Skip to main content
Virologica Sinica logoLink to Virologica Sinica
. 2013 Sep 27;28(5):272–279. doi: 10.1007/s12250-013-3363-0

Characterization and genomic analysis of a plaque purified strain of cyanophage PP

Yiran Zhou 1, Juan Lin 1, Na Li 1, Zhihong Hu 1, Fei Deng 1,
PMCID: PMC8208355  PMID: 24132757

Abstract

Cyanophages are ubiquitous and essential components of the aquatic environment and play an important role in the termination of algal blooms. As such, they have attracted widespread interest. PP was the first isolated cyanophage in China, which infects Plectonema boryanum and Phormidium foveolarum. In this study, this cyanophage was purified three times by a double-agar overlay plaque assay and characterized. Its genome was extracted, totally sequenced and analyzed. Electron microscopy revealed a particle with an icosahedral head connected to a short stubby tail. Bioassays showed that PP was quite virulent. The genome of PP is a 42,480 base pair (bp), linear, double-stranded DNA molecule with 222 bp terminal repeats. It has high similarity with the known Pf-WMP3 sequence. It contains 41 open reading frames (ORFs), 17 of which were annotated. Intriguingly, the genome can be divided into two completely different parts, which differ both in orientation and function.

Keywords: Cyanophage PP, Characterization, Plaque assay, Complete genome sequencing, Genome organization

References

  1. Bergh O, Borsheim K Y, Bratbak G, et al. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–468. doi: 10.1038/340467a0. [DOI] [PubMed] [Google Scholar]
  2. Bratbak G, Heldal M, Norland S, et al. Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol. 1990;56(5):1400–1405. doi: 10.1128/aem.56.5.1400-1405.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryan M J, Burroughs N J, Spence E M, et al. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer. PloS One. 2008;3(4):e2048. doi: 10.1371/journal.pone.0002048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carmichael W W. Health effects of toxin-producing Cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess. 2001;7(5):1393–1407. doi: 10.1080/20018091095087. [DOI] [Google Scholar]
  5. Chenard C, Suttle C A. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol. 2008;74(17):5317–5324. doi: 10.1128/AEM.02480-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen F, Lu J R. Genomic sequence and evolution of marine Cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68(5):2589–2594. doi: 10.1128/AEM.68.5.2589-2594.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Codd G A, Morrison L F, Metcalf J S. Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol. 2005;203:264–272. doi: 10.1016/j.taap.2004.02.016. [DOI] [PubMed] [Google Scholar]
  8. Dittmann E, Wiegand C. Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res. 2006;50:7–17. doi: 10.1002/mnfr.200500162. [DOI] [PubMed] [Google Scholar]
  9. Fuhrman J A. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–548. doi: 10.1038/21119. [DOI] [PubMed] [Google Scholar]
  10. Gao E B, Gui J F, Zhang Q Y. A novel cyanophage with cyanobacterial non-bleaching protein A gene in the genome. J Virol. 2012;86(1):236–245. doi: 10.1128/JVI.06282-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jungblut A D, Hawes I, Mountfort D, et al. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol. 2005;7(4):519–529. doi: 10.1111/j.1462-2920.2005.00717.x. [DOI] [PubMed] [Google Scholar]
  12. Kropinski A M, Mazzocco A, Waddell TE, et al. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol. 2009;501:69–76. doi: 10.1007/978-1-60327-164-6_7. [DOI] [PubMed] [Google Scholar]
  13. Liao M J, Cheng K, Yang J Y, et al. Assessment of UV-B damage in cyanophage PP. Aquat Microb Ecol. 2010;58:323–328. doi: 10.3354/ame01386. [DOI] [Google Scholar]
  14. Liu X Y, Shi M, Kong S L, et al. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology. 2007;366:28–39. doi: 10.1016/j.virol.2007.04.019. [DOI] [PubMed] [Google Scholar]
  15. Liu X Y, Kong S L, Shi M, et al. Genomic analysis of freshwater cyanophage Pf-WMP3 infecting cyanobacteriumPhormidium foveolarum: the conserved elements for a phage. Microb Ecol. 2008;56:671–680. doi: 10.1007/s00248-008-9386-7. [DOI] [PubMed] [Google Scholar]
  16. Lorraine C B. Cyanobacterial Harmful Algal Blooms (CyanoHABs): Developing a public health response. Lake Reserv Manag. 2002;18(1):20–31. doi: 10.1080/07438140209353926. [DOI] [Google Scholar]
  17. Mann N H, Clokie M R J, Millard A, et al. The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marineSynechococcusstrains. J Bacteriol. 2005;187(9):3188–3200. doi: 10.1128/JB.187.9.3188-3200.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paul J H, Weinbauer M. Detection of lysogeny in marine environments. In: Wilhelm S W, Weinbauer M G, Suttle C A, editors. Manual of Aquatic Viral Ecology. TX, USA: American Society of Limnology and Oceanography; 2010. pp. 30–33. [Google Scholar]
  19. Pope W H, Weigele P R, Chang J, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marineSynechococcus. J Mol Biol. 2007;368:966–981. doi: 10.1016/j.jmb.2007.02.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Proctor L M, Fuhrman J A. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–62. doi: 10.1038/343060a0. [DOI] [Google Scholar]
  21. Raytcheva D A, Haase-Pettingell C, Piret J, et al. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011;85(5):2406–2415. doi: 10.1128/JVI.01601-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sabehi G, Shaulov L, Silver D H, et al. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci U S A. 2012;109(6):2037–2042. doi: 10.1073/pnas.1115467109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Safferman R S, Morris S E. Algal virus: isolation. Science. 1963;140(3567):679–680. doi: 10.1126/science.140.3567.679. [DOI] [PubMed] [Google Scholar]
  24. Safferman R S. Classification and nomenclature of viruses of cyanobacteria. Intervirology. 1983;19:61–66. doi: 10.1159/000149339. [DOI] [PubMed] [Google Scholar]
  25. Sherman L A, Haselkorn R. LPP-1 infection of the blue-green algaPlectonema boryanum: I. Electron Microscopy. J Virol. 1970;6(6):820–833. doi: 10.1128/jvi.6.6.820-833.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sullivan M B, Coleman M L, Weigele P, et al. ThreeProchlorococcus cyanophage genomes: signature features and ecological interpretations. PloS Biol. 2005;3(5):e144. doi: 10.1371/journal.pbio.0030144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sullivan M B, Krastins B, Hughes J L, et al. The genome and structural proteome of an ocean siphovirus: A new window into the cyanobacterial ‘mobilome’. Environ Microbiol. 2009;11:2935–2951. doi: 10.1111/j.1462-2920.2009.02081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Suttle CA. Viruses in the sea. Nature. 2005;437:356–361. doi: 10.1038/nature04160. [DOI] [PubMed] [Google Scholar]
  29. Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–812. doi: 10.1038/nrmicro1750. [DOI] [PubMed] [Google Scholar]
  30. Weigele P R, Pope W H, Pedulla M L, et al. Genomic and structural analysis of Syn9, a cyanophage infecting marineProchlorococcus and Synechococcus. Environ Microbiol. 2007;9:1675–1695. doi: 10.1111/j.1462-2920.2007.01285.x. [DOI] [PubMed] [Google Scholar]
  31. Wilhelm S W, Carberry M J, Eldridge M L, et al. Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes. Appl Environ Microbiol. 2006;72(7):4957–4963. doi: 10.1128/AEM.00349-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson W H, Joint L R, Carr N G, et al. Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803. Appl Environ Microbiol. 1993;59:3736–3743. doi: 10.1128/aem.59.11.3736-3743.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yoshida M, Yoshida T, Kashima A, et al. Ecological dynamics of the toxic bloom-forming cyanobacteriumMicrocystis aeruginosaand its cyanophages in freshwater. Appl Environ Microbiol. 2008;74(10):3269–3273. doi: 10.1128/AEM.02240-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yoshida T, Nagasaki K, Takashima Y, et al. Ma-LMM01 infectingMicrocystis aeruginosailluminates diverse cyanophage genome strategies. J Bacteriol. 2008;190(5):1762–1772. doi: 10.1128/JB.01534-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhao Y J, Chen K, Shi Z L, et al. Isolation and identification of the first cyanophage in China. Prog Nat Sci. 2002;12:923–927. [Google Scholar]

Articles from Virologica Sinica are provided here courtesy of Wuhan Institute of Virology, Chinese Academy of Sciences

RESOURCES