Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2014 Dec 10;29(6):381–392. doi: 10.1007/s12250-014-3525-8

Binding of HIV-1 virions to α4β7 expressing cells and impact of antagonizing α4β7 on HIV-1 infection of primary CD4+ T cells

Chang Li 1,2, Wei Jin 1,2, Tao Du 1, Biao Wu 3, Yalan Liu 1, Robin J Shattock 4, Qinxue Hu 1,5,
PMCID: PMC8206286  PMID: 25527342

Abstract

HIV-1 envelope glycoprotein is reported to interact with α4β7, an integrin mediating the homing of lymphocytes to gut-associated lymphoid tissue, but the significance of α4β7 in HIV-1 infection remains controversial. Here, using HIV-1 strain BaL, the gp120 of which was previously shown to be capable of interacting with α4β7, we demonstrated that α4β7 can mediate the binding of whole HIV-1 virions to α4β7-expressing transfectants. We further constructed a cell line stably expressing α4β7 and confirmed the α4β7-mediated HIV-1 binding. In primary lymphocytes with activated α4β7 expression, we also observed significant virus binding which can be inhibited by an anti-α4β7 antibody. Moreover, we investigated the impact of antagonizing α4β7 on HIV-1 infection of primary CD4+ T cells. In α4β7-activated CD4+ T cells, both anti-α4β7 antibodies and introduction of short-hairpin RNAs specifically targeting α4β7 resulted in a decreased HIV-1 infection. Our findings indicate that α4β7 may serve as an attachment factor at least for some HIV-1 strains. The established approach provides a promising means for the investigation of other viral strains to understand the potential roles of α4β7 in HIV-1 infection.

Keywords: HIV-1, integrin α4β7, binding, infection, RNA interference, primary CD4+ T cells

References

  1. Abram C L, Lowell C A. The ins and outs of leukocyte integrin signaling. Annu Rev Immunol. 2009;27:339–362. doi: 10.1146/annurev.immunol.021908.132554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alvarez R A, Thorborn G, Reading J L, Reddy S K, Vyakarnam A. WFDC1 expression identifies memory CD4 T-lymphocytes rendered vulnerable to cell-cell HIV-1 transfer by promoting intercellular adhesive junctions. Retrovirology. 2011;8:29. doi: 10.1186/1742-4690-8-29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andrew D P, Berlin C, Honda S, Yoshino T, Hamann A, Holzmann B, Kilshaw P J, Butcher E C. Distinct but overlapping epitopes are involved in α4β7-mediated adhesion to vascular cell adhesion molecule-1, mucosal addressin-1, fibronectin, and lymphocyte aggregation. J Immunol. 1994;153:3847–3861. [PubMed] [Google Scholar]
  4. Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, Wei D, Xiao Z, Veenstra T D, Conrad T P, Lempicki R A, McLaughlin S, Pascuccio M, Gopaul R, McNally J, Cruz C C, Censoplano N, Chung E, Reitano K N, Kottilil S, Goode D J, Fauci A S. HIV-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol. 2008;9:301–309. doi: 10.1038/ni1566. [DOI] [PubMed] [Google Scholar]
  5. Berlin C, Berg E L, Briskin M J, Andrew D P, Kilshaw P J, Holzmann B, Weissman I L, Hamann A, Butcher E C. α4β7 integrin mediates lymphocyte binding to the muco sal vascular addressin MAdCAM-1. Cell. 1993;74:185–195. doi: 10.1016/0092-8674(93)90305-A. [DOI] [PubMed] [Google Scholar]
  6. Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J, Khvorova A. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2:2068–2078. doi: 10.1038/nprot.2007.278. [DOI] [PubMed] [Google Scholar]
  7. Boily M C, Baggaley R F, Wang L, Masse B, White R G, Hayes R J, Alary M. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis. 2009;9:118–129. doi: 10.1016/S1473-3099(09)70021-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Borrow P, Shattock R J, Vyakarnam A. Innate immunity against HIV: a priority target for HIV prevention research. Retrovirology. 2010;7:84. doi: 10.1186/1742-4690-7-84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chohan B, Lang D, Sagar M, Korber B, Lavreys L, Richardson B, Overbaugh J. Selection for human immunodeficiency virus type 1 envelope glycosylation variants with shorter V1–V2 loop sequences occurs during transmission of certain genetic subtypes and may impact viral RNA levels. J Virol. 2005;79:6528–6531. doi: 10.1128/JVI.79.10.6528-6531.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cicala C, Arthos J, Fauci A S. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med. 2010;9(Suppl1):S2. doi: 10.1186/1479-5876-9-S1-S2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cicala C, Martinelli E, McNally J P, Goode D J, Gopaul R, Hiatt J, Jelicic K, Kottilil S, Macleod K, O’Shea A, Patel N, Van Ryk D, Wei D, Pascuccio M, Yi L, McKinnon L, Izulla P, Kimani J, Kaul R, Fauci A S, Arthos J. The integrin α4β7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci USA. 2009;106:20877–20882. doi: 10.1073/pnas.0911796106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dale B M, Alvarez R A, Chen B K. Mechanisms of enhanced HIV spread through T-cell virological synapses. Immunol Rev. 2013;251:113–124. doi: 10.1111/imr.12022. [DOI] [PubMed] [Google Scholar]
  13. Darc M, Hait S H, Soares E A, Cicala C, Seuanez H N, Machado E S, Arthos J A, Soares M A. Polymorphisms in the α4 integrin of neotropical primates: insights for binding of natural ligands and HIV-1 gp120 to the human α4β7. PLoS One. 2011;6:e24461. doi: 10.1371/journal.pone.0024461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Derdeyn C A, Decker J M, Bibollet-Ruche F, Mokili J L, Muldoon M, Denham S A, Heil M L, Kasolo F, Musonda R, Hahn B H, Shaw G M, Korber B T, Allen S, Hunter E. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science. 2004;303:2019–2022. doi: 10.1126/science.1093137. [DOI] [PubMed] [Google Scholar]
  15. Etemad B, Redd A, Serwadda D, Lutalo T, Reynolds S, Gray R, Quinn T, Sagar M. Envelopes found early after acquisition compared to those in the chronically infected partner do not have enhanced alpha4 beta7 binding or utilization. Retrovirology. 2012;9:P149. doi: 10.1186/1742-4690-9-S2-P149. [DOI] [Google Scholar]
  16. Haase A T. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010;464:217–223. doi: 10.1038/nature08757. [DOI] [PubMed] [Google Scholar]
  17. Harris A, Borgnia M J, Shi D, Bartesaghi A, He H, Pejchal R, Kang Y K, Depetris R, Marozsan A J, Sanders R W, Klasse P J, Milne J L, Wilson I A, Olson W C, Moore J P, Subramaniam S. Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proc Natl Acad Sci U S A. 2011;108:11440–11445. doi: 10.1073/pnas.1101414108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hu Q, Napier K B, Trent J O, Wang Z, Taylor S, Griffin G E, Peiper S C, Shattock R J. Restricted variable residues in the C-terminal segment of HIV-1 V3 loop regulate the molecular anatomy of CCR5 utilization. J Mol Biol. 2005;350:699–712. doi: 10.1016/j.jmb.2005.05.024. [DOI] [PubMed] [Google Scholar]
  19. Jelicic K, Cimbro R, Nawaz F, da Huang W, Zheng X, Yang J, Lempicki R A, Pascuccio M, Van Ryk D, Schwing C, Hiatt J, Okwara N, Wei D, Roby G, David A, Hwang I Y, Kehrl J H, Arthos J, Cicala C, Fauci A S. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-beta1 production and FcRL4 expression. Nat Immunol. 2013;14:1256–1265. doi: 10.1038/ni.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keele B F, Giorgi E E, Salazar-Gonzalez J F, Decker J M, Pham K T, Salazar M G, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr J L, Gao F, Anderson J A, Ping L H, Swanstrom R, Tomaras G D, Blattner W A, Goepfert P A, Kilby J M, Saag M S, Delwart E L, Busch M P, Cohen M S, Montefiori D C, Haynes B F, Gaschen B, Athreya G S, Lee H Y, Wood N, Seoighe C, Perelson A S, Bhattacharya T, Korber B T, Hahn B H, Shaw G M. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA. 2008;105:7552–7557. doi: 10.1073/pnas.0802203105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kishko M, Somasundaran M, Brewster F, Sullivan J L, Clapham P R, Luzuriaga K. Genotypic and functional properties of early infant HIV-1 envelopes. Retrovirology. 2011;8:67. doi: 10.1186/1742-4690-8-67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Li H, Pauza C D. HIV envelope-mediated, CCR5/α4β7-dependent killing of CD4-negative γδ T cells which are lost during progression to AIDS. Blood. 2011;118:5824–5831. doi: 10.1182/blood-2011-05-356535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Liao Z, Roos J W, Hildreth J E. Increased infectivity of HIV type 1 particles bound to cell surface and solid-phase ICAM-1 and VCAM-1 through acquired adhesion molecules LFA-1 and VLA-4. AIDS Res Hum Retroviruses. 2000;16:355–366. doi: 10.1089/088922200309232. [DOI] [PubMed] [Google Scholar]
  24. Liu J, Bartesaghi A, Borgnia M J, Sapiro G, Subramaniam S. Molecular architecture of native HIV-1 gp120 trimers. Nature. 2008;455:109–113. doi: 10.1038/nature07159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Luo B H, Carman C V, Springer T A. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–647. doi: 10.1146/annurev.immunol.25.022106.141618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martinelli E, Veglia F, Goode D, Guerra-Perez N, Aravantinou M, Arthos J, Piatak M, Jr., Lifson J D, Blanchard J, Gettie A, Robbiani M. The frequency of α4β7high memory CD4+ T cells correlates with susceptibility to rectal SIV infection. J Acquir Immune Defic Syndr. 2013;64:325–331. doi: 10.1097/QAI.0b013e31829f6e1a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mavigner M, Cazabat M, Dubois M, L’Faqihi F E, Requena M, Pasquier C, Klopp P, Amar J, Alric L, Barange K, Vinel J P, Marchou B, Massip P, Izopet J, Delobel P. Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals. J Clin Invest. 2011;122:62–69. doi: 10.1172/JCI59011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McKinnon L R, Nyanga B, Chege D, Izulla P, Kimani M, Huibner S, Gelmon L, Block K E, Cicala C, Anzala A O, Arthos J, Kimani J, Kaul R. Characterization of a human cervical CD4+ T cell subset coexpressing multiple markers of HIV susceptibility. J Immunol. 2011;187:6032–6042. doi: 10.4049/jimmunol.1101836. [DOI] [PubMed] [Google Scholar]
  29. McLellan J S, Pancera M, Carrico C, Gorman J, Julien J P, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O’Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington J C, Chuang G Y, Diwanji D, Georgiev I, Kwon Y D, Lee D, Louder M K, Moquin S, Schmidt S D, Yang Z Y, Bonsignori M, Crump J A, Kapiga S H, Sam N E, Haynes B F, Burton D R, Koff W C, Walker L M, Phogat S, Wyatt R, Orwenyo J, Wang L X, Arthos J, Bewley C A, Mascola J R, Nabel G J, Schief W R, Ward A B, Wilson I A, Kwong P D. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature. 2011;480:336–343. doi: 10.1038/nature10696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mehandru S, Poles M A, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, Boden D, Racz P, Markowitz M. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med. 2004;200:761–770. doi: 10.1084/jem.20041196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miller C J, Li Q, Abel K, Kim E Y, Ma Z M, Wietgrefe S, La Franco-Scheuch L, Compton L, Duan L, Shore M D, Zupancic M, Busch M, Carlis J, Wolinsky S, Haase A T. Propagation and dissemination of infection after vaginal transmission of simian immunodeficiency virus. J Virol. 2005;79:9217–9227. doi: 10.1128/JVI.79.14.9217-9227.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mora J R, Bono M R, Manjunath N, Weninger W, Cavanagh L L, Rosemblatt M, Von Andrian U H. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature. 2003;424:88–93. doi: 10.1038/nature01726. [DOI] [PubMed] [Google Scholar]
  33. Nawaz F, Cicala C, Van Ryk D, Block K E, Jelicic K, McNally J P, Ogundare O, Pascuccio M, Patel N, Wei D, Fauci A S, Arthos J. The genotype of early-transmitting HIV gp120s promotes α4β7-reactivity, revealing α4β7+/CD4+ T cells as key targets in mucosal transmission. PLoS Pathog. 2011;7:e1001301. doi: 10.1371/journal.ppat.1001301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parrish N F, Wilen C B, Banks L B, Iyer S S, Pfaff J M, Salazar-Gonzalez J F, Salazar M G, Decker J M, Parrish E H, Berg A, Hopper J, Hora B, Kumar A, Mahlokozera T, Yuan S, Coleman C, Vermeulen M, Ding H, Ochsenbauer C, Tilton J C, Permar S R, Kappes J C, Betts M R, Busch M P, Gao F, Montefiori D, Haynes B F, Shaw G M, Hahn B H, Doms R W. Transmitted/founder and chronic subtype C HIV-1 use CD4 and CCR5 receptors with equal efficiency and are not inhibited by blocking the integrin α4β7. PLoS Pathog. 2012;8:e1002686. doi: 10.1371/journal.ppat.1002686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Perez L G, Chen H, Liao H X, Montefiori D C. Envelope glycoprotein binding to the integrin α4β7 is not a general property of most HIV-1 strains. J Virol. 2014;88:10767–10777. doi: 10.1128/JVI.03296-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Qi J, Zhang K, Zhang Q, Sun Y, Fu T, Li G, Chen J. Identification, characterization, and epitope mapping of human monoclonal antibody J19 that specifically recognizes activated integrin α4β7. J Biol Chem. 2012;287:15749–15759. doi: 10.1074/jbc.M112.341263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Qin X F, An D S, Chen I S, Baltimore D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA. 2003;100:183–188. doi: 10.1073/pnas.232688199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Richardson S I, Mkhize N, Abdool Karim S, Gray E, Morris L. 2013. Role of integrin α4β7 in HIV transmission and pathogenesis. Barcelona, Spain, pp. 73.
  39. Ruegg C, Postigo A A, Sikorski E E, Butcher E C, Pytela R, Erle D J. Role of integrin α4β7/α4βP in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Biol. 1992;117:179–189. doi: 10.1083/jcb.117.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sagar M, Wu X, Lee S, Overbaugh J. Human immu nodeficiency virus type 1 V1–V2 envelope loop sequences expand and add glycosylation sites over the course of infection, and these modifications affect antibody neutralization sensitivity. J Virol. 2006;80:9586–9598. doi: 10.1128/JVI.00141-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sattentau Q. HIV’s gut feeling. Nat Immunol. 2008;9:225–227. doi: 10.1038/ni0308-225. [DOI] [PubMed] [Google Scholar]
  42. Spurrier B, Sampson J, Gorny M K, Zolla-Pazner S, Kong X P. J Virol. 2014. Functional Implications of the Binding Mode of a Human Conformation-dependent V2 Monoclonal Antibody against HIV. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Temchura V, Tenbusch M. The two faces of vaccin e-induced immune response: protection or increased risk of HIV infection?! Virol Sin. 2014;29:7–9. doi: 10.1007/s12250-014-3419-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tidswell M, Pachynski R, Wu S W, Qiu S Q, Dunham E, Cochran N, Briskin M J, Kilshaw P J, Lazarovits A I, Andrew D P, Butcher E C, Yednock T A, Erle D J. Structure-function analysis of the integrin β7 subunit: identification of domains involved in adhesion to MAdCAM-1. J Immunol. 1997;159:1497–1505. [PubMed] [Google Scholar]
  45. Tiscornia G, Singer O, Ikawa M, Verma I M. A gener al method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA. 2003;100:1844–1848. doi: 10.1073/pnas.0437912100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tjomsland V, Ellegard R, Kjolhede P, Wodlin N B, Hinkula J, Lifson J D, Larsson M. Blocking of integrins inhibits HIV-1 infection of human cervical mucosa immune cells with free and complement-opsonized virions. Eur J Immunol. 2013;43:2361–2372. doi: 10.1002/eji.201243257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tsai L, Tasovski I, Leda A R, Chin M P, Cheng-Mayer C. The number and genetic relatedness of transmitted/founder virus impact clinical outcome in vaginal R5 SHIVSF162P3N infection. Retrovirology. 2014;11:22. doi: 10.1186/1742-4690-11-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Veazey R S, DeMaria M, Chalifoux L V, Shvetz D E, Pauley D R, Knight H L, Rosenzweig M, Johnson R P, Desrosiers R C, Lackner A A. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science. 1998;280:427–431. doi: 10.1126/science.280.5362.427. [DOI] [PubMed] [Google Scholar]
  49. Wang X, Xu H, Gill A F, Pahar B, Kempf D, Rasmussen T, Lackner A A, Veazey R S. Monitoring α4β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T-cell loss in SIV infection. Mucosal Immunol. 2009;2:518–526. doi: 10.1038/mi.2009.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wawer M J, Gray R H, Sewankambo N K, Serwadda D, Li X, Laeyendecker O, Kiwanuka N, Kigozi G, Kiddugavu M, Lutalo T, Nalugoda F, Wabwire-Mangen F, Meehan M P, Quinn T C. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis. 2005;191:1403–1409. doi: 10.1086/429411. [DOI] [PubMed] [Google Scholar]
  51. Wurm F M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22:1393–1398. doi: 10.1038/nbt1026. [DOI] [PubMed] [Google Scholar]
  52. Wyatt R, Kwong P D, Desjardins E, Sweet R W, Robinson J, Hendrickson W A, Sodroski J G. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature. 1998;393:705–711. doi: 10.1038/31514. [DOI] [PubMed] [Google Scholar]
  53. Yu Y, Zhu J, Mi L Z, Walz T, Sun H, Chen J, Springer T A. S tructural specializations of α4β7, an integrin that mediates rolling adhesion. J Cell Biol. 2012;196:131–146. doi: 10.1083/jcb.201110023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zeller Y, Mechtersheimer S, Altevogt P. Critical amino acid re sidues of the α4 subunit for α4β7 integrin function. J Cell Biochem. 2001;83:304–319. doi: 10.1002/jcb.1197. [DOI] [PubMed] [Google Scholar]
  55. Zhang Z Q, Wietgrefe S W, Li Q, Shore M D, Duan L, Reilly C, Lifson J D, Haase A T. Roles of substrate availability and infection of resting and activated CD4+ T cells in transmission and acute simian immunodeficiency virus infection. Proc Natl Acad Sci USA. 2004;101:5640–5645. doi: 10.1073/pnas.0308425101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES