Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Dec 26;29(1):33–39. doi: 10.1007/s12250-014-3379-0

Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin

Diana Kozlova 1, Viktoriya Sokolova 1, Maohua Zhong 2, Ejuan Zhang 2, Jingyi Yang 2, Wei Li 2, Yi Yang 2, Jan Buer 3, Astrid Maria Westendorf 3, Matthias Epple 1,, Huimin Yan 2,
PMCID: PMC8206388  PMID: 24374818

Abstract

For subunit vaccines, adjuvants play a key role in shaping the magnitude, persistence and form of targeted antigen-specific immune response. Flagellin is a potent immune activator by bridging innate inflammatory responses and adaptive immunity and an adjuvant candidate for clinical application. Calcium phosphate nanoparticles are efficient carriers for different biomolecules like DNA, RNA, peptides and proteins. Flagellin-functionalized calcium phosphate nanoparticles were prepared and their immunostimulatory effect on the innate immune system, i.e. the cytokine production, was studied. They induced the production of the proinflammatory cytokines IL-8 (Caco-2 cells) and IL-1β (bone marrow-derived macrophages; BMDM) in vitro and IL-6 in vivo after intraperitoneal injection in mice. The immunostimulation was more pronounced than with free flagellin.

Keywords: calcium phosphate, nanoparticle, immunostimulation, innate immune system, flagellin, adjuvants

Contributor Information

Matthias Epple, FAX: +49 201 1832621, Email: matthias.epple@uni-due.de.

Huimin Yan, Phone: +86-27-87197103, FAX: +86-27-87197103, Email: hmyan@wh.iov.cn.

References

  1. Amicizia D, Domnich A, Panatto D, Lai P L, Cristina M L, Avio U, Gasparini R. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccin Immunother. 2013;9:1163–1171. doi: 10.4161/hv.23802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blutt S E, Miller A D, Salmon S L, Metzger D W, Conner M E. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol. 2012;5:712–719. doi: 10.1038/mi.2012.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coffman R L, Sher A, Seder R A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;4:492–503. doi: 10.1016/j.immuni.2010.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demento S L, Siefert A L, Bandyopadhyay A, Sharp F A, Fahmy T M. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol. 2011;29:294–306. doi: 10.1016/j.tibtech.2011.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 2002;41:3130–3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  6. Epand R M, Vogel H J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta. 1999;1462:11–28. doi: 10.1016/S0005-2736(99)00198-4. [DOI] [PubMed] [Google Scholar]
  7. Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw M H, Kim Y G, Núñez G. NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 2012;13:449–456. doi: 10.1038/ni.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman M J, Huby T, Guerin M, Le Goff W. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem. 2011;35:30926–30936. doi: 10.1074/jbc.M111.264325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harandi A M, Medaglini D, Shattock R J. Vaccine adjuvants: a priority for vaccine research. Vaccine. 2010;28:2363–2366. doi: 10.1016/j.vaccine.2009.12.084. [DOI] [PubMed] [Google Scholar]
  10. Honko A N, Mizel S B. Effects of flagellin on innate and adaptive immunity. Immunol Res. 2005;33:83–101. doi: 10.1385/IR:33:1:083. [DOI] [PubMed] [Google Scholar]
  11. Klinman D M, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev. 2009;61:248–255. doi: 10.1016/j.addr.2008.12.012. [DOI] [PubMed] [Google Scholar]
  12. Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, Westendorf A M. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol. 2013;190:6221–6229. doi: 10.4049/jimmunol.1202654. [DOI] [PubMed] [Google Scholar]
  13. Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf A M, Epple M. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J. Mater. Chem. 2012;22:396–404. doi: 10.1039/c1jm14683a. [DOI] [Google Scholar]
  14. Krishnamachari Y, Salem A K. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev. 2009;61:205–217. doi: 10.1016/j.addr.2008.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu F, Yang J, Zhang Y, Zhou D, Chen Y, Gai W, Shi W, Li Q, Tien P, Yan H. Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy. Biochem. Biophys. Res. Commun. 2010;392:582–587. doi: 10.1016/j.bbrc.2010.01.077. [DOI] [PubMed] [Google Scholar]
  16. Mbow M L, De Gregorio E, Valiante N M, Rappuoli R. New adjuvants for human vaccines. Curr. Opin. Immunol. 2010;22:411–416. doi: 10.1016/j.coi.2010.04.004. [DOI] [PubMed] [Google Scholar]
  17. Miao E A, Andersen-Nissen E, Warren S E, Aderem A. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin. Immunopathol. 2007;29:275–288. doi: 10.1007/s00281-007-0078-z. [DOI] [PubMed] [Google Scholar]
  18. Mizel S B, Bates J T. Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol. 2010;185:5677–5682. doi: 10.4049/jimmunol.1002156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Neumann S, Kovtun A, Dietzel I D, Epple M, Heumann R. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials. 2009;30:6794–6802. doi: 10.1016/j.biomaterials.2009.08.043. [DOI] [PubMed] [Google Scholar]
  20. Shi W, Li Y H, Liu F, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Han C, Fan M W, Yan H M. Flagellin enhances saliva IgA response and protection of anti-caries DNA vaccine. J. Dent. Res. 2012;91:249–254. doi: 10.1177/0022034511424283. [DOI] [PubMed] [Google Scholar]
  21. Sokolova V, Knuschke T, Buer J, Westendorf A M, Epple M. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater. 2011;7:4029–4036. doi: 10.1016/j.actbio.2011.07.010. [DOI] [PubMed] [Google Scholar]
  22. Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, Westendorf A M. The use of calcium phosphate nanoparticles encapsulating toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials. 2010;31:5627–5633. doi: 10.1016/j.biomaterials.2010.03.067. [DOI] [PubMed] [Google Scholar]
  23. Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf A M, Epple M. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater. 2013;9:7527–7535. doi: 10.1016/j.actbio.2013.02.034. [DOI] [PubMed] [Google Scholar]
  24. Sokolova V, Rotan O, Klesing J, Nalbant P, Buer J, Knuschke T, Westendorf A M, Epple M. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. J. Nanopart. Res. 2012;14:910. doi: 10.1007/s11051-012-0910-9. [DOI] [Google Scholar]
  25. Sun Y, Shi W, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Zhong M H, Li Y M, Cao Y, Xiao Y, Li W, Yu J, Li Y H, Fan M W, Yan H M. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J. Dent. Res. 2012;91:941–947. doi: 10.1177/0022034512457684. [DOI] [PubMed] [Google Scholar]
  26. Vijay-Kumar M, Carvalho F A, Aitken J D, Fifadara N H, Gewirtz A T. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur. J. Immunol. 2010;12:3528–3534. doi: 10.1002/eji.201040421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert H H, Peters J H, Nesselhut T, Lorenzen D R. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm. 2009;1–2:61–68. doi: 10.1016/j.ijpharm.2008.08.039. [DOI] [PubMed] [Google Scholar]
  28. Yan H, Lamm M E, Björling E, Huang Y T. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J. Virol. 2002;76:10972–10979. doi: 10.1128/JVI.76.21.10972-10979.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y, Li Y, Zhou D, He B, Chen Y, Yang Y, Yu J, Yan H. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization. Hum. Vaccin. Immunother. 2013;9:1084–1092. doi: 10.4161/hv.23809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yang J, Zhang E, Liu F, Zhang Y, Zhong M, Li Y, Zhou D, Chen Y, Cao Y, Xiao Y, He B, Yang Y, Sun Y, Lu M, Yan H. J. Innate Immunity. 2013. Flagellins of Salmonella Typhi and non-pathogenic Escherichia coli are differentially recognized through NLRC4 pathway in macrophages. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES