Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Feb 6;28(2):65–70. doi: 10.1007/s12250-013-3306-9

Characterization of a putative filovirus vaccine: Virus-like particles

Karen A O Martins 1,, Travis K Warren 1, Sina Bavari 1
PMCID: PMC8208340  PMID: 23385315

Abstract

Filoviruses are hemorrhagic fever viruses endemic to parts of Africa and the Philippines. Infection carries with it a mortality rate of up to 90% and currently there are no effective vaccines or therapeutics available to combat infection. However, the filovirus virus-like particles (VLP), which are currently under development, have been shown to be a promising vaccine candidate. They provide protection from infection in the mouse, guinea pig, and nonhuman primate models of infection, eliciting high anti-glycoprotein antibody titers and T cell responses to viral proteins. In this review, we will highlight the development of the filovirus VLP and describe the current understanding of VLP immunogenicity and correlates of protection.

Keywords: Filovirus, Ebola, Marburg, Vaccine, Virus-like particle, Correlates of Protection

Footnotes

Foundation items: This work was funded by the Chemical-Biological Medical System-Joint Vaccine Acquisition Program (CBMS-JVAP) as well as the Defense Threat Reduction Agency (DTRA) (CBM.VAXV.03.11.RD.009 and A151 A.41).

References

  1. World Health Organization. Outbreak news. Ebola, Democratic Republic of the Congo. Wkly Epidemiol Rec. 2012;87:421. [PubMed] [Google Scholar]
  2. World Health Organization. Outbreak news. Marburg haemorrhagic fever, Uganda. Wkly Epidemiol Rec. 2012;87:414. [PubMed] [Google Scholar]
  3. Basler C F, Amarasinghe G K. Evasion of interferon responses by Ebola and Marburg viruses. J Interferon Cytokine Res. 2009;29:511–520. doi: 10.1089/jir.2009.0076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bavari S, Bosio C M, Wiegand E, Ruthel G, Will A B, Geisbert T W, Hevey M, Schmaljohn C, Schmaljohn A, Aman M J. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med. 2002;195:593–602. doi: 10.1084/jem.20011500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bosio C M, Moore B D, Warfield K L, Ruthel G, Mohamadzadeh M, Aman M J, Bavari S. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology. 2004;326:280–287. doi: 10.1016/j.virol.2004.05.025. [DOI] [PubMed] [Google Scholar]
  6. Bosio C M, Aman M J, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, Schmaljohn A. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis. 2003;188:1630–1638. doi: 10.1086/379199. [DOI] [PubMed] [Google Scholar]
  7. Bradfute S B, Dye J M, Jr., Bavari S. Filovirus vaccines. Hum Vaccin. 2011;7:701–711. doi: 10.4161/hv.7.6.15398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bray M, Davis K, Geisbert T, Schmaljohn C, Huggins J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis. 1998;178:651–661. doi: 10.1086/515386. [DOI] [PubMed] [Google Scholar]
  9. Cardenas W B, Loo Y M, Gale M, Jr., Hartman A L, Kimberlin C R, Martinez-Sobrido L, Saphire E O, Basler C F. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol. 2006;80:5168–5178. doi: 10.1128/JVI.02199-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chang T H, Kubota T, Matsuoka M, Jones S, Bradfute S B, Bray M, Ozato K. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog. 2009;5:e1000493. doi: 10.1371/journal.ppat.1000493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldmann H, Klenk H D, Sanchez A. Molecular biology and evolution of filoviruses. Arch Virol Suppl. 1993;7:81–100. doi: 10.1007/978-3-7091-9300-6_8. [DOI] [PubMed] [Google Scholar]
  12. Johnson R F, Bell P, Harty R N. Effect of Ebola virus proteins GP, NP and VP35 on VP40 VLP morphology. Virol J. 2006;3:31. doi: 10.1186/1743-422X-3-31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leung L W, Park M S, Martinez O, Valmas C, Lopez C B, Basler C F. Ebolavirus VP35 suppresses IFN production from conventional but not plasmacytoid dendritic cells. Immunol Cell Biol. 2011;89:792–802. doi: 10.1038/icb.2010.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Licata J M, Johnson R F, Han Z, Harty R N. Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol. 2004;78:7344–7351. doi: 10.1128/JVI.78.14.7344-7351.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Makino A, Yamayoshi S, Shinya K, Noda T, Kawaoka Y. Identification of amino acids in Marburg virus VP40 that are important for virus-like particle budding. J Infect Dis. 2011;204(Suppl3):S871–877. doi: 10.1093/infdis/jir309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martinez O, Valmas C, Basler C F. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology. 2007;364:342–354. doi: 10.1016/j.virol.2007.03.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Okumura A, Pitha P M, Harty R N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A. 2008;105:3974–3979. doi: 10.1073/pnas.0710629105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sullivan N J, Martin J E, Graham B S, Nabel G J. Correlates of protective immunity for Ebola vaccines: implications for regulatory approval by the animal rule. Nat Rev Microbiol. 2009;7:393–400. doi: 10.1038/nrmicro2129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Swenson D L, Warfield K L, Negley D L, Schmaljohn A, Aman M J, Bavari S. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine. 2005;23:3033–3042. doi: 10.1016/j.vaccine.2004.11.070. [DOI] [PubMed] [Google Scholar]
  20. Swenson D L, Warfield K L, Kuehl K, Larsen T, Hevey M C, Schmaljohn A, Bavari S, Aman M J. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol. 2004;40:27–31. doi: 10.1016/S0928-8244(03)00273-6. [DOI] [PubMed] [Google Scholar]
  21. Swenson D L, Wang D, Luo M, Warfield K L, Woraratanadharm J, Holman D H, Dong J Y, Pratt W D. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol. 2008;15:460–467. doi: 10.1128/CVI.00431-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wahl-Jensen V, Kurz S K, Hazelton P R, Schnittler H J, Stroher U, Burton D R, Feldmann H. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol. 2005;79:2413–2419. doi: 10.1128/JVI.79.4.2413-2419.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wahl-Jensen V, Kurz S, Feldmann F, Buehler L K, Kindrachuk J, DeFilippis V, da Silva Correia J, Fruh K, Kuhn J H, Burton D R, Feldmann H. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLoS Negl Trop Dis. 2011;5:e1359. doi: 10.1371/journal.pntd.0001359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wahl-Jensen V M, Afanasieva T A, Seebach J, Stroher U, Feldmann H, Schnittler H J. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol. 2005;79:10442–10450. doi: 10.1128/JVI.79.16.10442-10450.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Warfield K L, Deal E M, Bavari S. Filovirus infections. J Am Vet Med Assoc. 2009;234:1130–1139. doi: 10.2460/javma.234.9.1130. [DOI] [PubMed] [Google Scholar]
  26. Warfield K L, Swenson D L, Negley D L, Schmaljohn A L, Aman M J, Bavari S. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine. 2004;22:3495–3502. doi: 10.1016/j.vaccine.2004.01.063. [DOI] [PubMed] [Google Scholar]
  27. Warfield K L, Swenson D L, Olinger G G, Kalina W V, Aman M J, Bavari S. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge. J Infect Dis. 2007;196(Suppl2):S430–437. doi: 10.1086/520583. [DOI] [PubMed] [Google Scholar]
  28. Warfield K L, Bosio C M, Welcher B C, Deal E M, Mohamadzadeh M, Schmaljohn A, Aman M J, Bavari S. Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A. 2003;100:15889–15894. doi: 10.1073/pnas.2237038100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warfield K L, Olinger G, Deal E M, Swenson D L, Bailey M, Negley D L, Hart M K, Bavari S. Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. J Immunol. 2005;175:1184–1191. doi: 10.4049/jimmunol.175.2.1184. [DOI] [PubMed] [Google Scholar]
  30. Warfield K L, Perkins J G, Swenson D L, Deal E M, Bosio C M, Aman M J, Yokoyama W M, Young H A, Bavari S. Role of natural killer cells in innate protection against lethal ebola virus infection. J Exp Med. 2004;200:169–179. doi: 10.1084/jem.20032141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Warfield K L, Posten N A, Swenson D L, Olinger G G, Esposito D, Gillette W K, Hopkins R F, Costantino J, Panchal R G, Hartley J L, Aman M J, Bavari S. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J Infect Dis. 2007;196(Suppl2):S421–429. doi: 10.1086/520612. [DOI] [PubMed] [Google Scholar]
  32. Yasuda J, Nakao M, Kawaoka Y, Shida H. Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol. 2003;77:9987–9992. doi: 10.1128/JVI.77.18.9987-9992.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES