Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2014 Mar 28;29(2):112–118. doi: 10.1007/s12250-014-3424-z

High-throughput sequencing exclusively identified a novel Torque teno virus genotype in serum of a patient with fatal fever

Zhiqiang Mi 1, Xin Yuan 2, Guangqian Pei 1, Wei Wang 1, Xiaoping An 1, Zhiyi Zhang 1, Yong Huang 1, Fan Peng 1,2,3, Shasha Li 1, Changqing Bai 2,, Yigang Tong 1,
PMCID: PMC8206291  PMID: 24752764

Abstract

Torque teno virus (TTV) has been found to be prevalent world-wide in healthy populations and in patients with various diseases, but its etiological role has not yet been determined. Using high-throughput unbiased sequencing to screen for viruses in the serum of a patient with persistent high fever who died of suspected viral infection and prolonged weakness, we identified the complete genome sequence of a TTV (isolate Hebei-1). The genome of TTV-Hebei-1 is 3649 bp in length, encoding four putative open reading frames, and it has a G+C content of 49%. Genomic comparison and a BLASTN search revealed that the assembled genome of TTV-Hebei-1 represented a novel isolate, with a genome sequence that was highly heterologous to the sequences of other reported TTV strains. A phylogenetic tree constructed using the complete genome sequence showed that TTV-Hebei-1 and an uncharacterized Taiwanese strain, TW53A37, constitute a new TTV genotype. The patient was strongly suspected of carrying a viral infection and died eventually without any other possible causes being apparent. No virus other than the novel TTV was identified in his serum sample. Although a direct causal link between the novel TTV genotype infection and the patient’s disease could not be confirmed, the findings suggest that surveillance of this novel TTV genotype is necessary and that its role in disease deserves to be explored.

Keywords: Torque teno virus, genome, persistent high fever, high-throughput sequencing

Footnotes

These authors contributed equally to this work.

Contributor Information

Changqing Bai, Email: mlp1604@sina.com.

Yigang Tong, Email: tong.yigang@gmail.com.

References

  1. Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni M L. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev. 2001;14:98–113. doi: 10.1128/CMR.14.1.98-113.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biagini P, de Micco P, de Lamballerie X. Identification of a third member of the Anellovirus genus (“small anellovirus”) in French blood donors. Arch Virol. 2006;151:405–408. doi: 10.1007/s00705-005-0660-4. [DOI] [PubMed] [Google Scholar]
  3. Biagini P, Gallian P, Attoui H, Touinssi M, Cantaloube J, de Micco P, de Lamballerie X. Genetic analysis of full-length genomes and subgenomic sequences of TT virus-like mini virus human isolates. J Gen Virol. 2001;82:379–383. doi: 10.1099/0022-1317-82-2-379. [DOI] [PubMed] [Google Scholar]
  4. de Villiers E M, Borkosky S S, Kimmel R, Gunst K, Fei J W. The diversity of torque teno viruses: in vitro replication leads to the formation of additional replication-competent subviral molecules. J Virol. 2011;85:7284–7295. doi: 10.1128/JVI.02472-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heller F, Zachoval R, Koelzer A, Nitschko H, Froesner G G. Isolate KAV: a new genotype of the TT-virus family. Biochem Biophys Res Commun. 2001;289:937–941. doi: 10.1006/bbrc.2001.6089. [DOI] [PubMed] [Google Scholar]
  6. Hu Y W, Al-Moslih M I, Al Ali M T, Khameneh S R, Perkins H, Diaz-Mitoma F, Roy J N, Uzicanin S, Brown E G. Molecular detection method for all known genotypes of TT virus (TTV) and TTV-like viruses in thalassemia patients and healthy individuals. J Clin Microbiol. 2005;43:3747–3754. doi: 10.1128/JCM.43.8.3747-3754.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Itoh Y, Takahashi M, Fukuda M, Shibayama T, Ishikawa T, Tsuda F, Tanaka T, Nishizawa T, Okamoto H. Visualization of TT virus particles recovered from the sera and feces of infected humans. Biochem Biophys Res Commun. 2000;279:718–724. doi: 10.1006/bbrc.2000.4013. [DOI] [PubMed] [Google Scholar]
  8. Jelcic I, Hotz-Wagenblatt A, Hunziker A, Zur Hausen H, de Villiers E M. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol. 2004;78:7498–7507. doi: 10.1128/JVI.78.14.7498-7507.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kakkola L, Hedman K, Vanrobaeys H, Hedman L, Soderlund-Venermo M. Cloning and sequencing of TT virus genotype 6 and expression of antigenic open reading frame 2 proteins. J Gen Virol. 2002;83:979–990. doi: 10.1099/0022-1317-83-5-979. [DOI] [PubMed] [Google Scholar]
  10. Leppik L, Gunst K, Lehtinen M, Dillner J, Streker K, de Villiers E M. In vivo and in vitro intragenomic rearrangement of TT viruses. J Virol. 2007;81:9346–9356. doi: 10.1128/JVI.00781-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luo K, He H, Liu Z, Liu D, Xiao H, Jiang X, Liang W, Zhang L. Novel variants related to TT virus distributed widely in China. J Med Virol. 2002;67:118–126. doi: 10.1002/jmv.2200. [DOI] [PubMed] [Google Scholar]
  12. Mancuso R, Saresella M, Hernis A, Agostini S, Piancone F, Caputo D, Maggi F, Clerici M. Torque teno virus (TTV) in multiple sclerosis patients with different patterns of disease. J Med Virol. 2013;85:2176–2183. doi: 10.1002/jmv.23707. [DOI] [PubMed] [Google Scholar]
  13. Niel C, Lampe E. High detection rates of TTV-like mini virus sequences in sera from Brazilian blood donors. J Med Virol. 2001;65:199–205. doi: 10.1002/jmv.2021. [DOI] [PubMed] [Google Scholar]
  14. Niel C, de Oliveira J M, Ross R S, Gomes S A, Roggendorf M, Viazov S. High prevalence of TT virus infection in Brazilian blood donors. J Med Virol. 1999;57:259–263. doi: 10.1002/(SICI)1096-9071(199903)57:3<259::AID-JMV8>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  15. Ninomiya M, Takahashi M, Nishizawa T, Shimosegawa T, Okamoto H. Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J Clin Microbiol. 2008;46:507–514. doi: 10.1128/JCM.01703-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ninomiya M, Nishizawa T, Takahashi M, Lorenzo F R, Shimosegawa T, Okamoto H. Identification and genomic characterization of a novel human torque teno virus of 3.2 kb. J Gen Virol. 2007;88:1939–1944. doi: 10.1099/vir.0.82895-0. [DOI] [PubMed] [Google Scholar]
  17. Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun. 1997;241:92–97. doi: 10.1006/bbrc.1997.7765. [DOI] [PubMed] [Google Scholar]
  18. Okamoto H. History of discoveries and pathogenicity of TT viruses. Curr Top Microbiol Immunol. 2009;331:1–20. doi: 10.1007/978-3-540-70972-5_1. [DOI] [PubMed] [Google Scholar]
  19. Okamoto H, Nishizawa T, Takahashi M, Asabe S, Tsuda F, Yoshikawa A. Heterogeneous distribution of TT virus of distinct genotypes in multiple tissues from infected humans. Virology. 2001;288:358–368. doi: 10.1006/viro.2001.1097. [DOI] [PubMed] [Google Scholar]
  20. Okamoto H, Nishizawa T, Tawara A, Peng Y, Takahashi M, Kishimoto J, Tanaka T, Miyakawa Y, Mayumi M. Species-specific TT viruses in humans and nonhuman primates and their phylogenetic relatedness. Virology. 2000;277:368–378. doi: 10.1006/viro.2000.0588. [DOI] [PubMed] [Google Scholar]
  21. Peng Y H, Nishizawa T, Takahashi M, Ishikawa T, Yoshikawa A, Okamoto H. Analysis of the entire genomes of thirteen TT virus variants classifiable into the fourth and fifth genetic groups, isolated from viremic infants. Arch Virol. 2002;147:21–41. doi: 10.1007/s705-002-8301-7. [DOI] [PubMed] [Google Scholar]
  22. Pistello M, Morrica A, Maggi F, Vatteroni M L, Freer G, Fornai C, Casula F, Marchi S, Ciccorossi P, Rovero P, Bendinelli M. TT virus levels in the plasma of infected individuals with different hepatic and extrahepatic pathology. J Med Virol. 2001;63:189–195. doi: 10.1002/1096-9071(20000201)63:2<189::AID-JMV1014>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  23. Punta M, Coggill P C, Eberhardt R Y, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer E L, Eddy S R, Bateman A, Finn R D. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–301. doi: 10.1093/nar/gkr1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takahashi K, Iwasa Y, Hijikata M, Mishiro S. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol. 2000;145:979–993. doi: 10.1007/s007050050689. [DOI] [PubMed] [Google Scholar]
  25. Ukita M, Okamoto H, Nishizawa T, Tawara A, Takahashi M, Iizuka H, Miyakawa Y, Mayumi M. The entire nucleotide sequences of two distinct TT virus (TTV) isolates (TJN01 and TJN02) remotely related to the original TTV isolates. Arch Virol. 2000;145:1543–1559. doi: 10.1007/s007050070075. [DOI] [PubMed] [Google Scholar]
  26. Vasilyev E V, Trofimov D Y, Tonevitsky A G, Ilinsky V V, Korostin D O, Rebrikov D V. Torque Teno Virus (TTV) distribution in healthy Russian population. Virol J. 2009;6:134. doi: 10.1186/1743-422X-6-134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Willner D, Haynes M R, Furlan M, Hanson N, Kirby B, Lim Y W, Rainey P B, Schmieder R, Youle M, Conrad D, Rohwer F. Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. Am J Respir Cell Mol Biol. 2012;46:127–131. doi: 10.1165/rcmb.2011-0253OC. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES