Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2014 May 14;29(3):148–154. doi: 10.1007/s12250-014-3430-1

Agroinfection of sweet potato by vacuum infiltration of an infectious sweepovirus

Huiping Bi 1,2, Peng Zhang 1,3,
PMCID: PMC8206405  PMID: 24903591

Abstract

Sweepovirus is an important monopartite begomovirus that infects plants of the genus Ipomoea worldwide. Development of artificial infection methods for sweepovirus using agroinoculation is a highly efficient means of studying infectivity in sweet potato. Unlike other begomoviruses, it has proven difficult to infect sweet potato plants with sweepoviruses using infectious clones. A novel sweepovirus, called Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), was recently identified in China. In addition, the infectivity of the SPLCV-JS clone has been demonstrated in Nicotiana benthamiana. Here we describe the agroinfection of the sweet potato cultivar Xushu 22 with the SPLCV-JS infectious clone using vacuum infiltration. Yellowing symptoms were observed in newly emerged leaves. Molecular analysis confirmed successful inoculation by the detection of viral DNA. A synergistic effect of SPLCV-JS and the heterologous betasatellite DNA-β of Tomato yellow leaf curl China virus isolate Y10 (TYLCCNV-Y10) on enhanced symptom severity and viral DNA accumulation was confirmed. The development of a routine agroinoculation system in sweet potato with SPLCV-JS using vacuum infiltration should facilitate the molecular study of sweepovirus in this host and permit the evaluation of virus resistance of sweet potato plants in breeding programs.

Keywords: sweepovirus, agroinfection, vacuum infiltration, sweet potato

References

  1. Albuquerque L C, Inoue-Nagata A K, Pinheiro B, Resende R O, Moriones E, Navas-Castillo J. Genetic diversity and recombination analysis of sweepoviruses from Brazil. Virol J. 2012;9:241–253. doi: 10.1186/1743-422X-9-241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bi H, Zhang P. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana. Arch Virol. 2012;157:441–454. doi: 10.1007/s00705-011-1194-6. [DOI] [PubMed] [Google Scholar]
  3. Boulton M I. Plant Gene Transfer and Expression Protocols. New York: Springer; 1996. Agrobacterium-mediated transfer of geminiviruses to plant tissues; pp. 77–93. [DOI] [PubMed] [Google Scholar]
  4. Briddon R W, Bull S E, Mansoor S, Amin I, Markham P G. Universal primers for the PCR-mediated amplification of DNAβ: a molecule associated with some monopartite begomoviruses. Mol Biotechnol. 2002;20:315–318. doi: 10.1385/MB:20:3:315. [DOI] [PubMed] [Google Scholar]
  5. Briddon R W, Bull S E, Bedford I D. Occurrence of sweet potato leaf curl virus in Sicily. Plant Pathol. 2006;55:286. doi: 10.1111/j.1365-3059.2005.01273.x. [DOI] [Google Scholar]
  6. Carrillo-Tripp J, Shimada-Beltrán H, Rivera-Bustamante R. Use of geminiviral vectors for functional genomics. Curr Opin Plant Biol. 2006;9:209–215. doi: 10.1016/j.pbi.2006.01.012. [DOI] [PubMed] [Google Scholar]
  7. Clark C A, Hoy M W. Effects of common viruses on yield and quality of Beauregard sweetpotato in Louisiana. Plant Dis. 2006;90:83–88. doi: 10.1094/PD-90-0083. [DOI] [PubMed] [Google Scholar]
  8. Cohen J, Milgram M, Antignus Y, Pearlsman M, Lachman O, Loebenstein G. Ipomoea crinkle leaf curl caused by a whitefly-transmitted gemini-like virus. Ann Appl Biol. 1997;131:273–282. doi: 10.1111/j.1744-7348.1997.tb05156.x. [DOI] [Google Scholar]
  9. Cui X F, Tao X R, Xie Y, Fauquet C M, Zhou X P. A DNAβ associated with Tomato yellow leaf curl China virus is required for symptom induction. J Virol. 2004;78:13966–13974. doi: 10.1128/JVI.78.24.13966-13974.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Elmer J S, Sunter G, Gardiner W E, Brand L, Browning C K. Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol Biol. 1988;10:225–234. doi: 10.1007/BF00027399. [DOI] [PubMed] [Google Scholar]
  11. Fauquet C M, Stanley J. Geminivirus classification and nomenclature: progress and problems. Ann App Biol. 2003;142:165–189. doi: 10.1111/j.1744-7348.2003.tb00241.x. [DOI] [Google Scholar]
  12. Fuentes S, Salazar L F. First report of sweet potato leaf curl virus in Peru. Plant Dis. 2003;87:98. doi: 10.1094/PDIS.2003.87.1.98C. [DOI] [PubMed] [Google Scholar]
  13. Grimsley N, Hohn T, Davies J W, Hohn B. Agrobacterium mediated delivery of infectious maize streak virus into maize plants. Nature. 1987;325:177–179. doi: 10.1038/325177a0. [DOI] [Google Scholar]
  14. Li R H, Salih S, Hurtt S. Detection of geminiviruses in sweet potato by polymerase chain reaction. Plant Dis. 2004;88:1347–1351. doi: 10.1094/PDIS.2004.88.12.1347. [DOI] [PubMed] [Google Scholar]
  15. Ling K S, Jackson D M, Harrison H, Simmons A M, Pesic-VanEsbroeck Z. Field evaluation of yield effects on the U.S.A. heirloom sweetpotato cultivars infected by Sweet potato leaf curl virus. Crop Protec. 2010;29:757–765. doi: 10.1016/j.cropro.2010.02.017. [DOI] [Google Scholar]
  16. Lotrakul P, Valverde R A, Clark C A, Fauquet C M. Properties of a begomovirus isolated from sweet potato [Ipomoea batatas (L.) Lam.] infected with Sweet potato leaf curl virus. Rev Mex Fitopatol. 2003;21:128–136. [Google Scholar]
  17. Lozano G, Trenado H P, Valverde R A, Navas-Castillo J. Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications. J Gen Virol. 2009;90:2550–62. doi: 10.1099/vir.0.012542-0. [DOI] [PubMed] [Google Scholar]
  18. Luan Y S, Zhang J, Liu D M, Li W L. Molecular characterization of sweet potato leaf curl virus isolate from China (SPLCV-CN) and its phylogenetic relationship with other members of the Geminiviridae. Virus Genes. 2007;35:379–385. doi: 10.1007/s11262-007-0084-1. [DOI] [PubMed] [Google Scholar]
  19. Miano D W, LaBonte D R, Clark C A, Valverde R A, Hoy M W, Hurtt S, Li R. First report of a Begomovirus infecting sweet potato in Kenya. Plant Dis. 2006;90:832. doi: 10.1094/PD-90-0832B. [DOI] [PubMed] [Google Scholar]
  20. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. [DOI] [Google Scholar]
  21. Onuki M, Hanada K. PCR amplification and partial nucleotide sequences of three dicot-infecting geminiviruses occurring in Japan. Ann Phytopathol Soc Jpn. 1998;64:116–120. doi: 10.3186/jjphytopath.64.116. [DOI] [Google Scholar]
  22. Paprotka T, Boiteux L S, Fonseca M E N, Resende R O, Jeske H, Faria J C, Ribeiro S G. Genomic diversity of sweet potato geminiviruses in Brazillian germplasm bank. Virus Res. 2010;149:224–233. doi: 10.1016/j.virusres.2010.02.003. [DOI] [PubMed] [Google Scholar]
  23. Sambrook J, Russell D W. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2001. [Google Scholar]
  24. Simmons A M, Ling K S, Harrison H F, Jackson D M. Sweet potato leaf curl virus: efficiency of acquisition, retention and transmission by Bemisia tabaci (Hemiptera: Aleyrodidae) Crop Prot. 2009;28:1007–1011. doi: 10.1016/j.cropro.2009.06.011. [DOI] [Google Scholar]
  25. Soni R, Murray J A H. Isolation of intact DNA and RNA from plant tissues. Anal Biochem. 1994;218:474–476. doi: 10.1006/abio.1994.1214. [DOI] [PubMed] [Google Scholar]
  26. Tao X R, Zhou X P. A modified viral satellite DNA that suppresses gene expression in plants. Plant J. 2004;38:850–860. doi: 10.1111/j.1365-313X.2004.02087.x. [DOI] [PubMed] [Google Scholar]
  27. Trenado H P, Orilio A F, Marquez-Martin B, Moriones E, Navas-Castillo J. Sweepoviruses cause disease in sweet potato and related Ipomoea spp.: fulfilling Koch’s postulates for a divergent group in the genus Begomovirus. PloS One. 2011;6:e27329. doi: 10.1371/journal.pone.0027329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Valverde R A, Sim J, Lotrakul P. Whitefly transmission of sweet potato viruses. Virus Res. 2004;100:123–128. doi: 10.1016/j.virusres.2003.12.020. [DOI] [PubMed] [Google Scholar]
  29. Valverde R A, Clark C A, Valkonen J P T. Viruses and virus disease complexes of sweetpotato. Plant Viruses. 2007;1:116–126. [Google Scholar]
  30. Wasswa P, Otto B, Maruthi M N, Mukasa S B, Monger W, Gibson R W. First identification of a sweet potato begomovirus (sweepovirus) in Uganda: characterization, detection and distribution. Plant Pathol. 2011;60:1030–1039. doi: 10.1111/j.1365-3059.2011.02464.x. [DOI] [Google Scholar]
  31. Zhang S C, Ling K S. Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Arch Virol. 2011;156:955–968. doi: 10.1007/s00705-011-0930-2. [DOI] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES