Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Jun 15;2021(1):293. doi: 10.1186/s13662-021-03447-0

A numerical and analytical study of SE(Is)(Ih)AR epidemic fractional order COVID-19 model

Hasib Khan 1, Razia Begum 1, Thabet Abdeljawad 2,3,4,, M Motawi Khashan 5
PMCID: PMC8204077  PMID: 34149836

Abstract

This article describes the corona virus spread in a population under certain assumptions with the help of a fractional order mathematical model. The fractional order derivative is the well-known fractal fractional operator. We have given the existence results and numerical simulations with the help of the given data in the literature. Our results show similar behavior as the classical order ones. This characteristic shows the applicability and usefulness of the derivative and our numerical scheme.

Keywords: Fractal fractional derivatives, Existence and uniqueness of the solutions, Hyers–Ulam stability, Numerical scheme

Introduction

The end of year 2019 was shocking for the world, especially for Chinese people in Wuhan city where a novel corona virus (COVID-19) was identified with rapid transmission rate. Later this virus spread in almost all parts of the globe at pandemic level and caused 111 million infections with 2.6 million deaths. According to Johns Hopkins University, the biggest amount of cases were reported in the United States of America with a tally of 28.1 M infections and 497 K deaths. Initially, it was considered that this virus came from the local fish market in Wuhan city; however, the transmission was identified from people to people with a huge ratio. This transmission happened through water, food, air droplets, and through physical contact with an infected person. The symptoms of COVID-19 infection last for 14 days, and to overcome or to resist the spread of this infection, 20 seconds of hands wash, avoidance of social gathering, and wearing face masks was suggested by the World Health Organization (WHO). Many countries banned traveling of people from one place to another to minimize the spreading ratio and also defined policies which can uplift the balance between country economy and health sector [1]. The scientists analyzed and made different experiments to find the cure or any medicinal treatment of the COVID-19 infection. Different countries have endorsed various mitigation strategies; however, the world still awaits the arrival of vaccine which is the only tool to fight against this infection. Approximately, 100 vaccines are under development, and some of these are in Phase 3 stage of clinical trials [2]. The number of vaccines has been identified in this regard with different recovery percentage. Currently, three vaccines are authorized and recommended to prevent COVID-19 i.e. Pfizer-BioNTech, Moderna’s, and China’s Sinopharm COVID-19 vaccine. As of December 28, 2020, large-scale (Phase 3) clinical trials have been in progress or being planned for three COVID-19 vaccines in the United States, namely AstraZeneca’s COVID-19 vaccine, Janssen’s COVID-19 vaccine, and Novavax’s COVID-19 vaccine [3]. Recently, scientists from the field of medical engineering acknowledged the importance of mathematical modeling of any pandemic disease. Many of such mathematical modeling examples have already contributed to the control of infections [47]. These models also can be used for the prediction of expected patients in the future and can define well the control strategies. The mathematical models are usually developed in ordinary (ODEs) or in partial differential equations (PDEs) having equations of integration of natural order (IDEs). Such types of equations are well utilized in various fields of science i.e. medicine, economic, business, engineering, and analysis of different infections [816]. Recently, the implementation and application of fractional calculus for different models got attention from researchers [1720]. Fractional calculus is defined as various kinds of possibilities of defining real or complex number powers [2123]. Fractional calculus of any disease model plays a vital role in making decisions and helping to control the spread of infections. The fractional calculus was first communicated between Leibnitz and L’Hospital for the nth derivative of y. Fractional derivative was first introduced by Lacroix [24]. Afterward, many of the researchers introduced fractional derivatives in different forms, among which the most valuable are Caputo fractional derivative [25], Riemann–Liouville fractional derivative [26], and Atangana–Baleanu derivative [27]. Recently, various models have been solved by using fractional differential equations in many fields such as dynamics, control theory, and biology. The existence, uniqueness, and stability of models have been studied deeply [2833]. In recent research a new idea of differentiation i.e. that the operator has fractional order as well as fractal dimension if the operator is of order two was proposed [34]. Usually, nonlinear models need specific parameters which are not available from experiments. The possible solution of these problems has been addressed by using fractal fractional derivatives. The fractal fractional derivatives models have advantage over the standard integer order derivatives [35, 36].

We use fractal fractional deactivate for the following formulation of SE(Is)(Ih)AR epidemic model with the help of [37]:

{0FFDτu1,u2S(τ)=b1[b2+β(Is+βhrIh+βarA)+Kv]S+ηR,0FFDτu1,u2E(τ)=(b2+γ)E+β(Is+βhrIh+β(ar)A)S,0FFDτu1,u2Is(τ)=(b2+τ0)Is+γPsE,0FFDτu1,u2Ih(τ)=(b2+α+τ0+KT)Ih+γPhE,0FFDτu1,u2A(τ)=(b2+τ0)A+γ(1PsPh)E,0FFDτu1,u2R(τ)=(b2+η)R+τ0(Is+Ih+A)+KTIh+KvS, 1

where t>0 with the initial conditions S(0)=S0, E(0)=E0, Is(0)=Is(0), Ih(0)=Ih(0), A(0)=A0,and R(0)=R0 subject to min(S0,E0,Is0,Ih0,A0,R0)0. It is clear that the dimensions of both sides of the model are equivalent. In this model, b1 is the recruitment rate, b2 is the natural average death rate, β(t), βhrβ(t), βarβ(t) are the rates of transmission to the susceptible, 1η is the average time of transition from the recovered to the susceptibles, γ is the rate of transition from the exposed class to the infectious group, α is the average mortality of the symptomatic infectious population, τ0 is the natural immune response rate for the infected people, ps,ph,pa=1psph are the fractions of the exposed that become slightly symptomatic, seriously symptomatic, and asymptomatic infected people, respectively.

We highlight some more related articles used for the definitions and applications of the following notions [3851].

Definition 1.1

Suppose that ψτ is a continuous function and fractal differentiable in the interval (a,b) of order u2, then the fractal fractional derivative of ψτ of order u1(0,1) in the Caputo sense is given by

0FFDτu1,u2ψ(τ)=AB(u1)1u10τddtu2Eu1(u11u1(τs)u1)ψ(s)ds, 2

where AB(u1)=1u1+u1Γu1.

Definition 1.2

Suppose that ψ(τ) is a continuous function in the interval (a, b), then the fractal fractional integral of ψ(τ) of order u1 having a Mittag-Leffler type kernel is given by

0FFIτu1,u2ψ(τ)=u1u2AB(u1)Γu10τsu21ψ(s)(τs)u11ds+u2(1u1)τu21AB(u1)ψ(τ). 3

Existence criteria

With the help of fixed point procedure we check the existence of fractal fractional to SE(Is)(Ih)AR epidemic model (1). We have

{S(t)S(0)=u1u2AB(u1)Γu10tsu21(ts)u11(b1[b2+β(Is+βhrIh+βarA)+Kv]S+ηR)ds+u2(1u1)tu21AB(u1)(b1[b2+β(Is+βhrIh+βarA)+Kv]S+ηR),E(t)E(0)=u1u2AB(u1)Γu10tsu21(ts)u11((b2+γ)E+β(Is+βhrIh+βarA)S)ds+u2(1u1)tu21AB(u1)((b2+γ)E+β(Is+βhrIh+βarA)S),Is(t)Is(0)=u1u2AB(u1)Γu10tsu21(ts)u11((b2+τ0)Is+γPsE)dsIs(t)Is(0)=+u2(1u1)tu21AB(u1)((b2+τ0)Is+γPsE),Ih(t)Ih(0)=u1u2AB(u1)Γu10tsu21(ts)u11((b2+α+τ0+KT)Ih+γPhE)dsIh(t)Ih(0)=+u2(1u1)tu21AB(u1)((b2+α+τ0+KT)Ih+γPhE),A(t)A(0)=u1u2AB(u1)Γu10tsu21(ts)u11((b2+τ0)A+γ(1PsPh)E)dsA(t)A(0)=+u2(1u1)tu21AB(u1)((b2+τ0)A+γ(1PsPh)E),R(t)R(0)=u1u2AB(u1)Γu10tsu21(ts)u11((b2+η)R+τ0(Is+Ih+A)+KTIh+KvS)ds+u2(1u1)tu21AB(u1)((b2+η)R+τ0(Is+Ih+A)+KTIh+KvS). 4

Now, we define some functions Qi and some constants ηi, iϵN16 as follows:

{Q1(t,S)=b1[b2+β(Is+βhrIh+βarA)+Kv]S+ηR,Q2(t,E)=(b2+γ)E+β(Is+βhrIh+βarA)S,Q3(t,Is)=(b2+τ0)Is+γPsE,Q4(t,Ih)==(b2+α+τ0+KT)Ih+γPhE,Q5(t,A)=(b2+τ0)A+γ(1PsPh)E,Q6(t,R)=(b2+η)R+τ0(Is+Ih+A)+KTIh+KvS. 5
(G*):

For proving our results, we assume the following assumptions: The continuous functions S(t), E(t), Is(t), Ih(t), A(t), R(t) and S(t), E(t), Is(t), Ih(t), A(t), R(t) all belong to L[0,1] such that Isψ1, Ihψ2, Aψ3 for ψ1, ϕ2, ψ3>0 and constants.

Theorem 2.1

The kernels Qi for i=1,2,3,,6 satisfy Lipschitz conditions if the assumption (G*) holds and satisfies ϕi<1 for iN16.

Proof

First, we prove that Q1(t,S) satisfies the Lipschitz condition. Using S(t), S(t), we have

Q1(t,S)Q1(t,S)=(b1[b2+β(Is+βhrIh+βarA)+Kv]S+ηR)(b1[b2+β(Is+βhrIh+βarA)+Kv]S+ηR)=(b2+βIs+βhrIh+βarA+Kv)(SS)(b2+βIs+βhrIh+βarA+Kv)(SS)(b2+βψ1+βhrψ2)+βarψ3+Kv(SS)ϕ1(SS).

Hence Q1 satisfies the Lipschitz condition and ϕ1<1. Next we prove that Q2(t,E) satisfies the Lipschitz condition. Now, using E(t), E(t), we have

Q2(t,E)Q2(t,E)=((b2+γ)E+β(Is+βhrIh+βarA)S)((b2+γ)E+β(Is+βhrIh+βarA)S)=(b2+λ)(EE)(b2+λ)(EE)ϕ2EE.

Hence Q2 satisfies the Lipschitz condition and ϕ2<1. Next we prove that Q3(t,Is) satisfies the Lipschitz condition. Using Is(t), Is(t), we have

Q3(t,Is)Q3(t,Is)=((b2+τ0)Is+γPsE)((b2+τ0)Is+γPsE)=(b2+τ0)(IsIs)(b2+τ0)(IsIs)ϕ3IsIs.

Hence Q3 satisfies the Lipschitz condition and ϕ3<1. Next we prove that Q4(t,Ih) satisfies the Lipschitz condition. Using Ih(t), Ih(t), we have

Q4(t,Ih)Q4(t,Ih)=((b2+α+τ0+KT)Ih+γPhE)((b2+α+τ0+KT)Ih+γPhE)=((b2+α+τ0+KT)(IhIh)((b2+α+τ0+KT)(IhIh)ϕ4IhIh.

Hence Q4 satisfies the Lipschitz condition and ϕ4<1. Next we prove that Q5(t,A) satisfies the Lipschitz condition. Using A(t), A(t), we have

Q5(t,A)Q5(t,A)=((b2+τ0)A+γ(1PsPh)E)((b2+τ0)A+γ(1PsPh)E)=(b2+τ0)(AA)(b2+τ0(AA)ϕ5AA.

Hence Q5 satisfies the Lipschitz condition and ϕ5<1. Next we prove that Q6(t,R) satisfies the Lipschitz condition. Using R(t), R(t), we have

Q6(t,EM)Q6(t,R)=(βSMIvEMμMEM)(βSMIvEMμMEM)=(b2+η)(RR)(b2+η)(RR)ϕ6RR.

Hence Q6 satisfies the Lipschitz condition and ϕ6<1. Ultimately all the functions satisfy Lipschitz conditions and are contractions with ϕi<1 for iN16. Hence this completes the proof. □

We rewrite the system of equations (4) in the following form by using the kernels Qi, iN16 and the initial conditions S(0)=E(0)=Is(0)=Ih(0)=A(0)=R(0)=0, we have

{S(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)),E(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)),Is(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)),Ih(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)),A(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)),R(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)). 6

Now we define the following recursive formulas:

Sn(t)=u1u2AB(u1)Γ(u1)0tsu21(ts)u11Q1(s,Sn1(s))dsSn(t)=+u2(1u1)tu21AB(u1)Q1(t,Sn1(t)),En(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En1(s))dsEn(t)=+u2(1u1)tu21AB(u1)Q2(t,En1(t)),Isn(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn1(s))dsIsn(t)=+u2(1u1)tu21AB(u1)Q3(t,Isn1(t)),Ihn(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn1(s))dsIhn(t)=+u2(1u1)tu21AB(u1)Q4(t,Ihn1(t)),An(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An1(s))dsAn(t)=+u2(1u1)tu21AB(u1)Q5(t,An1(t)),Rn(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn1(s))dsRn(t)=+u2(1u1)tu21AB(u1)Q6(t,Rn1(t)).

Now we consider the following differences:

DSn+1(t)=Sn+1SnDSn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn(s))ds+u2(1u1)tu21AB(u1)Q1(t,Sn(t))DSn+1(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn1(s))dsDSn+1(t)=+u2(1u1)tu21AB(u1)Q1(t,Sn1(t)))DSn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11(Q1(s,Sn(s))Q1(s,Sn1(s)))dsDSn+1(t)=+u2(1u1)tu21AB(u1)(Q1(t,Sn(t))Q1(t,Sn1(t))),DEn+1(t)=En+1EnDEn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En(s))ds+u2(1u1)tu21AB(u1)Q2(t,En(t))DEn+1(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En1(s))dsDEn+1(t)=+u2(1u1)tu21AB(u1)Q2(t,En1(t)))DEn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11(Q2(s,En(s))Q1(s,En1(s)))dsDEn+1(t)=+u2(1u1)tu21AB(u1)(Q2(t,En(t))Q2(t,En1(t))),DIsn+1(t)=Isn+1IHnDIsn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn(s))ds+u2(1u1)tu21AB(u1)Q3(t,Isn(t))DIsn+1(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn1(s))dsDIsn+1(t)=+u2(1u1)tu21AB(u1)Q3(t,Isn1(t)))DIsn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11(Q3(s,Isn(s))Q3(s,Isn1(s)))dsDIsn+1(t)=+u2(1u1)tu21AB(u1)(Q3(t,Isn(t))Q3(t,Isn1(t))),DIhn+1(t)=Ihn+1IhnDIhn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ihn(t))DIhn+1(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn1(s))dsDIhn+1(t)=+u2(1u1)tu21AB(u1)Q4(t,Ihn1(t)))DIhn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11(Q4(s,Ihn(s))Q4(s,Ihn1(s)))dsDIhn+1(t)=+u2(1u1)tu21AB(u1)(Q4(t,Ihn(t))Q4(t,Ihn1(t))),DAn+1(t)=An+1AnDAn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An(s))ds+u2(1u1)tu21AB(u1)Q5(t,An(t))DAn+1(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An1(s))dsDAn+1(t)=+u2(1u1)tu21AB(u1)Q5(t,An1(t)))DAn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11(Q5(s,An(s))Q5(s,An1(s)))dsDAn+1(t)=+u2(1u1)tu21AB(u1)(Q5(t,An(t))Q5(t,An1(t))),DRn+1(t)=Rn+1RnDRn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn(s))ds+u2(1u1)tu21AB(u1)Q6(t,Rn(t))DRn+1(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn1(s))dsDRn+1(t)=+u2(1u1)tu21AB(u1)Q6(t,Rn1(t)))DRn+1(t)=u1u2AB(u1)Γu10tsu21(ts)u11(Q6(s,Rn(s))Q6(s,Rn1(s)))dsDRn+1(t)=+u2(1u1)tu21AB(u1)(Q6(t,Rn(t))Q6(t,Rn1(t))).

Taking norm of the above differences, we have

DSn+1(t)=Sn+1Sn=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn(s))ds+u2(1u1)tu21AB(u1)Q1(t,Sn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn1(s))ds+u2(1u1)tu21AB(u1)Q1(t,Sn1(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn(s))Q1(s,Sn1(s))ds+u2(1u1)tu21AB(u1)Q1(t,Sn(t))Q1(t,Sn1(t)),DEn+1(t)=En+1En=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En(s))ds+u2(1u1)tu21AB(u1)Q2(t,En(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En1(s))ds+u2(1u1)tu21AB(u1)Q2(t,En1(t)))=u1u2AB(u1)Γu10tsu21(ts)u11(Q2(s,En(s))Q1(s,En1(s)))ds+u2(1u1)tu21AB(u1)(Q2(t,En(t))Q2(t,En1(t)),DIsn+1(t)=Isn+1Isn=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn(s))ds+u2(1u1)tu21AB(u1)Q3(t,Isn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn1(s))ds+u2(1u1)tu21AB(u1)Q3(t,Isn1(t)))=u1u2AB(u1)Γu10tsu21(ts)u11(Q3(s,Isn(s))Q3(s,Isn1(s)))ds+u2(1u1)tu21AB(u1)Q3(t,Isn(t))Q3(t,Isn1(t)),DIhn+1(t)=Ihn+1Ihn=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ihn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn1(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ihn1(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn(s))Q4(s,Ihn1(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ihn(t))Q4(t,Ihn1(t)),DAn+1(t)=An+1An=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An(s))ds+u2(1u1)tu21AB(u1)Q5(t,An(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An1(s))ds+u2(1u1)tu21AB(u1)Q5(t,An1(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An(s))Q5(s,An1(s))ds+u2(1u1)tu21AB(u1)Q5(t,An(t))Q5(t,An1(t)),DRn+1(t)=Rn+1Rn=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn(s))ds+u2(1u1)tu21AB(u1)Q6(t,Rn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn1(s))ds+u2(1u1)tu21AB(u1)Q6(t,Rn1(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn(s))Q6(s,Rn1(s))ds+u2(1u1)tu21AB(u1)Q6(t,Rn(t))Q6(t,Rn1(t)).

Theorem 2.2

The fractal fractional of diffusion model SE(Is)(Ih)AR epidemic has a solution if the following holds true:

σ=max{ϕ1,ϕ2,,ϕ6}<1.

Proof

Let us define the following functions:

{G1n(t)=Sn+1(t)S(t),G2n(t)=En+1(t)E(t),G3n(t)=Isn+1(t)Is(t),G4n(t)=Ihn+1(t)Ih(t),G5n(t)=An+1(t)A(t),G6n(t)=Rn+1(t)R(t). 7

Taking norm of the above system, we have

G1n(t)=Sn+1(t)S(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn(s))ds+u2(1u1)tu21AB(u1)Q1(t,Sn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S)(s))ds+u2(1u1)tu21AB(u1)Q1(t,S)(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,Sn(s))Q1(s,S)(s)ds+u2(1u1)tu21AB(u1)Q1(t,Sn(t))Q1(t,S)(t)(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ1SnS(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ1SnS(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))nσnS1S,

where σ<1 and as n so SnS, and using the formula B(u,v)=(ba)u+v+1ab(sa)u1(bs)v1ds and as t[0,1] so t1u1+u21 and tu21,

G2n(t)=En+1(t)E(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En(s))ds+u2(1u1)tu21AB(u1)Q2(t,En(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E)(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,En(s))Q2(s,E)(s))ds+u2(1u1)tu21AB(u1)Q2(t,En(t))Q2(t,E)(t))(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ2EnE(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ2EnE(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))nσnE1E,

where σ<1 and as n so EHnE.

G3n(t)=Isn+1(t)Is(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn(s))ds+u2(1u1)tu21AB(u1)Q3(t,Isn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Isn(s))Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Isn(t))Q3(t,Is(t))(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ3IsnIs(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ3IsnIs(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))nσnIs1Is,

where σ<1 and as n so IsnIs.

G4n(t)=Ihn+1(t)Ih(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ihn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ihn(s))Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ihn(t))Q4(t,Ih(t))(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ4IhnIh(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ4IhnIh(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))nσnIh1Ih,

where σ<1 and as n so IhnIh.

G5n(t)=An+1(t)A(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An(s))ds+u2(1u1)tu21AB(u1)Q5(t,An(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A)(s))ds+u2(1u1)tu21AB(u1)Q5(t,A)(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,An(s))Q5(s,A)(s))ds+u2(1u1)tu21AB(u1)Q5(t,An(t))Q5(t,A)(t))(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ5AnA(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ5AnA(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))nσnA1A,

where σ<1 and as n so AnA.

G6n(t)=Rn+1(t)R(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn(s))ds+u2(1u1)tu21AB(u1)Q6(t,Rn(t))(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R)(s))ds+u2(1u1)tu21AB(u1)Q6(t,R)(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,Rn(s))Q6(s,R)(s))ds+u2(1u1)tu21AB(u1)Q6(t,Rn(t))Q6(t,R)(t))(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ6RnR(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ6RnR(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))nσnR1R,

where σ<1 and as n so RnR. Thus we find that Gin(t)0 as n for iN16 AND σ<1. Hence this completes the proof. □

Uniqueness of the solution

Theorem 2.3

The fractal fractional model (1) has a unique solution if the following inequalities hold true:

(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕi1,iN16. 8

Proof

Let us consider the contradiction that there exists another solution of fractal fractional model (1) such that S, E, Is, Ih, A, R satisfying the given model. We have

S(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)),E(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)),Is(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)),Ih(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)),A(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)),R(t)=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)).

Now, taking norm of the difference of S(t), S(t), we have

S(t)S(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s)Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)Q1(t,S(t))ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ1SS×[1(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ1]SS0.

The above inequality is true if SS=0, which implies S=S. Similarly, taking norm of the difference of E(t), E(t), we have

E(t)E(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s)Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)Q2(t,E(t))ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ2EE×[1(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ2]EE0.

The above inequality is true if EE=0, which implies E=E. Similarly, taking norm of the difference of Is(t), Is(t), we have

Is(t)Is(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s)Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)Q3(t,Is(t))ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ3IsIs×[1(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ3]IsIs0.

The above inequality is true if IsIs=0, which implies Is=Is. Similarly, taking norm of the difference of Ih(t), Ih(t), we have

Ih(t)Ih(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s)Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)Q4(t,Ih(t))ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ4IhIh×[1(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ4]IhIh0.

The above inequality is true if IhIh=0, which implies Ih=Ih. Similarly, taking norm of the difference of A(t), A(t), we have

A(t)A(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s)Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)Q5(t,A(t))ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ5AA×[1(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ5]AA0.

The above inequality is true if AA=0, which implies A=A. Similarly, taking norm of the difference of R(t), R(t), we have

R(t)R(t)=(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)))=u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s)Q2(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)Q6(t,R(t))ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ6RR×[1(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ6]RR0.

The above inequality is true if RR=0, which implies R(t), R(t). Hence we see that S=S, E=E, Is=Is, rIh=Ih, A=A, R=R, so our supposition is wrong and the theorem has a unique solution. □

Hyers–Ulam stability

Definition 2.4

The fractal fractional integrals (6) are said to be Hyers–Ulam stable if there exist constants αi>0, iN16 satisfying, for every βi>0, iN16, the following:

|S(t)u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t))|β1,|E(t)u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t))|β2,|Is(t)u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t))|β3,|Ih(t)u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t))|β4,|A(t)u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t))|β5,|R(t)u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t))|β6.

There exists an approximate solution of model (1) S(t), E(t), Is(t), Ih(t), A(t), R(t) that satisfies the given model, such that

|S(t)S(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q1(s,S(s)Q1(s,S(s))|ds+u2(1u1)tu21AB(u1)|Q1(t,S(t)Q1(t,S(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ1SS(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ1SS.

Let ζ1=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))SS, η1=ϕ1,so the above inequality becomes |SS|ζ1η1.

|E(t)E(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q2(s,E(s)Q2(s,E(s))|ds+u2(1u1)tu21AB(u1)|Q2(t,E(t)Q2(t,E(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ2EE(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ2EE.

Let ζ2=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))EE, η2=ϕ2,so the above inequality becomes |EE|ζ2η2.

|Is(t)Is(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q3(s,Is(s)Q3(s,Is(s))|ds+u2(1u1)tu21AB(u1)|Q3(t,Is(t)Q3(t,Is(t))|ds(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ3IsIs.

Let ζ3=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))IsIs, η3=ϕ3, so the above inequality becomes |IsIs|ζ3η3.

|Ih(t)Ih(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q4(s,Ih(s)Q4(s,Ih(s))|ds+u2(1u1)tu21AB(u1)|Q4(t,Ih(t)Q4(t,Ih(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ4IhIh(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ4IhIh.

Let ζ4=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))IhIh, η4=ϕ4, so the above inequality becomes |IhIh|ζ4η4.

|A(t)A(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q5(s,A(s)Q5(s,A(s))|ds+u2(1u1)tu21AB(u1)|Q5(t,A(t)Q5(t,A(t))|ds(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ5AA.

Let ζ5=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))AA, η5=ϕ5, so the above inequality becomes |AA|ζ5η5.

|R(t)R(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q6(s,R(s)Q6(s,R(s))|ds+u2(1u1)tu21AB(u1)|Q6(t,R(t)Q6(t,R(t))|ds(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ6RR.

Let ζ6=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))RR, η6=ϕ6, so the above inequality becomes |RR|ζ6η6.

Theorem 2.5

With assumption (G*), the fractal fractional model (1) is Hyers–Ulam stable.

Proof

We know that the fractal fractional model (1) has a unique solution. Let there exist an approximate solution of model (1) S(t), E(t), Is(t), Ih(t), A(t), R(t) that satisfies the given model, such that

|S(t)S(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q1(s,S(s))ds+u2(1u1)tu21AB(u1)Q1(t,S(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q1(s,S(s)Q1(s,S(s))|ds+u2(1u1)tu21AB(u1)|Q1(t,S(t)Q1(t,S(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ1SS(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ1SS.

Let α1=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))SS, Δ1=ϕ1, so the above inequality becomes |SS|α1Δ1.

|E(t)E(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q2(s,E(s))ds+u2(1u1)tu21AB(u1)Q2(t,E(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q2(s,E(s)Q2(s,E(s))|ds+u2(1u1)tu21AB(u1)|Q2(t,E(t)Q2(t,E(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ2EE(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ2EE.

Let α2=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))EE, Δ2=ϕ2, so the above inequality becomes |EE|α2Δ2.

|Is(t)Is(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q3(s,Is(s))ds+u2(1u1)tu21AB(u1)Q3(t,Is(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q3(s,Is(s)Q3(s,Is(s))|ds+u2(1u1)tu21AB(u1)|Q3(t,Is(t)Q3(t,Is(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ3IsIs(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ3IsIs.

Let α3=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))IsIs, Δ3=ϕ3, so the above inequality becomes |IsIs|α3Δ3.

|Ih(t)Ih(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q4(s,Ih(s))ds+u2(1u1)tu21AB(u1)Q4(t,Ih(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q4(s,Ih(s)Q4(s,Ih(s))|ds+u2(1u1)tu21AB(u1)|Q4(t,Ih(t)Q4(t,Ih(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ4IhIh(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ4IhIh.

Let α4=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))IhIh, Δ4=ϕ4, so the above inequality becomes |IhIh|α4Δ4.

|A(t)A(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q5(s,A(s))ds+u2(1u1)tu21AB(u1)Q5(t,A(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q5(s,A(s)Q5(s,A(s))|ds+u2(1u1)tu21AB(u1)|Q5(t,A(t)Q5(t,A(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ5AA(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ5AA.

Let α5=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))AA, Δ5=ϕ5, so the above inequality becomes |AA|α5Δ5.

|R(t)R(t)|=|(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)))(u1u2AB(u1)Γu10tsu21(ts)u11Q6(s,R(s))ds+u2(1u1)tu21AB(u1)Q6(t,R(t)))|=u1u2AB(u1)Γu10tsu21(ts)u11|Q6(s,R(s)Q6(s,R(s))|ds+u2(1u1)tu21AB(u1)|Q6(t,R(t)Q6(t,R(t))|ds(u1u2AB(u1)Γu10tsu21(ts)u11+u2(1u1)tu21AB(u1))ϕ6RR(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))ϕ6RR.

Let α6=(u1u2Γu2AB(u1Γ(u1+u2))+u2(1u1)AB(u1))RR, Δ6=ϕ6, so the above inequality becomes |RR|α6Δ6. Consequently, by definition the fractal fractional model (1) is Hyers–Ulam stable. This completes the proof. □

Numerical scheme

Numerical scheme for the fractal fractional order SE(Is)(Ih)AR epidemic model.

Definition 3.1

Suppose that ψ(t) is continuous and fractal differentiable on the interval (u,v) with order ϒ2, then the fractal fractional derivative of ψ(t) with order ϒ1 in the Riemann–Liouville sense having power law type kernel is given by

0FFPDtϒ1,ϒ2ψ(t)=1Γ(pϒ1ddtϒ20t(ts)pϒ11ψ(s)ds,

where p1<ϒ1, ϒ2pN, and ddtϒ2=limtsψ(t)ψ(s)tϒ2sϒ2.

Definition 3.2

Suppose that ψ(t) is continuous on the interval (u,v), then the fractal fractional integral of ψ(t) with order ϒ1 having Mittag-Leffler type kernel is given by

0FFMItϒ1,ϒ2ψ(t)=ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21ψ(s)(ts)ϒ11ds+ϒ2(1ϒ1)t(ϒ21)AB(ϒ1)ψ(t).

Let us consider 0FFMDtϒ1,ϒ2η(t)=H(t,η(t))R, where η(0)=η0 The above equation can be written in fractal fractional derivative as follows:

0FFRDtϒ1η(t)=ϒ2tϒ21L(t,η(t))=H(t,η(t)).

With the help of integral, we get

η(t)=η(0)+1ϒ1AB(ϒ1)H(t,η(t))+ϒ1AB(ϒ1)Γϒ10tζϒ21(tζ)ϒ11H(ζ,η(ζ))dζ.

Replacing (t) with tn+1, we have

ηn+1=η(0)+1ϒ1AB(ϒ1)H(tn,η(tn))+ϒ1AB(ϒ1)Γϒ10tn+1ζϒ21(tn+1ζ)ϒ11H(ζ,η(ζ))dζ. 9

By applying two-step Lagrange polynomial, we obtain

θ(y,η(y))=(ytk1)H(tk,η(tk))tktk1(ytk)H(tk1,η(tk1))tktk1=H(tk,η(tk)(ytk1)tktk1H(tk1,η(tk1))(ytk)tktk1=H(tk,ηk)(ytk1)hH(tk1,ηk1)(ytk)h.

Applying Lagrange polynomial to equation (9), we get

ηn+1=η(0)+1ϒ1AB(ϒ1)H(tn,η(tn))+ϒ1AB(ϒ1)Γθ1i=1n[H(ti,η(ti))htktk+1(ζti1)(tn+1ζ)ϒ11dζH(ti1,η(ti1))htktn+1(ζti)(tn+1ζ)ϒ11dζ].

Now, solving the integral, we get

ηn+1=η(0)+1ϒ1AB(ϒ1)H(tn,η(tn))+ϒ1hϒ1Γ(ϒ1+2)i=1n[H(ti,η(ti))((n+1i)1ϒ(ni+2+ϒ1)(ni)1ϒ(ni+2+2ϒ1))H(ti1,ηi1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)].

Replacing the value of H(t,η(t)), we have

ηn+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)I(tn,η(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)i=1n[I(ti,η(ti))((n+1i)1ϒ(ni+2+ϒ1)(ni)1ϒ(ni+2+2ϒ1))I(ti1,ηi1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)].

Now the system of equations with kernels Hi, iN16 with initial conditions S(0)=E(0)=Is(0)=Ih(0)=A(0)=R(0)=0:

S(t)=S(0)+ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21(ts)ϒ11H1(s,S(s))dsS(t)=+ϒ2(1ϒ1)tϒ21AB(ϒ1)H1(t,S(t)),E(t)=E(0)+ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21(ts)ϒ11H2(s,E(s))dsE(t)=+ϒ2(1ϒ1)tϒ21AB(ϒ1)H2(t,E(t)),Is(t)=Is(0)+ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21(ts)ϒ11H3(s,Is(s))dsIs(t)=+ϒ2(1ϒ1)tϒ21AB(ϒ1)H3(t,Is(t)),Ih(t)=Ih(0)+ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21(ts)ϒ11H4(s,Ih(s))dsIh(t)=+ϒ2(1ϒ1)tϒ21AB(ϒ1)H4(t,Ih(t)),A(t)=A(0)+ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21(ts)ϒ11H5(s,A(s))dsA(t)=+ϒ2(1ϒ1)tϒ21AB(ϒ1)H5(t,A(t)),R(t)=R(0)+ϒ1ϒ2AB(ϒ1)Γϒ10tsϒ21(ts)ϒ11H6(s,R(s))dsR(t)=+ϒ2(1ϒ1)tϒ21AB(ϒ1)H6(t,R(t)).

Now from the numerical scheme for fractal-fractional order model (1), we have

Sn+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)F1(tn,S(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)Sn+1=×i=1n[F1(ti,S(ti))((n+1i)1ϒ(ni+2+ϒ1)Sn+1=(ni)1ϒ(ni+2+2ϒ1))Sn+1=F1(ti1,Si1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)],En+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)F2(tn,E(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)En+1=×i=1n[F2(ti,E(ti))((n+1i)1ϒ(ni+2+ϒ1)En+1=(ni)1ϒ(ni+2+2ϒ1))En+1=F2(ti1,Ei1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)],Isn+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)F3(tn,Is(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)Isn+1=×i=1n[F3(ti,Is(ti))((n+1i)1ϒ(ni+2+ϒ1)(ni)1ϒ(ni+2+2ϒ1))Isn+1=F3(ti1,Isi1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)],Ihn+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)F4(tn,Ih(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)Ihn+1=×i=1n[F4(ti,Ih(ti))((n+1i)1ϒ(ni+2+ϒ1)(ni)1ϒ(ni+2+2ϒ1))Ihn+1=F4(ti1,Ihi1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)],An+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)F5(tn,A(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)An+1=×i=1n[F5(ti,A(ti))((n+1i)1ϒ(ni+2+ϒ1)(ni)1ϒ(ni+2+2ϒ1))An+1=F5(ti1,Ai1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)],Rn+1=η(0)+ϒ2tϒ211ϒ1AB(ϒ1)F6(tn,R(tn))+ϒ2tϒ21ϒ2hϒ1Γ(ϒ1+2)Rn+1=×i=1n[F6(ti,R(ti))((n+1i)1ϒ(ni+2+ϒ1)Rn+1=(ni)1ϒ(ni+2+2ϒ1))Rn+1=F6(ti1,Ri1)((n+1i)ϒ1+1(ni+1+ϒ1)(ni)ϒ1)].

Computational results

Here, we present the computational results based on the literature. The initial values for the population are: S(0)=6,778,382, E(0)=1, Is(0)=0, Ih(0)=0, A(0)=0, R(0)=0, and the parametric values are: b1=57,554, b2=1/85, N=6,778,383, β=1/N, βar=1, βhr=1/80, γ=1/5.5, η=0, α=0.12, τ0=1/10, ps=0.55, ph=0.20, kv=0.001, kT=0.004 [37].

The computational results are given via ten graphs. In the Fig. 1, we have given the numerical solution of the suggested model for order 1 which is compared with the numerical solution of the model for orders 0.99, 0.98, 0.97 in Figs. 2, 3 and 4, respectively. Figure 5 is for the comparative study of S(t) for the different orders. Similarly, E(t), Is(t), Ih(t), A(t) and R(t) are analysed for different fractional orders in the Figs. 6, 7, 8, 9, and 10 respectively.

Figure 1.

Figure 1

Joint solution of COVID 19 model (1) for the order 1.0

Figure 2.

Figure 2

Joint solution of COVID 19 model (1) for the order 0.99

Figure 3.

Figure 3

Joint solution of COVID 19 model (1) for the order 0.98

Figure 4.

Figure 4

Joint solution of COVID 19 model (1) for the order 0.97

Figure 5.

Figure 5

Computational results for S(t) while the fractional orders are 1.0, 0.99, 0.98, 0.97

Figure 6.

Figure 6

A comparative analysis of E(t) for the fractional orders 1.0, 0.99, 0.98, 0.97

Figure 7.

Figure 7

Computational results for Is(t) for the fractional orders 1.0, 0.99, 0.98, 0.97

Figure 8.

Figure 8

A comparative analysis of Ih(t) for the fractional orders 1.0, 0.99, 0.98, 0.97

Figure 9.

Figure 9

A comparative analysis of A(t) for the fractional orders 1.0, 0.99, 0.98, 0.97

Figure 10.

Figure 10

A comparative analysis of R(t) for the fractional orders 1.0, 0.99, 0.98, 0.97

Conclusion

In current manuscript, we have established a detailed analysis related to the results about existence and uniqueness results with Ulam stability. The subjective problem is nonlocal multipoint BVPs involving delay term of FDEs. The respective analysis has been established via using classical fixed point theory and some results of nonlinear functional analysis. The whole analysis has been demonstrated via computational results based on the literature. The initial values for the population are: S(0)=6,778,382, E(0)=1, Is(0)=0, Ih(0)=0, A(0)=0, R(0)=0, and the parametric values are: b1=57,554, b2=1/85, N=6,778,383, β=1/N, βar=1, βhr=1/80, γ=1/5.5, η=0, α=0.12, τ0=1/10, ps=0.55, ph=0.20, kv=0.001, kT=0.004 [37]. The results are more realistic and of the same behavior as the classical ones. Our results are getting more similar to the integer order ones for the orders closer to 1.0.

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research, King Saud University for its funding through the Research Unit of Common First Year Deanship.

Authors’ contributions

All authors have equal contribution in this paper. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

No data were used to support this study.

Competing interests

The authors declare that they have no competing interests.

Contributor Information

Hasib Khan, Email: hasibkhan13@yahoo.com.

Razia Begum, Email: raziamaths@gmail.com.

Thabet Abdeljawad, Email: tabdeljawad@psu.edu.sa.

M. Motawi Khashan, Email: khashan@ksu.edu.sa.

References

  • 1.Lu H., Stratton C.W., Tang Y.W. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J. Med. Virol. 2020;92(04):401–402. doi: 10.1002/jmv.25678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Zimmer, C., Corum, J., Wee, S.-L.: Coronavirus Vaccine Tracker (2020) https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
  • 3. CDC December: (2020) https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html
  • 4.Goyal M., Baskonus H.M., Prakash A. An efficient technique for a time fractional model of Lassa hemorrhagic fever spreading in pregnant women. Eur. Phys. J. Plus. 2019;134(481):1–10. [Google Scholar]
  • 5.Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., Yel G. New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function. Chaos Solitons Fractals. 2020;134:109696. doi: 10.1016/j.chaos.2020.109696. [DOI] [Google Scholar]
  • 6.Kumar D., Singh J., Al-Qurashi M., Baleanu D. A new fractional SIRS-SI malaria disease model with application of vaccines, anti-malarial drugs, and spraying. Adv. Differ. Equ. 2019;278:1–10. [Google Scholar]
  • 7.Shah K., Alqudah M.A., Jarad F., Abdeljawad T. Semi-analytical study of Pine Wilt disease model with convex rate under Caputo-Fabrizio fractional order derivative. Chaos Solitons Fractals. 2020;135:109754. doi: 10.1016/j.chaos.2020.109754. [DOI] [Google Scholar]
  • 8.Pang J., Cui J.A., Zhou X. Dynamical behavior of a Hepatitis B virus transmission model with vaccination. J. Theor. Biol. 2010;265(4):572–578. doi: 10.1016/j.jtbi.2010.05.038. [DOI] [PubMed] [Google Scholar]
  • 9.Zou L., Zhang W., Ruan S. Modeling the transmission dynamics and control of Hepatitis B virus in China. J. Theor. Biol. 2010;262(2):330–338. doi: 10.1016/j.jtbi.2009.09.035. [DOI] [PubMed] [Google Scholar]
  • 10.Chen T.-M., Rui J., Wang Q.-P., Zhao Z.-Y., Cui J.-A., Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty. 2020;9:24. doi: 10.1186/s40249-020-00640-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Zhou P., Yang X., Wang X., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270273. doi: 10.1038/s41586-020-2012-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Li Q., Guan X., Wu P., et al. Early transmission dynamics in Wuhan, China, of novel coronavirus 221 infected pneumonia. N. Engl. J. Med. 2020;382:1199–1207. doi: 10.1056/NEJMoa2001316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Huang C., Wang Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Podlubny I. Fractional Differential Equations, Mathematics in Science and Engineering. New York: Academic Press; 1999. [Google Scholar]
  • 15.Lakshmikantham V., Leela S., Vasundhara J. Theory of Fractional Dynamic Systems. Cambridge: Cambridge Academic Pub.; 2009. [Google Scholar]
  • 16.Rossikhin Y.A., Shitikova M.V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 1997;50:15–67. doi: 10.1115/1.3101682. [DOI] [Google Scholar]
  • 17.Machado J., Kiryakova V., Mainardi V. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011;16(3):4756–4767. doi: 10.1016/j.cnsns.2010.05.027. [DOI] [Google Scholar]
  • 18.Baleanu D., Diethelm K., Scalas E., Trujillo J. Fractional Calculus Models and Numerical Methods. Singapore: World Scientific; 2012. [Google Scholar]
  • 19.Heymans N., Bauwens J. Fractal rheological models and fractional differential equations for viscoelastic behaviour. Rheol. Acta. 1994;33:210–219. doi: 10.1007/BF00437306. [DOI] [Google Scholar]
  • 20.Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity. London: Imperial College Press; 2010. [Google Scholar]
  • 21.Machado J.T., Kiryakova V., Mainardi F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011;16(3):1140–1153. doi: 10.1016/j.cnsns.2010.05.027. [DOI] [Google Scholar]
  • 22. Loverro, A.: Fractional calculus: history, definitions and applications for the engineer. Rapport Technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, Dame (2004)
  • 23.Osler T.J. Fractional derivatives and Leibniz rule. Am. Math. Mon. 1971;78(6):645–649. doi: 10.1080/00029890.1971.11992819. [DOI] [Google Scholar]
  • 24.Malinowska A.B., Odzijewicz T., Torres D.F. Advanced Methods in the Fractional Calculus of Variations. Cham: Springer; 2015. [Google Scholar]
  • 25.Kilbas A.A., Srivastava H.M., Trujillo J.J. Factorization, Singular Operators and Related Problems. Dordrecht: Springer; 2003. Fractional differential equations: a emergent field in applied and mathematical sciences; pp. 151–173. [Google Scholar]
  • 26.Jumarie G. Modified Riemann Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 2006;51(9–10):1367–1376. doi: 10.1016/j.camwa.2006.02.001. [DOI] [Google Scholar]
  • 27.Algahtani O.J. Comparing the Atangana Baleanu and Caputo Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solitons Fractals. 2016;1(89):552–559. doi: 10.1016/j.chaos.2016.03.026. [DOI] [Google Scholar]
  • 28.Kao Y., Gao C., Wang D. Global exponential stability of reaction-diffusion Hopfield neural networks with continuously distributed delays. J. Math. Anal. Appl. 2008;21(3):457–462. [Google Scholar]
  • 29.Luo J. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays. J. Math. Anal. Appl. 2008;342(2):753–760. doi: 10.1016/j.jmaa.2007.11.019. [DOI] [Google Scholar]
  • 30.Wang L. Global well-posedness and stability of the mild solutions for a class of stochastic partial functional differential equations. Sci. China Math. 2017;47(3):371–382. [Google Scholar]
  • 31.Wang L., Gao Y. Global exponential robust stability of reaction diffusion interval neural networks with time-varying delays. Phys. Lett. A. 2006;350(56):342–348. doi: 10.1016/j.physleta.2005.10.031. [DOI] [Google Scholar]
  • 32.Wang L., Zhang R., Wang Y. Global exponential stability of reaction-diffusion cellular neural networks with S-type distributed time delays. Nonlinear Anal., Real World Appl. 2009;10(2):1101–1113. doi: 10.1016/j.nonrwa.2007.12.002. [DOI] [Google Scholar]
  • 33.Lu J.G. Global exponential stability and periodicity of reaction diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Chaos Solitons Fractals. 2008;35(1):116–125. doi: 10.1016/j.chaos.2007.05.002. [DOI] [Google Scholar]
  • 34.Atangana A., Akgul A., Owolabi K.M. Analysis of fractal fractional differential equations. Alex. Eng. J. 2020;59(3):1117–1134. doi: 10.1016/j.aej.2020.01.005. [DOI] [Google Scholar]
  • 35.Chen W. A speculative study of 2/3-order fractional Laplacian modeling of turbulence: some thoughts and conjectures. Chaos. 2006;16:023126. doi: 10.1063/1.2208452. [DOI] [PubMed] [Google Scholar]
  • 36.Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection dispersion flow equations. J. Comput. Appl. Math. 2004;172:65–77. doi: 10.1016/j.cam.2004.01.033. [DOI] [Google Scholar]
  • 37.Djomegni P.M., Haggar M.D., Adigo W.T. Mathematical model for Covid-19 with “protected susceptible” in the post-lockdown era. Alex. Eng. J. 2021;60(1):527–535. doi: 10.1016/j.aej.2020.09.028. [DOI] [Google Scholar]
  • 38.Alqahtani B., Aydi H., Karapinar E., Rakocevic V. A solution for Volterra fractional integral equations by hybrid contractions. Mathematics. 2019;7(8):694. doi: 10.3390/math7080694. [DOI] [Google Scholar]
  • 39.Karapinar E., Fulga A., Rashid M., Shahid L., Aydi H. Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics. 2019;7(5):444. doi: 10.3390/math7050444. [DOI] [Google Scholar]
  • 40.Baleanu D., Jajarmi A., Mohammadi H., Rezapour S. A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals. 2020;134:109705. doi: 10.1016/j.chaos.2020.109705. [DOI] [Google Scholar]
  • 41.Tuan N.H., Mohammadi H., Rezapour S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals. 2020;140:110107. doi: 10.1016/j.chaos.2020.110107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Mohammadi H., Kumar S., Rezapour S., Etemad S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals. 2021;144:110668. doi: 10.1016/j.chaos.2021.110668. [DOI] [Google Scholar]
  • 43. Mohammadi, H., Rezapour, S., Jajarmi, A.: On the fractional SIRD mathematical model and control for the transmission of COVID-19: the first and the second waves of the disease in Iran and Japan. ISA Trans. (2021) [DOI] [PMC free article] [PubMed]
  • 44.Baleanu D., Etemad S., Rezapour S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020;2020(1):1. doi: 10.1186/s13661-020-01361-0. [DOI] [Google Scholar]
  • 45.Shaikh A.S., Shaikh I.N., Nisar K.S. A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control. Adv. Differ. Equ. 2020;2020(1):1. doi: 10.1186/s13662-020-02834-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Singh H., Srivastava H.M., Hammouch Z., Nisar K.S. Numerical simulation and stability analysis for the fractional-order dynamics of COVID-19. Results Phys. 2021;20:103722. doi: 10.1016/j.rinp.2020.103722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Baba I.A., Yusuf A., Nisar K.S., Abdel-Aty A.H., Nofal T.A. Mathematical model to assess the imposition of lockdown during COVID-19 pandemic. Results Phys. 2021;20:103716. doi: 10.1016/j.rinp.2020.103716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Aghdaoui H., Alaoui A.L., Nisar K.S., Tilioua M. On analysis and optimal control of a SEIRI epidemic model with general incidence rate. Results Phys. 2021;20:103681. doi: 10.1016/j.rinp.2020.103681. [DOI] [Google Scholar]
  • 49.Panda S.K., Ravichandran C., Hazarika B. Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems. Chaos Solitons Fractals. 2021;142:110390. doi: 10.1016/j.chaos.2020.110390. [DOI] [Google Scholar]
  • 50. Logeswari, K., Ravichandran, C., Nisar, K.S.: Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel. Numer. Methods Partial Differ. Equ. (2020) [DOI] [PMC free article] [PubMed]
  • 51.Valliammal N., Ravichandran C., Nisar K.S. Solutions to fractional neutral delay differential nonlocal systems. Chaos Solitons Fractals. 2020;138:109912. doi: 10.1016/j.chaos.2020.109912. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

No data were used to support this study.


Articles from Advances in Difference Equations are provided here courtesy of Nature Publishing Group

RESOURCES