Abstract
We developed a Gaussia luciferase (Gluc) reporter replicon of West Nile virus (WNV) and used it to quantify viral translation and RNA replication. The advantage of the Gluc replicon is that Gaussia luciferase is secreted into the culture medium from cells transfected with Gluc replicon RNA, and the medium can be assayed directly for luciferase activity. Using a known Flavivirus inhibitor (NITD008), we demonstrated that the Gluc-WNV replicon could be used for antiviral screening. The Gluc-WNV-Rep will be useful for research in antiviral drug development programs, as well as for studying viral replication and pathogenesis of WNV.
Keywords: Flavivirus, Replicon, West Nile virus, High-throughput assay
Contributor Information
Zhiming Yuan, Phone: +86-27-87198120, FAX: +86-27-87641072, Email: yzm@wh.iov.cn.
Bo Zhang, Phone: +86-27-87197822, FAX: +86-27-87641072, Email: zhangbo@wh.iov.cn.
References
- Alvarez D E, De Lella Ezcurra A L, Fucito S, Gamarnik A V. Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology. 2005;339:200–212. doi: 10.1016/j.virol.2005.06.009. [DOI] [PubMed] [Google Scholar]
- Badr C E, Hewett J W, Breakefield X O, Tannous B A. A highly sensitive assay for monitoring the secretory pathway and ER stress. PLoS One. 2007;2:e571. doi: 10.1371/journal.pone.0000571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brinton M A. The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol. 2002;56:371–402. doi: 10.1146/annurev.micro.56.012302.160654. [DOI] [PubMed] [Google Scholar]
- Gubler D, Kuno G, Markoff L, editors. Fields Virology. 2007. [Google Scholar]
- Holden K L, Stein D A, Pierson T C, Ahmed A A, Clyde K, Iversen P L, Harris E. Inhibition of dengue virus translation and RNA synthesis by a morpholino oligomer targeted to the top of the terminal 3′ stem-loop structure. Virology. 2006;344:439–452. doi: 10.1016/j.virol.2005.08.034. [DOI] [PubMed] [Google Scholar]
- Kauffman E B, Franke M A, Wong S J, Kramer L D. Detection of West Nile virus. Methods Mol Biol. 2011;665:383–413. doi: 10.1007/978-1-60761-817-1_21. [DOI] [PubMed] [Google Scholar]
- Khromykh A A, Meka H, Guyatt K J, Westaway E G. Essential role of cyclization sequences in flavivirus RNA replication. J Virol. 2001;75:6719–6728. doi: 10.1128/JVI.75.14.6719-6728.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y G, Yoo J S, Kim J H, Kim C M, Oh J W. Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase. BMC Mol Biol. 2007;8:59. doi: 10.1186/1471-2199-8-59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer L D, Styer L M, Ebel G D. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol. 2008;53:61–81. doi: 10.1146/annurev.ento.53.103106.093258. [DOI] [PubMed] [Google Scholar]
- Lee J Y, Kim S, do Hwang W, Jeong J M, Chung J K, Lee M C, Lee D S. Development of a dual-luciferase reporter system for in vivo visualization of MicroRNA biogenesis and posttranscriptional regulation. J Nucl Med. 2008;49:285–294. doi: 10.2967/jnumed.107.042507. [DOI] [PubMed] [Google Scholar]
- Lo M K, Tilgner M, Bernard K A, Shi P Y. Functional Analysis of Mosquito-Borne Flavivirus Conserved Sequence Elements within 3′ Untranslated Region of West Nile Virus by Use of a Reporting Replicon That Differentiates between Viral Translation and RNA Replication. Journal of Virology. 2003;77:10004–10014. doi: 10.1128/JVI.77.18.10004-10014.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukhopadhyay S, Kuhn R J, Rossmann M G. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3:13–22. doi: 10.1038/nrmicro1067. [DOI] [PubMed] [Google Scholar]
- Ng C, Gu F, Phong W, Chen Y, Lim S, Davidson A, Vasudevan S. Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antiviral Research. 2007;76:222–231. doi: 10.1016/j.antiviral.2007.06.007. [DOI] [PubMed] [Google Scholar]
- Remy I, Michnick S W. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat Methods. 2006;3:977–979. doi: 10.1038/nmeth979. [DOI] [PubMed] [Google Scholar]
- Rossi S L, Zhao Q, O’Donnell V K, Mason P W. Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action. Virology. 2005;331:457–470. doi: 10.1016/j.virol.2004.10.046. [DOI] [PubMed] [Google Scholar]
- Ruecker O, Zillner K, Groebner-Ferreira R, Heitzer M. Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics. 2008;280:153–162. doi: 10.1007/s00438-008-0352-3. [DOI] [PubMed] [Google Scholar]
- Shi P Y, Tilgner M, Lo M K. Construction and characterization of subgenomic replicons of New York strain of West Nile virus. Virology. 2002;296:219–233. doi: 10.1006/viro.2002.1453. [DOI] [PubMed] [Google Scholar]
- Shi P Y, Tilgner M, Lo M K, Kent K A, Bernard K A. Infectious cDNA Clone of the Epidemic West Nile Virus from New York City. Journal of Virology. 2002;76:5847–5856. doi: 10.1128/JVI.76.12.5847-5856.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki T, Usuda S, Ichinose H, Inouye S. Real-time bioluminescence imaging of a protein secretory pathway in living mammalian cells using Gaussia luciferase. FEBS Lett. 2007;581:4551–4556. doi: 10.1016/j.febslet.2007.08.036. [DOI] [PubMed] [Google Scholar]
- Tannous B, Kim D, Fernandez J, Weissleder R, Breakefield X. Codon-Optimized Luciferase cDNA for Mammalian Gene Expression in Culture and. Molecular Therapy. 2005;11:435–443. doi: 10.1016/j.ymthe.2004.10.016. [DOI] [PubMed] [Google Scholar]
- Tannous B A. Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nature Protocols. 2009;4:582–591. doi: 10.1038/nprot.2009.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venisnik K M, Olafsen T, Gambhir S S, Wu A M. Fusion of Gaussia luciferase to an engineered anti-carcinoembryonic antigen (CEA) antibody for in vivo optical imaging. Mol Imaging Biol. 2007;9:267–277. doi: 10.1007/s11307-007-0101-8. [DOI] [PubMed] [Google Scholar]
- Yin Z, Chen Y L, Schul W, Wang Q Y, Gu F, Duraiswamy J, Kondreddi R R, Niyomrattanakit P, Lakshminarayana S B, Goh A, Xu H Y, Liu W, Liu B, Lim J Y H, Ng C Y, Qing M, Lim C C, Yip A, Wang G, Chan W L, Tan H P, Lin K, Zhang B, Zou G, Bernard K A, Garrett C, Beltz K, Dong M, Weaver M, He H, Pichota A, Dartois V, Keller T H, Shi P Y. An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences. 2009;106:20435–20439. doi: 10.1073/pnas.0907010106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang B, Dong H, Ye H, Tilgner M, Shi P Y. Genetic analysis of West Nile virus containing a complete 3′CSI RNA deletion. Virology. 2010;408:138–145. doi: 10.1016/j.virol.2010.09.033. [DOI] [PubMed] [Google Scholar]