,738,750 49,212 88,800,034 1,752
DEBay_Spr_20_<0.8_DNA SAMN06343917 2014-3-21, 10:00 46,744,568 45,198,034 189,456 516,684,036 3,292
DEBay_Spr_20_>0.8_DNA SAMN06343918 2014-3-21, 10:00 226,242,708 206,597,410 67,590 179,499,373 3,218
DEBay_Spr_30_<0.8_DNA SAMN06267362 2014-3-22, 10:00 66,038,034 62,436,828 69,437 203,303,769 4,075
DEBay_Spr_30_<0.8_DNAa SAMN06267362 2014-3-22, 10:00 29,390 NAb 25,608 100,659,831 6,542
DEBay_Spr_30_>0.8_DNA SAMN06267363 2014-3-22, 10:00 61,482,122 57,197,948 78,393 222,454,675 3,684
DEBay_Sum_0.19_D_<0.8_DNA SAMN06343919 2014-8-28, 11:04 47,505,130 45,015,264 80,761 193,840,000 2,670
DEBay_Sum_0.19_D_>0.8_DNA SAMN06343920 2014-8-28, 11:04 124,114,698 118,522,690 226,532 556,422,472 2,786
DEBay_Sum_0.19_N_<0.8_DNA SAMN06343921 2014-8-27, 22:57 108,517,694 103,811,934 180,641 368,341,091 2,079
DEBay_Sum_0.19_N_>0.8_DNA SAMN06343922 2014-8-27, 22:57 78,727,834 71,831,928 70,693 152,225,938 2,242
DEBay_Sum_22_D_<0.8_DNA SAMN06343923 2014-8-31, 11:02 49,987,622 48,008,464 164,532 359,332,827 2,316
DEBay_Sum_22_D_<0.8_DNAa SAMN06343923 2014-8-31, 11:02 320,000 NAb 296,849 919,368,458 5,297
DEBay_Sum_22_D_>0.8_DNA SAMN06343924 2014-8-31, 11:02 85,810,096 77,867,130 83,951 239,126,622 3,706
DEBay_Sum_22_N_<0.8_DNA SAMN06343925 2014-8-30, 23:01 73,865,228 67,739,506 140,456 349,551,209 2,852
DEBay_Sum_22_N_>0.8_DNA SAMN06343926 2014-8-30, 23:01 80,573,046 74,251,374 108,312 297,387,441 3,429
DEBay_Sum_29_D_<0.8_DNA SAMN06343927 2014-9-1, 11:00 42,251,814 40,672,184 141,375 341,203,775 2,715
DEBay_Sum_29_D_>0.8_DNA SAMN06343928 2014-9-1, 11:00 75,955,068 70,195,454 87,345 220,428,935 2,917
DEBay_Sum_29_N_<0.8_DNA SAMN06267364 2014-8-31, 23:01 105,157,540 99,789,694 10,675 25,193,692 2,607
DEBay_Sum_29_N_>0.8_DNA SAMN06343929 2014-8-31, 23:01 70,891,734 64,601,422 116,166 287,901,815 2,870
a

Nanopore sequences.

b

NA, not available.

Prior to assembly, Cutadapt v1.11 and Sickle v1.33 were used to remove adapters from and quality trim (Q = 30) Illumina-sequenced reads (9). Nanopore-sequenced reads were not error corrected or trimmed prior to hybrid assembly, as recommended by hybridSPAdes v3.11.1, because they were used only for gap closure and repeat resolution (10). Read qualities pre- and posttrimming were assessed with FastQC v0.11.5 (Babraham Bioinformatics, 2010). Metagenomic assemblies were performed using the default parameters of metaSPAdes v3.11.1 (11) with increased memory allocation (--meta --m 450) and evaluated using MetaQUAST, v5.0.2 (12) (Table 1).

For binning, trimmed reads from each Illumina-sequenced library were mapped to contigs ≥2,000 bp in the corresponding metagenome using the default parameters (end-to-end mode) of Bowtie 2 v2.2.7 (13). Alignments converted to binary alignment map (BAM) format with SAMtools v0.1.19 (13, 14) were binned into 373 metagenome-assembled genomes (MAGs) using the default parameters of MetaBAT2 v2.10.2 (15). MAG statistics, including GC content, size, completeness, and contamination, were assessed by CheckM v1.0.16 (16) and Anvi’o v6.2 and v7 (1719). Coassembled sequences of both size fractions from the same water sample were binned when separate binning did not give useful MAGs. A subset of 364 MAGs (https://doi.org/10.6084/m9.figshare.14179448) with >80% completion and <5% contamination were taxonomically annotated using Anvi’o and Microbial Genome Atlas (MiGA) v0.7.26.2 (20). They belonged to bacterial orders Actinomycetales (n = 7), Burkholderiales (n = 31), Flavobacteriales (n = 55), Microtrichales (n = 39), Nanopelagicales (n = 11), Pelagibacterales (n = 31), Pseudomonadales (n = 26), Rhodobacterales (n = 28), and Synechococcales (n = 13), as well as the archaeal phyla Crenarchaeota (n = 5) and Euryarchaeota (n = 2).

Data availability.

The metagenomes, metatranscriptomes, and MAGs are available on NCBI under the umbrella project PRJNA432171.

ACKNOWLEDGMENTS

The research cruises were supported by a National Science Foundation grant (OCE-082546) to B.J.C. Metagenomic and metatranscriptomic sequencing was supported by a DOE/JGI grant (CSP-1621) to B.J.C. A National Science Foundation grant (EF-2025541) to B.J.C. supported data processing.

Contributor Information

Barbara J. Campbell, Email: bcampb7@clemson.edu.

Irene L. G. Newton, Indiana University, Bloomington

REFERENCES

  • 1.Crump B, Baross J, Simenstad C. 1998. Dominance of particle-attached bacteria in the Columbia River estuary, USA. Aquat Microb Ecol 14:7–18. doi: 10.3354/ame014007. [DOI] [Google Scholar]
  • 2.Liu Y, Lin Q, Feng J, Yang F, Du H, Hu Z, Wang H. 2020. Differences in metabolic potential between particle-associated and free-living bacteria along Pearl River Estuary. Sci Total Environ 728:138856. doi: 10.1016/j.scitotenv.2020.138856. [DOI] [PubMed] [Google Scholar]
  • 3.Maresca JA, Miller KJ, Keffer JL, Sabanayagam CR, Campbell BJ. 2018. Distribution and diversity of rhodopsinproducing microbes in the Chesapeake Bay. Appl Environ Microbiol 84:e00137-18. doi: 10.1128/AEM.00137-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT. 2005. Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706. doi: 10.4319/lo.2005.50.5.1697. [DOI] [Google Scholar]
  • 5.Cottrell MT, Mannino A, Kirchman DL. 2006. Aerobic anoxygenic phototrophic bacteria in the mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72:557–564. doi: 10.1128/AEM.72.1.557-564.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Michelou VK, Cottrell MT, Kirchman DL. 2007. Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic Ocean. Appl Environ Microbiol 73:5539–5546. doi: 10.1128/AEM.00212-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Preen K, Kirchman D. 2004. Microbial respiration and production in the Delaware Estuary. Aquat Microb Ecol 37:109–119. [Google Scholar]
  • 8.Lu H, Giordano F, Ning Z. 2016. Oxford Nanopore MinION Sequencing and Genome Assembly. Genomics Proteomics Bioinformatics 14:265–279. doi: 10.1016/j.gpb.2016.05.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, Anderson LC, Campbell BJ. 2019. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J 13:902–920. doi: 10.1038/s41396-018-0318-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Antipov D, Korobeynikov A, McLean JS, Pevzner PA. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 32:1009–1015. doi: 10.1093/bioinformatics/btv688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. MetaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. doi: 10.1101/gr.213959.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup . 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015:e1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi: 10.1101/gr.186072.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ 3:e1319. doi: 10.7717/peerj.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. doi: 10.1038/nmeth.3176. [DOI] [PubMed] [Google Scholar]
  • 19.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004. doi: 10.1038/nbt.4229. [DOI] [PubMed] [Google Scholar]
  • 20.Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, Konstantinidis KT. 2018. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res 46:W282–W288. doi: 10.1093/nar/gky467. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The metagenomes, metatranscriptomes, and MAGs are available on NCBI under the umbrella project PRJNA432171.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES