Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2014 Jan 20;29(1):48–60. doi: 10.1007/s12250-014-3396-z

The phenotype and activation status of regulatory T cells during Friend retrovirus infection

Jara J Joedicke 1, Kirsten K Dietze 1, Gennadiy Zelinskyy 1, Ulf Dittmer 1,
PMCID: PMC8206416  PMID: 24452537

Abstract

The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.

Keywords: regulatory T cells, Friend retrovirus, Vβ5+ Treg, activation marker

References

  1. Akhmetzyanova I, Zelinskyy G, Schimmer S, Brandau S, Altenhoff P, Sparwasser T, Dittmer U. Tumor-specific cd4+ t cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory t cells. Cancer Immunol Immun: CII. 2013;62:257–271. doi: 10.1007/s00262-012-1329-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akimova T, Beier U H, Wang L, Levine M H, Hancock W W. Helios expression is a marker of t cell activation and proliferation. PloS One. 2011;6:e24226. doi: 10.1371/journal.pone.0024226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alatrakchi N, Koziel M. Regulatory t cells and viral liver disease. J Viral Hepatitis. 2009;16:223–229. doi: 10.1111/j.1365-2893.2009.01081.x. [DOI] [PubMed] [Google Scholar]
  4. Antunes I, Tolaini M, Kissenpfennig A, Iwashiro M, Kuribayashi K, Malissen B, Hasenkrug K, Kassiotis G. Retrovirus-specificity of regulatory t cells is neither present nor required in preventing retrovirus-induced bone marrow immune pathology. Immunity. 2008;29:782–794. doi: 10.1016/j.immuni.2008.09.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barber D L, Wherry E J, Masopust D, Zhu B, Allison J P, Sharpe A H, Freeman G J, Ahmed R. Restoring function in exhausted cd8 t cells during chronic viral infection. Nature. 2006;439:682–687. doi: 10.1038/nature04444. [DOI] [PubMed] [Google Scholar]
  6. Barron L, Dooms H, Hoyer K K, Kuswanto W, Hofmann J, O’Gorman W E, Abbas A K. Cutting edge: Mechanisms of il-2-dependent maintenance of functional regulatory t cells. J Immunol. 2010;185:6426–6430. doi: 10.4049/jimmunol.0903940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bedoya F, Cheng G S, Leibow A, Zakhary N, Weissler K, Garcia V, Aitken M, Kropf E, Garlick D S, Wherry E J, Erikson J, Caton A J. Viral antigen induces differentiation of foxp3+ natural regulatory t cells in influenza virus-infected mice. J Immunol. 2013;190:6115–6125. doi: 10.4049/jimmunol.1203302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blackburn S D, Shin H, Haining W N, Zou T, Workman C J, Polley A, Betts M R, Freeman G J, Vignali D A, Wherry E J. Coregulation of cd8+ t cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10:29–37. doi: 10.1038/ni.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cabarrocas J, Cassan C, Magnusson F, Piaggio E, Mars L, Derbinski J, Kyewski B, Gross D A, Salomon B L, Khazaie K, Saoudi A, Liblau R S. Foxp3+ cd25+ regulatory t cells specific for a neo-self-antigen develop at the double-positive thymic stage. P Nat Acad Sci USA. 2006;103:8453–8458. doi: 10.1073/pnas.0603086103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chevalier M F, Weiss L. The split personality of regulatory t cells in hiv infection. Blood. 2013;121:29–37. doi: 10.1182/blood-2012-07-409755. [DOI] [PubMed] [Google Scholar]
  11. Choi Y, Kappler J W, Marrack P. A superantigen encoded in the open reading frame of the 3’ long terminal repeat of mouse mammary tumour virus. Nature. 1991;350:203–207. doi: 10.1038/350203a0. [DOI] [PubMed] [Google Scholar]
  12. Coquet J M, Ribot J C, Babala N, Middendorp S, van der Horst G, Xiao Y, Neves J F, Fonseca-Pereira D, Jacobs H, Pennington D J, Silva-Santos B, Borst J. Epithelial and dendritic cells in the thymic medulla promote cd4+foxp3+ regulatory t cell development via the cd27-cd70 pathway. J Exp Med. 2013;210:715–728. doi: 10.1084/jem.20112061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coutinho A, Caramalho I, Seixas E, Demengeot J. Thymic commitment of regulatory t cells is a pathway of tcr-dependent selection that isolates repertoires undergoing positive or negative selection. Curr Top Microbiol. 2005;293:43–71. doi: 10.1007/3-540-27702-1_3. [DOI] [PubMed] [Google Scholar]
  14. Dietze K K, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. Combining regulatory t cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific cd8(+) t cells and efficiently reduces chronic retroviral loads. PLoS Pathog. 2013;9:e1003798. doi: 10.1371/journal.ppat.1003798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dittmer U, He H, Messer R J, Schimmer S, Olbrich A R, Ohlen C, Greenberg P D, Stromnes I M, Iwashiro M, Sakaguchi S, Evans L H, Peterson K E, Yang G, Hasenkrug K J. Functional impairment of cd8(+) t cells by regulatory t cells during persistent retroviral infection. Immunity. 2004;20:293–303. doi: 10.1016/S1074-7613(04)00054-8. [DOI] [PubMed] [Google Scholar]
  16. Ebinuma H, Nakamoto N, Li Y, Price D A, Gostick E, Levine B L, Tobias J, Kwok W W, Chang K M. Identification and in vitro expansion of functional antigen-specific cd25+ foxp3+ regulatory t cells in hepatitis c virus infection. J Virol. 2008;82:5043–5053. doi: 10.1128/JVI.01548-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fontenot J D, Rasmussen J P, Williams L M, Dooley J L, Farr A G, Rudensky A Y. Regulatory t cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–341. doi: 10.1016/j.immuni.2005.01.016. [DOI] [PubMed] [Google Scholar]
  18. Francisco L M, Salinas V H, Brown K E, Vanguri V K, Freeman G J, Kuchroo V K, Sharpe A H. Pd-l1 regulates the development, maintenance, and function of induced regulatory t cells. J Exp Med. 2009;206:3015–3029. doi: 10.1084/jem.20090847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Furuichi Y, Tokuyama H, Ueha S, Kurachi M, Moriyasu F, Kakimi K. Depletion of cd25+cd4+t cells (tregs) enhances the hbv-specific cd8+ t cell response primed by DNA immunization. World J Gastroentero. 2005;11:3772–3777. doi: 10.3748/wjg.v11.i24.3772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gottschalk R A, Corse E, Allison J P. Expression of helios in peripherally induced foxp3+ regulatory t cells. J Immunol. 2012;188:976–980. doi: 10.4049/jimmunol.1102964. [DOI] [PubMed] [Google Scholar]
  21. Iwashiro M, Messer R J, Peterson K E, Stromnes I M, Sugie T, Hasenkrug K J. Immunosuppression by cd4+ regulatory t cells induced by chronic retroviral infection. P Nat Acad Sci USA. 2001;98:9226–9230. doi: 10.1073/pnas.151174198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones R B, Ndhlovu L C, Barbour J D, Sheth P M, Jha A R, Long B R, Wong J C, Satkunarajah M, Schweneker M, Chapman J M, Gyenes G, Vali B, Hyrcza M D, Yue F Y, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht F M, Chun T W, McCune J M, Kaul R, Rini J M, Nixon D F, Ostrowski M A. Tim-3 expression defines a novel population of dysfunctional t cells with highly elevated frequencies in progressive hiv-1 infection. J Exp Med. 2008;205:2763–2779. doi: 10.1084/jem.20081398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Killebrew J R, Perdue N, Kwan A, Thornton A M, Shevach E M, Campbell D J. A self-reactive tcr drives the development of foxp3+ regulatory t cells that prevent autoimmune disease. J Immunol. 2011;187:861–869. doi: 10.4049/jimmunol.1004009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kohm A P, Carpentier P A, Anger H A, Miller S D. Cutting edge: Cd4+cd25+ regulatory t cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol. 2002;169:4712–4716. doi: 10.4049/jimmunol.169.9.4712. [DOI] [PubMed] [Google Scholar]
  25. Kryworuchko M, Theze J. Interleukin-2: From t cell growth and homeostasis to immune reconstitution of hiv patients. Vitam Horm. 2006;74:531–547. doi: 10.1016/S0083-6729(06)74021-3. [DOI] [PubMed] [Google Scholar]
  26. Leavy O. Regulatory t cells: The thymic medulla — a cradle for treg cell development. Nat Rev Immunol. 2013;13:304. doi: 10.1038/nri3453. [DOI] [PubMed] [Google Scholar]
  27. Li W, Green W R. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by cd4 t regulatory cell depletion and pd-1 blockade. J Virol. 2011;85:13342–13353. doi: 10.1128/JVI.00120-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lilly F, Steeves R A. B-tropic friend virus: A host-range pseudotype of spleen focus-forming virus (sffv) Virology. 1973;55:363–370. doi: 10.1016/0042-6822(73)90176-1. [DOI] [PubMed] [Google Scholar]
  29. Malek T R. The main function of il-2 is to promote the development of t regulatory cells. J Leukocyte Biol. 2003;74:961–965. doi: 10.1189/jlb.0603272. [DOI] [PubMed] [Google Scholar]
  30. Manigold T, Racanelli V. T-cell regulation by cd4 regulatory t cells during hepatitis b and c virus infections: Facts and controversies. Lancet Infect Dis. 2007;7:804–813. doi: 10.1016/S1473-3099(07)70289-X. [DOI] [PubMed] [Google Scholar]
  31. Mills K H. Regulatory t cells: Friend or foe in immunity to infection? Nat Rev Immunol. 2004;4:841–855. doi: 10.1038/nri1485. [DOI] [PubMed] [Google Scholar]
  32. Myers L, Joedicke J J, Carmody A B, Messer R J, Kassiotis G, Dudley J P, Dittmer U, Hasenkrug K J. Il-2-independent and tnf-alpha-dependent expansion of vbeta5+ natural regulatory t cells during retrovirus infection. J Immunol. 2013;190:5485–5495. doi: 10.4049/jimmunol.1202951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nilsson J, Boasso A, Velilla P A, Zhang R, Vaccari M, Franchini G, Shearer G M, Andersson J, Chougnet C. Hiv-1-driven regulatory t-cell accumulation in lymphoid tissues is associated with disease progression in hiv/aids. Blood. 2006;108:3808–3817. doi: 10.1182/blood-2006-05-021576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Palmer B E, Neff C P, Lecureux J, Ehler A, Dsouza M, Remling-Mulder L, Korman A J, Fontenot A P, Akkina R. In vivo blockade of the pd-1 receptor suppresses hiv-1 viral loads and improves cd4+ t cell levels in humanized mice. J Immunol. 2013;190:211–219. doi: 10.4049/jimmunol.1201108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Piersma S J, van der Hulst J M, Kwappenberg K M, Goedemans R, van der Minne C E, van der Burg S H. Influenza matrix 1-specific human cd4+ foxp3+ and foxp3(-) regulatory t cells can be detected long after viral clearance. Eur J Immunol. 2010;40:3064–3074. doi: 10.1002/eji.200940177. [DOI] [PubMed] [Google Scholar]
  36. Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum C J, Chougnet C A. Frequency of circulating regulatory t cells increases during chronic hiv infection and is largely controlled by highly active antiretroviral therapy. PloS One. 2011;6:e28118. doi: 10.1371/journal.pone.0028118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Punkosdy G A, Blain M, Glass D D, Lozano M M, O’Mara L, Dudley J P, Ahmed R, Shevach E M. Regulatory t-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. P Nat Acad Sci USA. 2011;108:3677–3682. doi: 10.1073/pnas.1100213108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Robertson S J, Messer R J, Carmody A B, Hasenkrug K J. In vitro suppression of cd8+ t cell function by friend virus-induced regulatory t cells. J Immunol. 2006;176:3342–3349. doi: 10.4049/jimmunol.176.6.3342. [DOI] [PubMed] [Google Scholar]
  39. Sadlack B, Merz H, Schorle H, Schimpl A, Feller A C, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75:253–261. doi: 10.1016/0092-8674(93)80067-O. [DOI] [PubMed] [Google Scholar]
  40. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated t cells expressing il-2 receptor alpha-chains (cd25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–1164. [PubMed] [Google Scholar]
  41. Sakuishi K, Ngiow S F, Sullivan J M, Teng M W, Kuchroo V K, Smyth M J, Anderson A C. Tim3foxp3 regulatory t cells are tissue-specific promoters of t-cell dysfunction in cancer. Oncoimmunology. 2013;2:e23849. doi: 10.4161/onci.23849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sanchez A M, Zhu J, Huang X, Yang Y. The development and function of memory regulatory t cells after acute viral infections. J Immunol. 2012;189:2805–2814. doi: 10.4049/jimmunol.1200645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Scheffold A, Huhn J, Hofer T. Regulation of cd4+cd25+ regulatory t cell activity: It takes (il-)two to tango. Eur J Immunol. 2005;35:1336–1341. doi: 10.1002/eji.200425887. [DOI] [PubMed] [Google Scholar]
  44. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S. Foxp3-dependent and -independent molecules specific for cd25+cd4+ natural regulatory t cells revealed by DNA microarray analysis. Int Immunol. 2006;18:1197–1209. doi: 10.1093/intimm/dxl060. [DOI] [PubMed] [Google Scholar]
  45. Suzuki H, Duncan G S, Takimoto H, Mak T W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the il-2 receptor beta chain. J Exp Med. 1997;185:499–505. doi: 10.1084/jem.185.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Taylor A L, Llewelyn M J. Superantigen-induced proliferation of human cd4+cd25-t cells is followed by a switch to a functional regulatory phenotype. J Immunol. 2010;185:6591–6598. doi: 10.4049/jimmunol.1002416. [DOI] [PubMed] [Google Scholar]
  47. Thornton A M, Korty P E, Tran D Q, Wohlfert E A, Murray P E, Belkaid Y, Shevach E M. Expression of helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced foxp3+ t regulatory cells. J Immunol. 2010;184:3433–3441. doi: 10.4049/jimmunol.0904028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Verhagen J, Wraith D C. Comment on “expression of helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced foxp3+ t regulatory cells”. J Immunol. 2010;185:7129. doi: 10.4049/jimmunol.1090105. [DOI] [PubMed] [Google Scholar]
  49. Wang H Y, Lee D A, Peng G, Guo Z, Li Y, Kiniwa Y, Shevach E M, Wang R F. Tumor-specific human cd4+ regulatory t cells and their ligands: Implications for immunotherapy. Immunity. 2004;20:107–118. doi: 10.1016/S1074-7613(03)00359-5. [DOI] [PubMed] [Google Scholar]
  50. Wei W Z, Morris G P, Kong Y C. Anti-tumor immunity and autoimmunity: A balancing act of regulatory t cells. Cancer Immunol Immun. 2004;53:73–78. doi: 10.1007/s00262-003-0444-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Willerford D M, Chen J, Ferry J A, Davidson L, Ma A, Alt F W. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity. 1995;3:521–530. doi: 10.1016/1074-7613(95)90180-9. [DOI] [PubMed] [Google Scholar]
  52. Woodland D, Happ M P, Bill J, Palmer E. Requirement for cotolerogenic gene products in the clonal deletion of i-e reactive t cells. Science. 1990;247:964–967. doi: 10.1126/science.1968289. [DOI] [PubMed] [Google Scholar]
  53. Woodland D L, Blackman M A. How do t-cell receptors, mhc molecules and superantigens get together? Immunology Today. 1993;14:208–212. doi: 10.1016/0167-5699(93)90164-G. [DOI] [PubMed] [Google Scholar]
  54. Yang J H, Zhang Y X, Yu R B, Su C, Sun N X. cd4+ cd25+ regulatory t cells suppress cd4+ t cell responses in patients with persistent hepatitis c virus infection. Chinese Journal of Internal Medicine. 2006;45:29–33. doi: 10.2169/internalmedicine.45.1467. [DOI] [PubMed] [Google Scholar]
  55. Young G R, Ploquin M J, Eksmond U, Wadwa M, Stoye J P, Kassiotis G. Negative selection by an endogenous retrovirus promotes a higher-avidity cd4+ t cell response to retroviral infection. PLoS Pathog. 2012;8:e1002709. doi: 10.1371/journal.ppat.1002709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zelinskyy G, Kraft A R, Schimmer S, Arndt T, Dittmer U. Kinetics of cd8+ effector t cell responses and induced cd4+ regulatory t cell responses during friend retrovirus infection. Eur J Immunol. 2006;36:2658–2670. doi: 10.1002/eji.200636059. [DOI] [PubMed] [Google Scholar]
  57. Zelinskyy G, Dietze K K, Husecken Y P, Schimmer S, Nair S, Werner T, Gibbert K, Kershaw O, Gruber A D, Sparwasser T, Dittmer U. The regulatory t-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic t-cell response. Blood. 2009;114:3199–3207. doi: 10.1182/blood-2009-03-208736. [DOI] [PubMed] [Google Scholar]
  58. Zhou Q, Munger M E, Highfill S L, Tolar J, Weigel B J, Riddle M, Sharpe A H, Vallera D A, Azuma M, Levine B L, June C H, Murphy W J, Munn D H, Blazar B R. Program death-1 signaling and regulatory t cells collaborate to resist the function of adoptively transferred cytotoxic t lymphocytes in advanced acute myeloid leukemia. Blood. 2010;116:2484–2493. doi: 10.1182/blood-2010-03-275446. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES